Supplementary Information for

Reverse Water-gas Shift Catalyzed by $Rh_n VO_{3,4}$ (n = 3-7) Cluster Anions under Variable Temperatures

An Zhao,^{a,c} Qing-Yu Liu,^{a,d} Zi-Yu Li,^{a,d} Xiao-Na Li,*^b Sheng-Gui He*^{a,c,d}

^a State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of

Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^b Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical

Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China

^c University of Chinese Academy of Sciences, Beijing 100049, P. R. China

^d Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of

Excellence in Molecular Sciences, Beijing 100190, China

Corresponding Authors:

* Xiao-Na Li: xiaonali@bit.edu.cn; Sheng-Gui He: shengguihe@iccas.ac.cn

Table of Contents

1. Methods

- 1.1 Experimental Methods
- 1.2 Theoretical Methods

2. Additional studies on cluster reactivity

2.1 Mass spectra for the reactions of mass-selected $Rh_nVO_3^-$ (n = 3-7) clusters with CO₂ at variable temperatures (298 – 773K)

2.2 Mass spectra for the reactions of mass-selected $Rh_nVO_4^-$ (n = 3-7) clusters with H₂ at

variable temperatures (298-673K)

2.3 The branching ratio of products Rh_nO^- for reactions Rh_n^- (n = 3-7) + H₂ and $Rh_nVO_4^-$ for reactions $Rh_nVO_4^-$ + H₂ under variable temperatures (298 – 673K)

3. Additional theoretical calculation results

- 3.1 Low-lying isomers of $Rh_n VO_3^-$ (n = 3-7)
- 3.2 Low-lying isomers of $Rh_n VO_4^-$ (n = 3-7)
- 3.3 The DFT-calculated potential profile for ${}^5\mathrm{Rh}_6\mathrm{VO}_3{}^-+\mathrm{CO}_2$

4. References

1. Methods

1.1 Experimental methods

The experiments performed in this study were conducted with a reflectron time-of-flight mass spectrometer (TOF-MS) coupled with a laser ablation and supersonic expansion cluster source, a quadrupole mass filter, and a high-temperature linear ion trap (LIT) reactor. Detailed design of these apparatus can be found in our previous studies.¹⁻⁶ A brief outline of the experiments is given below. The Rh_nVO_{3,4}⁻ (n = 3-7) cluster anions were generated by laser ablation (Nd³⁺: YAG, $\lambda = 532$ nm, 15–20 mJ pulse⁻¹, 10 Hz; Continuum Minilite laser system) of a rotating and translating mixed-metal disk compressed with Rh and V powders (molar ratio Rh/V = 5/1) in the presence of 0.05% O₂ seeded in the He carrier gas (99.999%) with a backing pressure of about 5.0 standard atmosphere. The considered $Rh_n VO_3^-$ and $Rh_n VO_4^-$ clusters were mass-selected using a quadrupole mass filter⁵ and then entered into a high-temperature LIT reactor^{6,7} where they were confined and heated to a controlled temperature by collisions with a pulse of buffer gas (He) and then interacted with another pulse of pure (or diluted) CO₂ and H₂, respectively. The high-temperature LIT reactor was formed by a set of hexapole rods and two cap electrodes that were heated using a resistive heater. The temperature was monitored using a thermocouple positioned in the LIT holder. The cluster ions ejected from the LIT were detected using a reflectron TOF-MS,² which was used to measure the masses and the abundance of the reactant and product ions.

