Electronic Supporting Information

In situ Hydrolysis of a Carbophosphazene Ligand Leads to One-Dimensional Lanthanide Coordination Polymers. Synthesis, Structure and Dynamic Magnetic Studies.

Naushad Ahmed,^{a ‡} Prem Prakash Sahu,^{b, §} Amit Chakraborty, ^a Jessica Flores Gonzalez, ^{c §} Junaid Ali, ^a Pankaj Kalita,^a Fabrice Pointillart,* ^c Saurabh Kumar Singh* ^b Vadapalli Chandrasekhar * ^{a, d}

^a Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India

^b Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Telangana-502285, India

° Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France

^d Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India

[‡] Current address: Departments of Chemistry, Texas A&M University, College Station, Texas 77842, United State

[§] Authors contributed equally

Scheme S1. General synthetic route adopted to isolate the tetrameric Cu^{II} ensemble.¹

	1	2	3		4	1
Formula	$C_{14}H_{40}ClGdN_{12}O_{14}P_2$	C15H42ClN12O14P2Tb	C15H42ClDvN12O14P2		C15H42ClF	$rN_{12}O_{14}P_2$
Size [mm]	$0.220 \times 0.210 \times 0.190$	$0.240 \times 0.200 \times 0.140$	$0.240 \times 0.210 \times 0.190$		$0.260 \times 0.210 \times 0.170$	
System	Monoclinic	Monoclinic	Mono	clinic	Monoclinic	
Space group	$P2_1/n$	$P2_1/n$	P2	1/n	$P2_1/n$	
	12.9642(6)	12.9417(3)	12.95	15(4)	12.9252(3)	1
<i>b</i> [Å]	13.9446(8)	13.8877(4)	13.82	86(5)	13.79	97(3)
c [Å]	18.4472(12)	18.2069(5)	18.17	52(7)	18.260	50(5))
α [°]	90	90	9	0	9	0
β [°]	96.725(5)	97.507(2)	97.68	85(3)	97.05	52(2)
γ [°]	90	90	9	0	9	0
V [Å ³]	3312.0(3)	3244.29(15)	3226	.0(2)	3233.3	35(14)
Z	4	4	4	1	4	1
$\rho_{\rm calcd}$ [g/cm ⁻³]	1.715	1.783	1.8	301	1.8	06
$2\Theta_{\rm max}$	49.998	59.226	52.	738	57.	838
Radiation	Μο Κα	Μο Κα	Mo	Κα	Mo	K _α
λ [Å]	0.71073	0.71073	0.71	073	0.71	073
<i>T</i> [K]	293(2)	293(2)	293	8(2)	293	5(2)
Reflns	33646	41564	381	110	299	965
Ind. Reflns	5770	7739	65	81	76	10
refins with $I > 2\sigma(I)$	16297	5617	52	09	58	57
R1	0.0485	0.0351	0.0	591	0.04	404
wR2	0.1173	0.0801	0.1	624	0.1055	
	Hv	drogen-bond geometry ((Å, °) for 1-4			
Complex	Interaction	Туре	dD–H (Å)	H…A (Å)	dD…A (Å)	<dha (°)<="" td=""></dha>
1	N1-H1O5	Intra	0.86	2.21	2.978(7)	148
	O1–H1A·····Cl1		0.85	2.18	2.990(7)	160
	O1W–H1WB······O3	Intra	0.93	1.93	2.725(7)	143
	N7–H7·····O3	Intra	0.86	2.16	2.860(7)	138
2	O1–H1·····Cl1		0.87	2.21	3.031(3)	157
	O1W–H1WA·····O3	Intra	0.85	1.84	2.685(3)	169
	N1–H1A·····O5	Intra	0.86	2.17	2.932(4)	148
	O1W-H1WB·····O12		0.95	1.76	2.699(4)	169
	N8-H8·····O3	Intra	0.86	2.14	2.839(4	137
	012–H12·····Cl1		0.82	2.17	2.976(4)	166
	O14–H14·····N3		0.82	2.02	2.817(5)	165
2	01 11 011		0.82	2 20	3.024(7)	150
3		Intro	0.85	1.20	2 605(0)	150
	01%-III % A05	IIIua	0.85	2.00	2.093(9)	155
	N3 H305	Intra	0.84	2.00	2.800(11) 2.847(9)	137
	N6 H6O3	Intra	0.88	2.14	2.047(9)	148
	110-110-000	IIIua	0.00	2.17	2.720(7)	170
4	01–H1·····Cl1		0.82	2.27	3.037(3)	156
•	01W-H1WA03	Intra	0.85	1.84	2.677(4)	169
	01W-H1WB014		0.85	1.89	2.712(5)	163
	N3–H3·····O3S		0.86	2.03	2.824(5)	153
	O3S-H3SCl1		0.82	2.27	3.094(4)	179
	N6-H6O3	Intra	0.86	2.16	2.850(5)	137
	O14–H14·····Cl1		0.82	2.15	2.961(6)	170

