Supporting Information

Insight into the Ordering Process and Ethanol Oxidation Performance of Au-Pt-Cu Ternary Alloys

Wenbo Zhao,[†] Mengyao Li,[†] Shi Hu[†]*

[†]Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.

Fig. S1 The synthesis of Au_xPt_{1-x}Cu₃/rGO under 300 degrees.

Fig. S2 High-resolution transmission electron microscopy images of $Au_{0.2}Pt_{0.8}Cu_3/rGO$.

Fig. S3 High-resolution transmission electron microscopy images of $Au_{0.6}Pt_{0.4}Cu_3/rGO$.

Fig. S4 High-resolution transmission electron microscopy images of $Au_{0.8}Pt_{0.2}Cu_3/rGO$.

Fig. S5 Energy Dispersive Spectroscopy (EDS) mapping of Au_{0.2}Pt_{0.8}Cu₃/rGO.

Fig. S6 Energy Dispersive Spectroscopy (EDS) mapping of Au_{0.6}Pt_{0.4}Cu₃/rGO.

Fig. S7 Energy Dispersive Spectroscopy (EDS) mapping of Au_{0.8}Pt_{0.2}Cu₃/rGO.

Fig. S8 X-ray photoelectron spectroscopy patterns of (a) Au 4f, (b) Pt 4f, (c) Cu $2p_{1/2}$ and Cu $2p_{3/2}$ in Au_xPt_{1-x}Cu₃/rGO ordered alloys.

Fig. S9 Ethanol oxidation reaction in 1.0 M KOH and 1.0M EtOH with AuCu₃/rGO.

Fig. S10 Chronoamperometry testing at 0.77 V_{RHE} for 3600 seconds in N₂-saturated 1.0 M KOH and 1.0 M EtOH mixture solution.

Fig. S11 Cyclic Voltammetry of $Au_xPt_{1-x}Cu_3/rGO$ in 1.0M KOH with a scan rate of 50 mV \cdot s⁻¹..

Fig. S12 Electrochemical active surface area (ECSA) and specific activity of $Au_xPt_{1-x}Cu_3/rGO$ in 1.0 M KOH and 1.0M EtOH. The ECSA is calculated with the area of the Pt oxide reduction peak.¹⁻²

Fig. S13 XRD pattern of AuCu₃/rGO parallel samples.

Fig. S14 XRD pattern of Au_{0.8}Pt_{0.2}Cu₃/rGO parallel samples.

Fig. S15 XRD pattern of $Au_{0.6}Pt_{0.4}Cu_3/rGO$ parallel samples.

Fig. S16 XRD pattern of Au_{0.4}Pt_{0.6}Cu₃/rGO parallel samples.

Fig. S17 XRD pattern of Au_{0.2}Pt_{0.8}Cu₃/rGO parallel samples.

Fig. S18 XRD pattern of PtCu₃/rGO parallel samples.

Fig. S19 (a) XRD pattern of $Au_{0.6}Pt_{0.4}Cu_3/rGO$ samples annealed at 900 °C for 3h, annealed at 900 °C for 3h and 300 °C for 6h and (b) their ordering degree. (c) Ethanol oxidation performance of $Au_{0.6}Pt_{0.4}Cu_3/rGO$ samples annealed at 900 °C for 3h, annealed at 900 °C for 3h and 300 °C for 6h and (d) activity comparison.

Fig. S20 XRD pattern of AuCu₃/rGO samples annealed at 900 $^{\circ}$ C for 3h, annealed at 900 $^{\circ}$ C for 3h and 300 $^{\circ}$ C for 6h and their ordering degree.

Samula		Atomic Ratio	
Sample -	Au	Cu	Pt
PtCu ₃ /rGO	0	0.818607955	0.181392045
Au _{0.2} Cu ₃ Pt _{0.8} /rGO	0.028962411	0.829645331	0.141392258
Au _{0.4} Cu ₃ Pt _{0.6} /rGO	0.073480344	0.823508243	0.103011414
Au _{0.6} Cu ₃ Pt _{0.4} /rGO	0.115593784	0.81551273	0.068893487
Au _{0.8} Cu ₃ Pt _{0.2} /rGO	0.138738842	0.826128833	0.035132325
AuCu ₃ /rGO	0.217636877	0.782363123	0

Table S1 ICP results of $Au_xPt_{1-x}Cu_3/rGO$ samples with various values of x.

Table S2 Ratios of precursors in $Au_xPt_{1-x}Cu_3/rGO$ samples with various values of x.

Sample HAuCl ₄ ·4H ₂ O (mmo		CuCl ₂ ·2H ₂ O (mmol)	H ₂ PtCl ₆ ·6H ₂ O (mmol)	
PtCu ₃ /rGO	0	0.075	0.025	
Au _{0.2} Cu ₃ Pt _{0.8} /rGO	0.005	0.075	0.020	
Au _{0.4} Cu ₃ Pt _{0.6} /rGO	0.010	0.075	0.015	
Au _{0.6} Cu ₃ Pt _{0.4} /rGO	0.015	0.075	0.010	
Au _{0.8} Cu ₃ Pt _{0.2} /rGO	0.020	0.075	0.005	
AuCu ₃ /rGO	0.025	0.075	0	

Sites	d-band center (eV)
Pt1:	-1.9396
Pt2:	-1.9422
Pt3:	-1.9428
Pt4:	-1.9423
Pt5:	-1.9409
Pt6:	-1.9421
Pt7:	-1.9436
Pt8:	-1.941
Pt9:	-1.9411
Pt10:	-1.9395
Pt11:	-1.9425
Pt12:	-1.9427
Pt13:	-1.9421
Pt14:	-1.9409
Pt15:	-1.9421
Pt16:	-1.9433
Pt17:	-1.9411
Pt18:	-1.9403
Average	-1.9417

Table S3 d-band center of Pt in the $Pt_{18}Cu_{54}$.

Sites	d-band center (eV)
Pt1:	-1.9841
Pt2:	-2.0016
Pt3:	-2.003
Pt4:	-1.9831
Pt5:	-1.9941
Pt6:	-1.9945
Pt7:	-1.9814
Pt8:	-1.9871
Pt9:	-1.987
Pt10:	-1.9813
Pt11:	-1.977
Pt12:	-1.9776
Average	-1.98765

Table S4 d-band center of Pt in the $Au_6Pt_{12}Cu_{54}$.

Sites	d-band center (eV)	
Pt1:	-2.1428	
Pt2:	-2.1434	
Pt3:	-2.1096	
Pt4:	-2.1625	
Pt5:	-2.1505	
Pt6:	-2.1428	
Average	-2.1419	

Table S5 d-band center of Pt in the $Au_{12}Pt_6Cu_{54}$.

Reference

F. P. Lohmann-Richters, B. Abel and Á. Varga, J. Mater. Chem. A, 2018, 6, 2700-2707.
M. Łukaszewski, M. Soszko and A. Czerwiński, Int. J. Electrochem. Sci., 2016, 11, 4442-4469.