1.2 Theoretical methods

The density functional theory (DFT) calculations at the Tao–Perdew–Staroverov–Scuseria (TPSS)⁸ level using the Gaussian 09 program package⁹ were carried out to investigate the structures of the $Rh_nVO_{3,4}^-$ (n = 3-7) clusters as well as the mechanism for the reaction of $Rh_6VO_3^-$ with CO_2 . The TZVP¹⁰ basis sets for H, C, and O atoms and the Stuttgart/Dresden relativistic effective core potentials¹¹ (denoted as SDD in Gaussian software) for Rh atom were used. A Fortran code based genetic algorithm¹² was used to search global minimum structure of $Rh_nVO_{3,4}^-$ (n = 3-7). The relaxed potential energy surface scans were used extensively to obtain the initial structures of reaction intermediates (Is) and transition states (TSs) along the pathways. Vibrational frequency calculations were carried out to check that the Is and TSs have zero and only one imaginary frequency, respectively. The TSs were optimized by using the Berny algorithm method¹³ and then verified to connect two appropriate local minima by performing intrinsic reaction coordinate calculations.¹⁴ The

zero-point vibration-corrected energies (ΔH_0) in units of eV were reported in this work. A natural bond orbital (NBO) analysis was performed by using NBO 5.9.¹⁵

2. Additional studies on cluster reactivity

2.1 Mass spectra for the reactions of mass-selected $Rh_nVO_3^-$ (n = 3-7) clusters with CO₂ at variable temperatures (298 – 773K)

Fig. S1 The time-of-flight (TOF) mass spectra for the reactions of mass-selected $Rh_nVO_3^-$ (n = 3-7) clusters (a) with CO_2 (b) at 298K. The average molecule density of reactant gas is about 3×10^{12} (b1), 13×10^{12} (b2), 13×10^{12} (b3), 129×10^{12} (b4), and 5×10^{12} molecule per cm³ (b5). The reaction times are about 1.8 ms for $Rh_3VO_3^-$ + CO₂, 1.9 ms for $Rh_{4,5}VO_3^-$ + CO₂, and 2.1ms for $Rh_{6,7}VO_3^-$ + CO₂. The $Rh_xV_yO_z^-$ and $Rh_xV_yO_zX^-$ species ($X = CO_2$ and $2CO_2$) are labeled as *x*,*y*,*z* and +X, respectively.

Fig. S2 The TOF mass spectra for the reactions mass-selected $Rh_nVO_3^-$ (n = 3-7) clusters (a) with CO_2 (b) at 373 K. The average molecule density of reactant gas is about 8×10^{12} (b1), 75×10^{12} (b2), 39×10^{12} (b3), 154×10^{12} (b4), and 8×10^{12} molecule per cm³ (b5). The reaction times are about 1.7 ms for $Rh_{3,4}VO_3^- + CO_2$ and 2.1 ms for $Rh_{5-7}VO_3^- + CO_2$. The $Rh_xV_yO_z^-$ and $Rh_xV_yO_zX^-$ species (X = CO_2 and 2CO₂) are labeled as *x*,*y*,*z* and +X, respectively.

Fig. S3 The TOF mass spectra for the reactions of mass-selected $Rh_nVO_3^-$ (n = 3-7) clusters (a) with CO_2 (b) at 473 K. The average molecule density of reactant gas is about 12×10^{12} (b1), 110×10^{12} (b2), 67×10^{12} (b3), 48×10^{12} (b4), and 22×10^{12} molecule per cm³ (b5). The reaction times are about 2.1 ms for $Rh_{3,4}VO_3^- + CO_2$ and 22 ms for $Rh_{5-7}VO_3^- + CO_2$. The $Rh_xV_yO_z^-$ and $Rh_xV_yO_zX^-$ species (X = CO₂ and 2CO₂) are labeled as *x*,*y*,*z* and +X, respectively.

Fig. S4 The TOF mass spectra for the reactions of mass-selected $Rh_nVO_3^-$ (n = 3-7) clusters (a) with CO_2 (b) at 573 K. The average molecule density of reactant gas is about 18×10^{12} (b1), 92×10^{12} (b2), 326×10^{12} (b3), 114×10^{12} (b4), and 17×10^{12} molecule per cm³ (b5). The reaction times are about 1.7 ms for $Rh_{3-5}VO_3^- + CO_2$, 22.0 ms for $Rh_6VO_3^- + CO_2$ and 1.8 ms for $Rh_7VO_3^- + CO_2$. The $Rh_xV_yO_z^-$ and $Rh_xV_yO_zX^-$ species (X = CO₂ and 2CO₂) are labeled as *x*,*y*,*z* and +X, respectively. The peaks marked as asterisks are $Rh_3VO_4^-$ (b1), $Rh_6VO_4^-$ (b4) and $Rh_7VO_5^-$ (b5), respectively.