 Table S1. Crystallographic and hydrogen bond parameters for 1-4

	1	2	3	4		
EP-9	36.221	35.843	35.691	36.116		
OPY-9	21.303	21.154	21.196	21.313		
HBPY-9	16.678	17.076	17.002	17.303		
JTC-9	16.065	15.819	15.671	15.975		
JCCU-9	11.538	11.072	11.014	10.942		
CCU-9	9.696	9.503	9.422	9.821		
JCSAPR-9	3.108	2.407	2.401	2.281		
CSAPR-9	2.252	1.742	1.719	1.648		
JTCTPR-9	4.049	3.804	3.825	3.487		
TCTPR-9	2.701	2.512	2.470	2.334		
JTDIC-9	12.941	12.814	12.700	12.797		
HH-9	8.351	8.760	8.695	9.135		
MFF-9	1.655	1.357	1.339	1.315		
EP-9 , D_{9h} Enneagon, OPY-9 C _{8v} Octagonal pyramid, HBPY-D _{7h} Heptagonal bipyramid, JTC-9 C _{3v} Johnson triangular						

Table S2. Continuous Shape Measurement (CShM) analysis for 1-4

EP-9, D_{9h} Enneagon, **OPY-9**C_{8v} Octagonal pyramid, HBPY-D_{7h}Heptagonal bipyramid, **JTC-9**C_{3v} Johnson triangular cupola J3, **JCCU-9**C_{4v} Capped cube J8, **CCU-9**C_{4v} Spherical-relaxed capped cube, **JCSAPR-9**C_{4v} Capped square antiprism J10, **CSAPR-9**C_{4v} Spherical capped square antiprism, **JTCTPR-9**D_{3h} Tricapped trigonal prism J51, **TCTPR-9**D_{3h} Spherical tricapped trigonal prism, **JTDIC-9**C_{3v} Tridiminished icosahedron J63, **HH-9** C_{2v} Hula-hoop**MFF-9**C_s Muffin

Figure S1.	1D extended	structure	of representative	coordination	polymer	3 and its	space	filling
diagram.								

 Table S3. Selected bond lengths and bond angle parameters for 1-4.

Bond Length (Å)	1	2	3	4
Ln1-O1	2.462(5)	2.448(3)	2.437(7)	2.405(3)
Ln1-O2	2.327(5)	2.296(2)	2.291(7)	2.264(2)
Ln1-O4	2.384(5)	2.370(2)	2.357(7)	2.338(2)
Ln1-O5	2.446(4)	2.432(2)	2.421(6)	2.417(2)
Ln1-O6	2.532(6)	2.546(3)	2.426(7)	2.401(3)
Ln1-O7	2.487(5)	2.439(3)	2.534(8)	2.522(3)
Ln1-O9	2.488(5)	2.474(3)	2.468(7)	2.482(3)
Ln1-O10	2.542(6)	2.515(3)	2.494(7)	2.438(3)
Ln1-O1W	2.420(5)	2.370(2)	2.358(7)	2.331(3)
	E	Sond Angle (°)		
P1-O2-Ln1	139.1(3)	138.07(14)	138.1(3)	137.97(15)
P2-O4-Ln1	155.8(3)	154.37(13)	154.7(4)	154.49(17)
P2-O5-Ln2	140.7(3)	139.41(13)	139.0(3)	139.63(16)
	Interm	etallic Distance	(Å)	
Ln1-Ln2	7.172	7.136	7.111	7.094

Figure S2. Packing structure of representative complex 3 along a-axis. The fragmented light green bonds represent hydrogen bonding.

Figure S3. Field dependence of the in-phase component (χ_M ') of the magnetic susceptibility at 2 K for 3

Extended Debye model used for two relaxation contributions (Eq. S1).

$$\begin{split} \chi_{\rm M}' &= \chi_{\rm S} + (\chi_{\rm T} - \chi_{\rm S}) \\ & \left\{ \frac{\beta \Big[1 + (\omega\tau_1)^{1-\alpha_1} \sin\Big(\frac{\pi}{2}\alpha_1\Big) \Big]}{1 + 2(\omega\tau_1)^{1-\alpha_1} \sin\Big(\frac{\pi}{2}\alpha_1\Big) + (\omega\tau_1)^{2(1-\alpha_1)}} \right. \\ & \left. + \frac{(1-\beta) \Big[1 + (\omega\tau_2)^{1-\alpha_2} \sin\Big(\frac{\pi}{2}\alpha_2\Big) \Big]}{1 + 2(\omega\tau_2)^{1-\alpha_2} \sin\Big(\frac{\pi}{2}\alpha_2\Big) + (\omega\tau_2)^{2(1-\alpha_2)}} \right\} \end{split}$$

$$\begin{split} \chi_{\rm M}^{~''} &= (\chi_{\rm T} - \chi_{\rm S}) \\ & \left\{ \frac{\beta \Big[(\omega \tau_1)^{1-\alpha_1} \cos \Big(\frac{\pi}{2} \alpha_1 \Big) \Big]}{1 + 2(\omega \tau_1)^{1-\alpha_1} \sin \Big(\frac{\pi}{2} \alpha_1 \Big) + (\omega \tau_1)^{2(1-\alpha_1)}} \right. \\ & \left. + \frac{(1-\beta) \Big[(\omega \tau_2)^{1-\alpha_2} \cos \Big(\frac{\pi}{2} \alpha_2 \Big) \Big]}{1 + 2(\omega \tau_2)^{1-\alpha_2} \sin \Big(\frac{\pi}{2} \alpha_2 \Big) + (\omega \tau_2)^{2(1-\alpha_2)}} \right\} \end{split}$$

With χ_T the isothermal susceptibility, χ_S the adiabatic susceptibility, τ the relaxation time and α an empiric parameter which describe the distribution of the relaxation time. For SMM with only one relaxing object α is close to zero. The extended Debye model was applied to fit simultaneously the experimental variations of χ_M ' and χ_M '' with the frequency ν of the oscillating field ($\omega = 2\pi\nu$). The best fitted parameters τ_1 , α_1 , χ_{1T} , χ_{1S} , τ_2 , α_2 , χ_{2T} and χ_{2S} are listed in Tables S4 and S11 with the coefficient of determination R². τ_1 , α_1 , χ_{1T} , χ_{1S} are parameters for the high frequency contribution while τ_2 , α_2 , χ_{2T} and χ_{2S} are for the low frequency contribution.

Extended Debye model used for a single relaxation contribution (Eq. S2).

$$\chi_{M}' = \chi_{S} + (\chi_{T} - \chi_{S}) \frac{1 + (\omega\tau)^{1-\alpha} \sin\left(\alpha \frac{\pi}{2}\right)}{1 + 2(\omega\tau)^{1-\alpha} \sin\left(\alpha \frac{\pi}{2}\right) + (\omega\tau)^{2-2\alpha}}$$
$$\chi_{M}'' = (\chi_{T} - \chi_{S}) \frac{(\omega\tau)^{1-\alpha} \cos\left(\alpha \frac{\pi}{2}\right)}{1 + 2(\omega\tau)^{1-\alpha} \sin\left(\alpha \frac{\pi}{2}\right) + (\omega\tau)^{2-2\alpha}}$$

With χ_T the isothermal susceptibility, χ_S the adiabatic susceptibility, τ the relaxation time and α an empiric parameter which describe the distribution of the relaxation time. For SMM with only one relaxation time, α is close to zero. The extended Debye model was applied to fit simultaneously the experimental variations of χ_M ' and χ_M '' with the frequency ν of the oscillating field ($\omega = 2\pi\nu$). Typically, only the temperatures for which a maximum on the χ '' vs. *f* curves, have been considered. The best fitted parameters τ , α , χ_T , χ_S are listed in Tables S3, S5-S6 and S8-S10 with the coefficient of determination R².

Table S4. Best fitted parameters ($\chi_{T,1}, \chi_{S,1}, \tau_1, \alpha_1$, ($\chi_{T,2}, \chi_{S,2}, \tau_2$ and α_2) with the extended Debye model (Eq. S1) for compound **3** at 2 K in the magnetic field range 200-1600 Oe.

H / Oe	$\chi_{T,1}$ / cm ³ mol ⁻¹	$\chi_{\rm S}$ / cm ³ mol ⁻¹	τ_1 / s	α1	$\frac{\chi_{T,2} \ / \ cm^3}{mol^{-1}}$	α2	τ_2 / s	R ²
200	3.37825	2.95761	0.01921	0.33654	4.22332	0.26027	1.10158E-5	0.99998
400	3.66654	2.73227	0.04393	0.30613	3.68578	0.23894	7.55752E-5	0.99999
600	3.45039	2.02836	0.11814	0.39292	3.23137	0.21123	1.11113E-4	0.99985
800	3.6194	1.63867	0.34566	0.47904	2.90569	0.17314	1.11327E-4	0.99977
1000	3.13061	1.11681	0.41693	0.40683	2.75402	0.26921	9.45152E-5	0.99951
1200	2.75637	0.73791	0.45268	0.36031	2.63551	0.35437	7.9492E-5	0.99961
1400	2.54155	0.59352	0.42027	0.31904	2.54596	0.43427	6.80281E-5	0.99973
1600	2.58741	0.60431	0.33618	0.31579	2.38037	0.43	5.58487E-5	0.99976

Figure S4. Thermal dependence of the in-phase component (χ_M ') of the magnetic susceptibility under an applied dc field of 800 Oe in the 0.1-1000 Hz frequency range for **3**.

Figure S5. Thermal dependence of the in-phase (χ_M ') and out-of-phase (χ_M '') component of the magnetic susceptibility under an applied dc field of 800 Oe in the 100-10000 Hz frequency range for **3**.

T / K	$\chi_{T,1} \ / \ cm^3 \ mol^{-1}$	$\chi_{\rm S}$ / cm ³ mol ⁻¹	τ_1 / s	α_1	$\chi_{T,2}$ / cm ³ mol ⁻¹	α2	τ_2 / s	R ²
2	2.87334	2.6969	0.64708	2.65722E-12	4.4083	0.38874	0.02419	0.99999
2.2	2.73898	2.48942	0.56009	0.07503	4.0081	0.38507	0.01624	0.99996
2.4	2.60518	2.27802	0.36345	0.10316	3.54299	0.34962	0.00838	0.99998
2.6	2.54714	2.13409	0.23596	0.14882	3.16489	0.28245	0.00444	0.99999
2.8	2.40253	1.98506	0.16235	0.12556	2.91091	0.26481	0.00249	0.99999
3	2.21623	1.82167	0.11976	0.11288	2.72297	0.30907	0.00134	0.99998
3.25	1.9127	1.59109	0.07931	0.04831	2.56744	0.43534	5.85658E-4	0.99998
3.5	1.88318	1.55491	0.04692	0.05049	2.36207	0.43296	3.67898E-4	0.99999
3.75	1.89377	1.56785	0.0289	0.04819	2.19084	0.40776	2.97115E-4	0.99999
4	1.93511	1.59501	0.01778	0.06575	2.02565	0.33973	2.82937E-4	0.99999
4.25	1.96669	1.61946	0.01129	0.06812	1.88442	0.20395	3.1418E-4	0.99995
4.5	1.74884	1.49086	0.00836	0	1.85644	0.44932	2.05141E-4	0.99998
4.75	2.64768	2.27598	0.00427	0.11581				0.99995
5	2.08201	1.7452	0.00322	0.10163				0.99995
5.5	2.19791	1.89936	0.00173	0.07417				0.99998
6	1.9685	1.71861	9.45639E-4	0.01537				0.99995
7	1.22032	1.04729	2.67959E-4	0.05541				0.99994

Table S5. Best fitted parameters ($\chi_{T,1}, \chi_{S,1}, \tau_1, \alpha_1$, ($\chi_{T,2}, \chi_{S,2}, \tau_2$ and α_2) with the extended Debye model (Eq. S1) for compound **3** at 2 K in the temperature range of 2-7 K for LF contribution and 2-4.5 K for the MF.