Fig. S5 The TOF mass spectra for the reactions of mass-selected $Rh_nVO_3^-$ (n = 3-7) clusters (a) with CO_2 (b) at 673 K. The average molecule density of reactant gas is about 17×10^{12} (b1), 7×10^{12} (b2), 18×10^{12} (b3), 153×10^{12} (b4), and 74×10^{12} molecule per cm³ (b5). The reaction times are about 2.0 ms for $Rh_{3,7}VO_3^- + CO_2$, 12.0 ms for $Rh_{4,5}VO_3^- + CO_2$, and 42.0 ms for $Rh_6VO_3^- + CO_2$. The $Rh_xV_yO_z^-$ and $Rh_xV_yO_zX^-$ species (X = CO₂ and 2CO₂) are labeled as *x*,*y*,*z* and +X, respectively. The peaks marked as asterisks are $Rh_3VO_5^-$ (b1) and $Rh_4VO_5^-$ (b2) respectively.

Fig. S6 The TOF mass spectra for the reactions of mass-selected $Rh_nVO_3^-$ (n = 3-7) clusters (a) with CO_2 (b) at 773 K. The average molecule density of reactant gas is about 22×10^{12} (b1), 130×10^{12} (b2), 129×10^{12} (b3), 78×10^{12} (b4), and 65×10^{12} molecule per cm³ (b5). The reaction times are about 2.0 ms for $Rh_3VO_3^- + CO_2$, 9.0 ms for $Rh_4VO_3^- + CO_2$, 7.0 ms for $Rh_5VO_3^- + CO_2$, 18.0 ms for $Rh_6VO_3^- + CO_2$, 12.0 ms for $Rh_7VO_3^- + CO_2$. The $Rh_xV_yO_z^-$ and $Rh_xV_yO_zX^-$ species (X = CO_2 and $2CO_2$) are labeled as *x*,*y*,*z* and +X, respectively. The peak marked as asterisks are $Rh_5VO_3CO_2^-$ (b3) $Rh_7VO_5^-$ (b5).

2.2 Mass spectra for the reactions of mass-selected $Rh_nVO_4^-$ (n = 3-7) clusters with H₂ at variable temperatures (298 – 673K)

Fig. S7 The TOF mass spectra for the reactions of mass-selected $Rh_nVO_4^-$ (n = 3-7) clusters (a) with H_2 (b) at 298 K. The average molecule density of reactant gas is about 11×10^{12} (b1), 8×10^{12} (b2), 5×10^{12} (b3), 21×10^{12} (b4), and 8×10^{12} molecule per cm³ (b5). The reaction times are about 1.0 ms for $Rh_{3,4}VO_4^- + H_2$, 2.0 ms for $Rh_{5-7}VO_4^- + H_2$. The $Rh_xV_yO_z^-$ and $Rh_xV_yO_zX^-$ species ($X = H_2$ and $2H_2$) are labeled as x,y,z and +X, respectively. The peaks marked as asterisks are $Rh_3VO_3H_2^-$ (b1) and $Rh_6VO_4H_2^-$ (b4), respectively.

Fig. S8 The TOF mass spectra for the reactions of mass-selected $Rh_nVO_4^-$ (n = 3-7) clusters (a) with H_2 (b) at 373 K. The average molecule density of reactant gas is about 4×10^{12} (b1), 4×10^{12} (b2), 17 $\times 10^{12}$ (b3), 56 $\times 10^{12}$ (b4), and 7 $\times 10^{12}$ molecule per cm³ (b5). The reaction times are about 1.7 ms for $Rh_{3,5}VO_4^- + H_2$, 1.8 ms for $Rh_4VO_4^- + H_2$, 2.1 ms for $Rh_6VO_4^- + H_2$, 1.9 ms for $Rh_7VO_4^- + H_2$. The $Rh_xV_yO_z^-$ and $Rh_xV_yO_zX^-$ species (X = H₂ and 2H₂) are labeled as *x*,*y*,*z* and +X, respectively. The peak marked as asterisk is $Rh_6VO_4H_2^-$ (b4).