T / K	χ_T / cm ³ mol ⁻¹	$\chi_{\rm S}$ / cm ³ mol ⁻¹	α	τ/s	R ²
2	2.94814	1.2773	0.28189	9.99227E-5	0.99976
2.25	2.66193	1.13817	0.27163	7.6471E-5	0.99959
2.5	2.43364	1.02706	0.26206	5.81079E-5	0.9996
2.75	2.22317	0.9181	0.25322	4.09385E-5	0.99941
3	2.07516	0.75307	0.28964	2.56523E-5	0.99911
3.25	1.87405	0.81613	0.1803	2.01954E-5	0.99994
3.5	1.75297	0.67576	0.20326	1.18228E-5	0.99993

Table S6. Best fitted parameters (χ_{T}, χ_{S}, τ and α) with the extended Debye model (Eq. S2) for **3** at 800 Oe in the temperature range 2-3.5 K.

Table S7. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model (Eq. S2) for **3** at 800 Oe in the temperature range 6-9 K.

T / K	$\chi_{\rm T}$ / cm ³ mol ⁻¹	$\chi_{\rm S}$ / cm ³ mol ⁻¹	α	τ/s	R ²
6	1.7731	1.02586	0.19471	0.00128	0.99964
6.5	1.57341	0.95614	0.13808	5.30576E-4	0.99975
7	1.43929	0.89099	0.11282	2.33685E-4	0.99975
8	1.25997	0.78884	0.06655	4.58688E-5	0.99991
9	1.1325	0.7028	0.05777	1.00361E-5	0.99987

Figure S6. Thermal dependence of the LF relaxation time for **3** from 2 to 9 K at 800 Oe is depicted in full black dots from squid measurements and in open black circles from ppms measurements. The red line depicts the best fit with parameters given in the main text. Dashed black and blue lines are the separated Orbach and Raman processes, respectively.

Figure S7. Thermal dependence of the HF relaxation time for **3** from 2 to 3.5 K at 800 Oe. The red line depicts the best fit with parameters given in the main text. Dashed blue and green lines are the separated Raman and direct processes, respectively.

Figure S8. Field dependence of the in-phase component (χ_M ') of the magnetic susceptibility at 2 K for 4.

Figure S9. Thermal dependence of the in-phase component (χ_M ') of the magnetic susceptibility under an applied dc field of 2200 Oe in the 1-10000 Hz frequency range for **4**.

Table S8. Best fitted parameters ($\chi_{T,1}, \chi_{S,1}, \tau_1, \alpha_1$, ($\chi_{T,2}, \chi_{S,2}, \tau_2$ and α_2) with the extended Debye model (Eq. S1) for compound 4 at 2 K in the temperature range of 2-4.5 K for LF contribution and 2-2.4 K for the HF.

T / K	$\chi_{T,1}$ / cm ³ mol ⁻¹	χ_{S} / cm ³ mol ⁻¹	τ_1 / s	α ₁	$\chi_{T,2}$ / cm ³ mol ⁻¹	α2	τ_2 / s	R ²
2	1.56883	0.44954	0.00323	0.29073	1.624	0.26281	2.18237E-5	0.99983
2.2	1.57185	0.49511	0.00292	0.32998	1.51913	0.22898	1.35073E-5	0.99987
2.4	1.36414	0.37956	0.0023	0.36322	1.46308	0.24293	6.47715E-6	0.99992
2.6	1.56296	0.61061	0.00144	0.41102	1.37083	0.13301		0.99991
2.8	1.72703	0.92397	8.91798E-4	0.40427	1.3842	0.08962		0.99996
3	1.89328	1.04835	3.53743E-4	0.5027	1.25791	0		0.99991
3.25	2.8482	1.60646	1.51815E-4	0.53005	0.85936	0.52366		0.99997
3.5	2.96376	2.34791	5.8825E-5	0.35681	0	1		0.99993
3.75	2.82506	2.25706	2.9618E-5	0.31365	0	1		0.99998
4	2.69354	2.15882	1.57407E-5	0.27608	0	1		0.99997
4.25	2.63594	2.17602	1.04962E-5	0.21941	0	1		0.99996

Figure S10. (a) Mononuclear model for complexes **2-4** that have been used in the *Ab-initio* calculations; (b) Dimeric model structure obtained from the crystal structure of complex **1** to compute the intermolecular exchange interaction employing BS-DFT.

Atoms	ANO-RCC basis functions		
Н	2s		
С	3s2p		
N, P, O	3s2p1d		
Dy, Tb, Er	8s7p5d3f2g1h		

Table S9. Basis functions used in ab initio CASSCF calculations using MOLCAS 8.2 code.