Fig. S9 The TOF mass spectra for the reactions of mass-selected $Rh_nVO_4^-$ (n = 3-7) clusters (a) with H_2 (b) at 473 K. The average molecule density of reactant gas is about 5×10^{12} (b1), 15×10^{12} (b2), 18×10^{12} (b3), 53×10^{12} (b4), and 44×10^{12} molecule per cm³ (b5). The reaction times are about 1.7 ms for $Rh_3VO_4^- + H_2$, 2.0 ms for $Rh_{4,5}VO_4^- + H_2$, 12.0 ms for $Rh_6VO_4^- + H_2$, 1.9 ms for $Rh_7VO_4^- + H_2$. The $Rh_xV_yO_z^-$ and $Rh_xV_yO_zX^-$ species (X = H₂ and 2H₂) are labeled as *x*,*y*,*z* and +X, respectively. The peaks marked as asterisks are $Rh_3VO_3H_2^-$ (b1) $Rh_6VO_4H_2^-$ (b4) and $Rh_7VO_4H_2^-$ (b5), respectively.

Fig. S10 The TOF mass spectra for the reactions of mass-selected $Rh_nVO_4^-$ (n = 3-7) clusters (a) with H_2 (b) at 573 K. The average molecule density of reactant gas is about 4×10^{12} (b1), 16×10^{12} (b2), 67×10^{12} (b3), 1193×10^{12} (b4), and 197×10^{12} molecule per cm³ (b5). The reaction times are about 1.7 ms for $Rh_{3-5}VO_4^- + H_2$, 2.0 ms for $Rh_6VO_4^- + H_2$, 1.8 ms for $Rh_7VO_4^- + H_2$. The $Rh_xV_yO_z^-$ and $Rh_xV_yO_zX^-$ species (X = H₂ and 2H₂) are labeled as *x*,*y*,*z* and +X, respectively. The peaks marked as a sterisks are $Rh_6VO_4H_2^-$ (b4) and $Rh_7VO_4H_2^-$ (b5) respectively. The peak marked as a triangle is $Rh_7VO_3(H_2)_2^-$.

Fig. S11 The TOF mass spectra for the reactions of mass-selected $Rh_nVO_4^-$ (n = 3-7) clusters (a) with H_2 (b) at 673 K. The average molecule density of reactant gas is about 7×10^{12} (b1), 31×10^{12} (b2), 24×10^{12} (b3), 88×10^{12} (b4), and 53×10^{12} molecule per cm³ (b5). The reaction times are about 1.9 ms for $Rh_{3,4}VO_4^- + H_2$, 12.0 ms for $Rh_{5-7}VO_4^- + H_2$. The $Rh_xV_yO_z^-$ and $Rh_xV_yO_zX^-$ species ($X = H_2$ and $2H_2$) are labeled as *x*,*y*,*z* and +X, respectively.

2.3 The branching ratio of products Rh_n^- for reactions Rh_nO^- (n = 3-7) + H₂ and $Rh_nVO_3^-$ for reactions $Rh_nVO_4^-$ + H₂ under variable temperatures (298 – 673K)

Fig. S12 The branching ratio of products Rh_n^- for reactions Rh_nO^- (n = 3-7) + H₂ and $Rh_nVO_3^-$ for reactions $Rh_nVO_4^-$ + H₂ under variable temperatures (A–E). Temperatures required when the abundance of products Rh_n^- and $Rh_nVO_3^-$ reach the conversion of 50% (F).