	T	b	
0.0	35285.8	45903.7	75193.6
90.6	35368.7	45930.1	75212.4
145.6	35375.6	45960.4	75224.4
169.5	35382.1	45969.9	75244.3
383.8	35406.6	45992.4	75274.2
560.5	35434.9	46000.2	75293.4
565.3	35442.5	50103.1	75313.3
25660.2	35473.6	50114.4	75351.5
25674.3	35532.0	50169.3	77503.4
25715.1	35536.8	50187.3	77570.1
25788.2	40221.9	50218.9	77629.7
25798.2	40262.5	50222.7	77686.7
29220.3	40267.2	50280.9	77714.7
29220.5	40307.3	50286.1	77742.3
29286.0	40347.1	51775.4	77778.8
29292.0	40377.4	51808.2	93188.6
29315.5	40393.9	51920.6	93209.2
29322.3	40410.3	51943.0	93384.1
29336.4	40439.3	52054.7	93395.5
29347.3	40451.5	54537.8	93526.9
29356.6	40459.1	54678.9	93625.1
29392.7	40459.6	54803.2	93629.0
29400.3	40503.3	57660.2	93816.4
29439.2	40519.0	57663.9	93821.0
29448.6	40529.2	57690.5	95220.5
29474.6	40565.4	57748.5	95243.3
29479.5	40588.1	57772.1	95438.2
29507.2	40627.7	57775.8	95574.2
29508.3	40689.4	57802.7	3389952726.9
30617.2	40707.8	57837.9	3389952726.9
30630.9	45728.8	57898.9	
30668.1	45730.0	57926.8	
30685.1	45806.8	57941.2	
30699.8	45816.8	68512.9	
30709.9	45818.0	75067.4	
30755.1	45824.8	75103.7	
30810.2	45840.7	75115.2	
30839.5	45855.5	75147.8	
35271.5	45877.5	75159.3	

Table S10. RASSI-SO computed low-lying 7 septet (in red) and 140 quintet states (in black) along with spin-orbit coupled states (in blue, Kramer pseudo doublets) for Tb centre in **2**. All the values are reported here in cm⁻¹.

SPIN-ORBIT STATES						
0.0	5857.0	31336.3	32524.4			
0.3	5967.9	31344.9	32534.7			
34.7	6110.6	31352.9	32543.6			
35.7	23506.4	31369.0	32548.9			
116.8	23507.0	31396.8	32556.6			
121.4	23536.7	31449.5	32578.9			
181.1	23541.7	31460.7	32579.7			
197.8	23549.3	31597.5	32602.3			
228.3	23571.8	31597.6	32605.7			
296.1	23579.3	31668.0	32615.7			
300.5	23611.7	31672.4	32618.7			
363.7	23612.7	31675.8	32629.0			
364.2	29449.8	31680.1	32631.2			
2086 3	29455 5	31688.6	32684.9			
2088.6	29459.4	31699.6	32688.0			
22000.0	29461 5	31706 7	32728 7			
2207.5	29464 4	31709.4	32720.7			
2223.9	29469.0	31716.2	32739.0			
2241.4	29474 7	31741.2	32755.6			
22502	30089.2	31742.4	32757.1			
2296.2	30089.3	31774 5	32771 7			
2206.5	30153.1	31777 1	32781.6			
2354.6	30153.9	31781 7	32790.7			
2365.1	30170.2	31784 7	32796.8			
3460.3	30172.1	31789 7	32827.6			
3539.0	30189.5	31792.5	32841.8			
3551.5	30191 3	31958.1	32879.2			
3572.3	30205 3	31977.4	32884 5			
3596.4	30203.5	31986.9	32903.0			
3615.6	30211.6	32020.7	32907.1			
3635.4	30216.0	32020.7	32907.1			
3688.6	30222.9	32129.4	32934.0			
3727.0	30256.9	32120.1	32943.9			
4577.8	30259.5	32198.7	32949.3			
4582.8	30294.7	32205.1	32957.0			
4618.6	30296.0	32205.1	32967.7			
4633.9	30322.8	32210.5	329071.9			
4653.6	30323.1	32223.1	32988.0			
4666.2	30339.9	32229.0	32901.0			
4000.2 //670-3	30330.0	32237.5	32013 5			
5766.6	31100 0	32273.7	33013.5			
5320.0	31190.9	32209.5	33059.5			
53/67	31172.2	32234.0 374A7 A	33068 0			
5/120 0	21200.5	32777.7	33000.0			
5440 5	31271.9	32510 1	33112.0			
5329.0 5346.7 5429.9 5449.5	31192.2 31268.5 31271.9 31322.0	32294.0 32447.4 32447.5 32510.1	33050.4 33068.0 33073.8 33112.9			