3. Additional theoretical calculation results

3.1 Low-lying isomers of $Rh_nVO_3^-$ (n = 3-7)

Rh₃VO₃⁻ ²IS1:0.02 ²IS2:0.84 ²IS3:0.79 2IS4:4.24 4IS1:0.07 4IS2:0.99 4IS3:0.69 4IS4:4.34 ⁶IS1:0.00 6IS2:1.19 ⁶IS3:1.05 6IS4:4.53 ⁸IS1:0.87 8IS2:2.00 ⁸IS3:1.66 8IS4:4.91 ²IS5:2.07 ²IS6:0.64 2IS7:0.98 ²IS8:0.22 4IS5:2.21 4IS6:0.63 4IS7:0.91 4IS8:0.18 6IS5:2.64 6IS6:1.11 6IS7:1.47 6IS8:0.08 8IS5:3.27 8IS6:1.70 8IS8:1.01 8IS7:1.86 Rh₄VO₃⁻ ¹IS10:1.21 ¹IS9:0.00 ¹IS11:1.03 ¹IS12:1.19 3IS9:0.25 ³IS10:1.01 ³IS11:1.69 ¹IS12:1.18 ⁵IS10:0.86 5IS11:1.34 ¹IS12:1.21 ⁵IS9:0.05 7IS11:1.62 7IS9:0.01 7IS10:0.77 ¹IS12:1.52 ¹IS14:1.38 ¹IS13:1.12 ¹IS15:1.61 ¹IS16:1.29 ³IS13:1.07 3IS14:1.25 ³IS15:1.78 ³IS16:1.35 5IS13:0.97 5IS14:1.27 ⁵IS15:1.91 ⁵IS16:1.42 7IS13:1.44 7IS14:1.42 7IS15:2.36 ⁷IS16:1.65

Fig. S13 The DFT-calculated isomers for $Rh_{3,4}VO_3^-$ at the TPSS level. The relative energies with respect to the lowest-lying isomer are given in eV. Superscripts represent different spin multiplicities.

$Rh_5VO_3^-$

2IS17:0.17 4IS17:0.05 ⁶IS17:0.00 8IS17:0.57

²IS21:1.16

⁴IS21:1.44

⁶IS21:1.46

⁸IS21:1.82

¹IS25:0.55

3IS25:0.07

⁵IS25:0.00

7IS25:0.48

2IS18:0.45 4IS18:0.48 6IS18:0.26 8IS18:0.21

²IS22:1.19

4IS22:1.16

6IS22:1.13

8IS22:1.28

²IS23:1.25

⁴IS23:1.16

⁶IS23:1.12

8IS23:1.32

⁶IS19:0.97 8IS19:1.02

2IS20:1.15

4IS20:1.23

⁶IS20:1.14

8IS20:1.23

²IS24:2.04 4IS24:2.21 ⁶IS24:2.14 ⁸IS24:2.18

¹IS26:1.29 ³IS26:1.39 ⁵IS26:1.32 7IS26:1.11

⁵IS30:2.26

7IS30:1.37

¹IS27:2.48

³IS27:2.32

Rh₆VO₃⁻

¹IS28:2.32 ³IS28:1.99 ⁵IS28:1.80 7IS28:1.88

3IS29:1.80 ⁵IS29:1.66 7IS29:1.84

¹IS31:1.29 ³IS31:1.31 ⁵IS31:1.25 7IS31:1.15

Fig. S14 The DFT-calculated isomers for $Rh_{5.6}VO_3^-$ at the TPSS level. The relative energies with respect to the lowest-lying isomer are given in eV. Superscripts represent different spin multiplicities.

Rh₇VO₃⁻

Fig. S15 The DFT-calculated isomers for $Rh_7VO_3^-$ at the TPSS level. The relative energies with respect to the lowest-lying isomer are given in eV. Superscripts represent different spin multiplicities.