5745.6	31328.6	32510.2	33125.1
33133.1	38322.8	41851.1	44412.7
33143.6	38331.0	41856.4	44428.1
33162.3	39043.8	41889.4	44441.3
33168.0	39045.8	41905.6	44443.7
33357.7	39074.5	41979.3	44471.9
33372.5	39077.0	41998.6	44486.0
33395.6	39085.6	42027.1	44494.5
33404.6	39087.4	42038.2	44506.4
33425.9	39100.2	42080.7	44508.1
33438.1	39109.9	42138.8	44528.2
33449.9	39116.0	42230.4	44536.6
34005.5	39125.0	42888.6	44540.8
34014.1	39127.4	42904.9	44558.1
34059.9	39541.2	42965.4	44561.7
34076.3	39543.9	42985.4	44577.3
34100.4	39554.3	43037.7	44582.6
34323.4	39557.5	43082.4	44590.5
34372.8	39568.7	43159.8	44602.6
34422.3	39570.0	43208.8	44610.0
35641.2	39581.1	43334.1	44615.8
36464.6	39587.5	43341.1	44622.4
36465.4	39595.5	43341.9	44624.6
36503.5	39963.1	43369.1	44639.7
36505.2	39976.6	43370.0	44643.5
36540.0	39988.4	43389.2	44649.3
36542.9	40023.1	43393.3	44663.5
36582.0	40043.6	43403.0	44852.8
36583.5	40060.7	43410.8	44864.0
36590.5	40081.2	43414.2	44894.4
36596.4	41694.5	43426.7	44895.6
36599.1	41696.2	43428.7	44919.8
36607.6	41709.1	43445.2	44939.1
36612.5	41714.9	43445.7	44943.3
36645.6	41727.9	43459.8	44960.3
36646.4	41733.1	43459.9	44962.6
38181.4	41742.5	43892.6	44976.5
38182.9	41754.5	43909.9	44977.7
38229.9	41768.5	43964.1	46847.3
38233.5	41784.1	44019.1	46853.1
38243.9	41788.9	44024.8	46877.2
38247.9	41792.8	44079.1	46891.2
38269.2	41795.2	44133.9	46891.2
38273.4	41812.0	44352.5	47706.4
38287.5	41813.7	44357.1	47706.4
38298.6	41832.7	44373.8	47742.3

38302.6	41841.8	44403.5	47743.5
47767.6	49178.0	50825.8	51200.7
47773.8	49189.0	50826.1	51208.7
47785.4	49205.4	50840.1	51212.6
47789.7	49206.6	50847.6	51212.0
47805.2	49209.3	50899.8	51229.4
47812.0	40211.2	50000.0	51229.4
47812.0	49211.2	50900.9	51236.6
47035.0	49212.4	50902.1	51230.0
4/04/.0	49219.3	50026.2	51237.4
4/030.4	49231.3	50950.5	51241.5
4/800.3	49237.3	50955.5	51240.8
4/809.8	49239.7	50955.4	51250.5
4/896.9	49240.8	50956.3	51255.9
4/901.2	49244.9	50964.0	51257.9
4/912.4	49248.1	50976.3	51259.3
47915.0	49254.6	50978.8	51267.6
48227.3	49255.3	50992.2	51272.2
48227.4	49258.3	51002.1	51274.5
48289.2	49259.5	51002.6	51278.3
48297.3	49272.6	51004.9	51281.4
48306.7	49281.1	51006.2	51285.4
48312.2	49298.5	51020.3	51291.5
48314.5	49300.6	51021.3	51293.4
48320.0	49308.9	51031.3	51294.7
48332.6	49339.2	51036.3	51296.0
48337.4	49343.9	51048.6	51319.3
48345.2	50513.1	51057.0	51321.0
48382.0	50513.2	51063.1	51423.2
48386.4	50577.7	51063.3	51423.5
49089.2	50586.5	51064.7	51478.6
49090.5	50604.2	51075.4	51509.3
49096.7	50608.8	51076.4	51569.7
49098.1	50620.1	51077.5	51598.8
49110.2	50633.6	51092.4	51631.3
49110.3	50636.2	51102.8	51667.0
49122.0	50639.3	51105.7	51681.8
49124.0	50666.9	51121.4	51686.4
49137 7	50678.1	51125.2	51824.6
49138.6	50680 1	51135.0	51859 5
49143 7	50703 4	51135.8	51865.9
49150 3	50710.9	51139.0	51871 3
40152.6	50725 0	51157.0	51880 8
40155 A	50725.9	51156.8	5100/ 2
40160 5	50720.0	51162.2	5101/ /
+7100.J 10166 1	50752.5	51164.0	51020 2
47100.1	50770 4	51104.0	J17J7.J 51051 A

49172.1	50781.0	51199.0	52042.3
52046.2	52920.1	53675.3	55191.5
52046.3	52928.1	53680.5	55268.0
52046.7	52930.3	53681.9	55395.6
52068.5	52950.5	53702.2	55536.5
52000.3	52942 7	53706.9	55594.9
52074.5	52047 1	53707.3	55609 1
52075.8	52947.4	53717.1	55600 3
52090.2	52957.0	52712.1	55679.2
52100.6	52970.0	52710 4	55711.2
52100.0	52970.5	52724.9	55720.0
52122.2	52994.9	53724.8	55720.9
52154.6	52995.8	53727.1	55720.0
52158.6	53006.4	53754.9	55730.2
52541.9	53021.0	53906.5	55743.8
52642.8	53025.4	53989.7	55752.3
52701.7	53026.8	54035.8	55759.1
52706.5	53047.6	54043.0	55761.5
52708.2	53048.0	54072.0	55782.5
52717.4	53134.1	54073.0	55783.8
52725.2	53342.1	54102.6	55858.3
52725.5	53362.7	54329.3	55862.2
52738.8	53364.1	54349.5	55931.9
52750.7	53371.7	54362.3	55937.8
52766.9	53390.9	54385.8	55955.0
52768.6	53402.1	54394.7	55961.7
52780.3	53417.8	54403.4	55972.2
52790.3	53427.0	54415.8	55982.4
52796.2	53462.0	54425.7	55984.1
52799.8	53469.6	54434.1	56013.5
52803.1	53479.6	54435.3	56018.0
52813.9	53484.9	54460.9	56197.4
52819.6	53492.8	54463.4	56346.0
52872.6	53503.4	54477.0	56681 3
52829.4	53524.4	54489.4	56721.3
52827.4	53524.4	54502.0	56050 0
52874 1	53544.6	54502.0	57513 A
52857 2	52572.0	54520.2	57520.6
52057.2	53572.0	54520.5	57555 A
52057.0	52500.0	54520.0	57572.9
52850.4	55580.8	J40U/.J	J/J/J.8 57(21 E
52860.4	53629.2	54/35.1	5/031.5
52868.9	53629.9	54929.7	58425.4
52873.1	53630.0	55000.6	58425.5
52876.1	53641.6	55105.9	58427.1
52896.4	53652.4	55138.2	58427.8
52898.9	53653.2	55152.7	58449.0
52900.2	53653.8	55182.3	58462.7

52904.0	53670.3	55182.8	58469.4
58472.9	58703.4	59493.5	60421.4
58475.1	58705.8	59496.6	60722.0
58491.6	58727.1	59512.0	60753.8
58505.9	58729.3	59520.9	60776.8
58508.5	58734.0	59524.2	60799.4
58518.4	58734.6	59534.9	60811.7
58518.8	58747.7	59550.2	60969.0
58528.3	58779.0	59555.1	60986.6
58528.6	58779.1	59558.0	60992.6
58529.0	58813.2	59562.8	61014.4
58540.7	58814.9	59571.2	61021.1
58544 9	58817.3	59583 1	61027.4
58563.8	58820.0	59588.6	61033 5
58563.8	58828.2	59594.8	61037.8
58564.8	58834.8	59606.0	61090 7
58567.6	58834.8	59620.6	61097.5
58570.8	58854 5	59623.3	61127.9
58573.4	58872 7	59641.8	61133.8
58575.5	58887.2	59649 7	61144 2
58584 5	58898 3	59662 5	61169.0
58584 5	58899 5	59699.8	61183 7
58586.9	58907.9	59707.1	61210.1
58592.5	58911.3	59713.8	61221.7
58593.0	58915.1	59725.0	61400.1
58593.2	58926.1	59748.5	61479.6
58609.0	58930.0	59754.1	61487.6
58619.8	58930.4	59757.2	61513.1
58628.2	58951.4	59759.6	61513.6
58630.2	58951.6	59777.9	61525.9
58633.8	58960.6	59780.0	61526.6
58641.2	58995.7	59781.6	61531.1
58641.9	59014.4	59794.7	61531.4
58642.3	59018.1	59799.3	61532.1
58644.7	59025.9	59804.7	61545.6
58645.5	59028.7	59804.8	61556.8
58651.8	59038.0	59808.9	61565.9
58652.3	59046.7	60349.1	61566.0
58653.2	59048.9	60362.4	61577.7
58653.9	59078.0	60372.2	61578.3
58654.4	59084.8	60373.0	61583.3
58670.7	59127.9	60374.5	61586.3
58671.1	59128.9	60385.3	61595.9
58671.2	59159.5	60390.9	61601.4
58672.3	59164.8	60391.1	61602.0
58672.4	59176.6	60403.5	61602.3

58685.2	59195.5	60415.3	61603.9
61609.4	63527.9	65981.3	66902.3
61637.8	63584.0	66042.1	66917.2
61637.9	63585.5	66042.2	66938.4
61642.6	63831.4	66042.2	66972.4
61737.9	64729.1	66042.7	66981.6
61763.5	64769.8	66042.9	67023.5
61792.2	64804.1	66042.9	67032.9
61794.1	64843.6	66068.1	67244.9
61802.7	64843.6	66070.0	67247.2
61807.5	64890.2	66072.5	67283.9
61812.2	64890.7	66101.5	67294.7
61819.1	64921.4	66107.8	67338.1
62218.1	64927.4	66144.9	67348.0
62219.2	64929.5	66148.9	67370.3
62254.0	64929.9	66149.8	67372.8
62256.7	64966.2	66153.5	67387.5
62266.0	64978.0	66172.3	67414.6
62271.1	65007.7	66185.4	67415.0
62273.1	65008.9	66186.8	67423.5
62283.4	65020.5	66197.1	67424.9
62284.1	65055.3	66197.1	67452.7
62288.3	65059.9	66197.8	67452.9
62302.1	65098.3	66215.8	67473.0
62309.4	65099.1	66216.0	67473.5
62310.0	65439.4	66221.8	67479.6
62383.1	65444.4	66225.4	67481.0
62383.6	65457.5	66236.6	67501.7
63133.0	65477.5	66245.3	67506.1
63224.1	65493.9	66245.5	67517.7
63287.6	65495.9	66270.3	67520.6
63361.8	65523.7	66292.6	67532.8
63391.4	65535.5	66411.6	67538.3
63392.2	65552.2	66447.7	67546.5
63409.3	65566.0	66483.4	67552.8
63437.8	65576.8	66530.9	67556.5
63467.6	65608.5	66540.0	67563.1
63477.0	65632.1	66540.9	67565.3
63491.0	65642.9	66559.9	67594.7
63491.9	65685.5	66760.4	67595.5
63501.5	65698.8	66760.6	68019.3
63509.6	65719.1	66822.3	68020.0
63513.0	65725.2	66824.2	68059.1
63514.2	65965.3	66855.5	68059.5
63516.1	65976.4	66856.4	68090.8
63523.7	65977.0	66860.1	68091.1