⁸IS36: 1.93

8IS35: 0.56

8IS37: 0.50

3.2 Low-lying isomers of $Rh_n VO_4^-$ (n = 3-7)

Fig. S16 The DFT-calculated isomers for $Rh_{3,4}VO_4^-$ at the TPSS level. The relative energies with respect to the lowest-lying isomer are given in eV. Superscripts represent different spin multiplicities.

Rh₅VO₄⁻

²IS50:0.03

4IS50:0.00

⁶IS50:0.05

8IS50:0.24

²IS53:0.70

4IS53:0.55

⁶IS53:0.72

8IS53:0.71

²IS51:1.06

4IS51:0.91

⁶IS51:0.86

8IS51:0.42

²IS52:0.99 ⁴IS52:0.91 ⁶IS52:0.93 ⁸IS52:1.19

²IS55:0.43

4IS55:0.43

⁶IS55:0.30

⁸IS55:0.24

²IS5 ⁴IS5 ⁶IS5 ⁸IS5

²IS54:0.39 ⁴IS54:0.30 ⁶IS54:0.36 ⁸IS54:0.42

Fig. S17 The DFT-calculated isomers for $Rh_{5,6}VO_4^-$ at the TPSS level. The relative energies with respect to the lowest-lying isomer are given in eV. Superscripts represent different spin multiplicities.

Fig. S18 The DFT-calculated isomers for $Rh_7VO_4^-$ at the TPSS level. The relative energies with respect to the lowest-lying isomer are given in eV. Superscripts represent different spin multiplicities.

3.3 The DFT-calculated potential profile for ⁵Rh₆VO₃⁻ + CO₂

Fig. S19 The DFT-calculated potential profile for ${}^{5}\text{Rh}_{6}\text{VO}_{3}^{-} + \text{CO}_{2}$. The zero-point-vibrationcorrected energies (ΔH_{0} , eV) with respect to the separated reactants are given in eV. The superscripts represent the spin multiplicities.

4. References

- 1. W.-G. Wang, Z.-C.Wang, S. Yin, S.-G. He and M.-F. Ge, *Chin. J. Chem. Phys.*, 2007, **20**, 412–418.
- 2. X.-N. Wu, B. Xu, J.-H. Meng and S.-G. He, Int. J. Mass. Spectrom., 2012, 310, 57–64.
- 3. X.-N. Wu, Y.-X. Zhao, W. Xue, Z.-C. Wang, S.-G. He and X.-L. Ding, *Phys. Chem. Chem. Phys.*, 2010, **12**, 3984–3997.
- 4. W. Xue, S. Yin, X.-L. Ding, S.-G. He and M.-F. Ge, J. Phys. Chem. A, 2009, 113, 5302–5309.
- Z. Yuan, Z.-Y. Li, Z.-X. Zhou, Q.-Y. Liu, Y.-X. Zhao and S.-G. He, *J. Phys. Chem. C*, 2014, 118, 14967–14976.
- 6. M. Ruan, Q.-Y. Liu, Y.-X. Zhao, G.-P. Wei, X.-G. Zhao, Q. Li and S.-G. He, *J. Chem. Phys.*, 2022, **157**, 114301.
- 7. L.-X. Jiang, Q.-Y. Liu, X.-N. Li and S.-G. He, J. Am. Soc. Mass. Spectr., 2018, 29, 78-84.
- 8. J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, *Phys. Rev. Lett.*, 2003, **91**, 146401.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox. *Gaussian 09 Revision A.01.*, 2009.
- 10. A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829–5835.
- 11. D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, *Theor. Chim. Acta*, 1990, 77, 123–141.
- 12. X.-L. Ding, Z.-Y. Li, J.-H. Meng, Y.-X. Zhao and S.-G. He, J. Chem. Phys., 2012, 137, 214311.
- 13. H. B. Schlegel, J. Comput. Chem., 1982, **3**, 214–218.
- 14. C. Gonzalez and H. B. Schlegel, J. Chem. Phys., 1989, 90, 2154–2161.
- E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. M. Bohmann, C. M. and F. Weinhold., 2012. <u>http://www.chem.wisc.edu/</u>.