63527.6	65981.3	66876.0	68123.2
68136.2	69073.4	79981.1	81580.9
68139.4	69077.9	79991.6	81602.3
68170.1	69142.8	80000.3	81632.0
68170.8	69143.9	80004.4	81644.8
68205.6	73544.5	80037.1	81696.3
68207.4	73546.7	80037.5	81700.5
68238.9	73560.2	80054.3	82092.7
68239.0	73572.4	80055.0	82095.7
68266.2	73574.7	80535.7	82161.9
68267.7	77645.5	80537.9	82177.0
68393.2	77654.9	80559.3	82187.4
68399.9	77678.4	80560.7	82220.0
68427.8	77704.3	80574.2	82237.2
68476.3	77719.2	80578.7	82270.8
68501.2	77729.4	80596.6	82277.7
68546.0	77740.1	80598.0	82325.0
68556.9	77760.3	80598.8	82325.7
68611.2	77765.2	80617.3	95231.8
68621.9	77780.0	80647.4	95264.4
68667.7	77797.9	80653.2	95415.7
68670.1	77809.9	80656.6	95448.6
68683.8	77825.8	80665.3	95569.0
68713.5	77847.0	80747.4	95602.2
68716.0	77851.2	80771.2	95714.8
68736.1	77862.2	80789.4	95947.9
68751.8	77862.6	80802.3	95971.5
68774.4	79013.7	80813.6	96108.0
68787.9	79013.9	80942.4	96148.5
68810.9	79038.9	80960.1	96158.5
68820.4	79041.0	80976.6	96183.2
68826.4	79056.4	80996.6	96289.2
68853.6	79063.8	81004.8	96303.4
68854.0	79070.1	81017.6	96734.7
68876.6	79082.1	81023.1	96736.0
68887.6	79083.4	81032.6	96830.3
68917.9	79100.5	81035.6	96877.6
68918.8	79101.0	81065.3	96931.1
68962.9	79117.5	81097.4	96949.3
68964.6	79117.6	81123.4	96977.3
69011.8	79128.2	81127.6	96994.3
69015.8	79128.2	81157.3	97083.0
69029.2	79933.6	81167.6	97131.8
69032.0	79935.3	81190.4	97575.9
69053.9	79947.2	81525.7	97583.0
69055.5	79950.7	81531.2	97681.8

69065.9	79972.0	81550.5	97721.2	
97748.3				
97760.6				
97807.9				
97838.4				
97869.2				
97887.1				
97912.8				
97947.0				
97974.3				
98041.6				
98050.5				
98453.1				
98453.7				
98601.8				
98602.5				
98723.2				
98727.5				
98778.6				
98827.4				
98838.3				
98945.0				
98946.1				
99052.9				
99067.6				
99229.0				
99233.5				
99331.8				
99375.2				
100203.7				
100794.2				
101321.6				
101354.1				
101951.2				
101953.2				
102102.6				
102106.2				
3389956457.0				
3389956457.0				
3389956457.0				
3389956457.0				
3389956457.0				
5389956457.0				
5389956457.0				
3389956457.0				
118992642/0				

3389956457.0

Table S11. RASSI-SO computed low-lying 21 spin-free sextet states and the spin-orbit coupled (Kramer doublets) for Dy centre in **3**. All the values are reported here in cm⁻¹. The values in red colour are for the spin-free sextet states while values in the blue colour are for the spin-orbit coupled states.

Dy			
SPIN-FREE STATES	SPIN-ORBIT STATES		
0.0	0.0	9765.5	
9.1	152.1	9826.6	
216.4	201.1	9912.3	
231.7	235.2	11023.7	
248.0	289.3	11142.9	
305.3	325.5	11279.8	
343.2	391.0	11845.4	
438.1	485.9	11857.1	
455.3	3077.2	11888.1	
536.0	3139.7	11898.8	
548.8	3175.6	11930.3	
7654.4	3226.3	13624.6	
7683.5	3269.8	13646.8	
7719.7	3327.5	13676.2	
7794.2	3403.6	13699.2	
7813.9	5668.0	15030.8	
7824.3	5733.1	15041.4	
7846.1	5760.7	15066.5	
34849.4	5822.1	16028.4	
35038.2	5883.1	16044.6	
35348.6	5954.8	16632.2	
	7863.3	38855.0	
	7915.3	38942.6	
	7961.0	39009.0	
	8042.7	39107.4	
	8112.3	40248.7	
	9599.3	40367.7	
	9643.5	40560.4	
	9654.5	41367.3	
	9684.1	41422.3	
	9697.3		
	9726.8		
	9749.9		

		Er	
0.0	18115.4	33358.7	50340.6
53.2	18116.8	33400.3	50352.3
99.0	18146.0	33405.0	50379.2
150.7	18151.0	43876.5	50381.8
151.7	18154.5	43894.5	51439.7
206.0	18157.9	43933.5	51458.3
270.5	18165.7	43977.6	51599.4
286.3	18171.7	43999.4	51724.0
308.1	18181.8	44041.7	51746.4
330.5	18188.7	44045.7	60769.0
371.0	18191.8	44101.1	60800.5
433.0	23977.2	44104.4	60849.0
438.5	23977.9	44116.1	60873.5
18300.8	24054.3	44117.1	60893.4
18337.3	24062.0	44171.8	60913.5
18376.5	24069.4	44171.9	60939.3
18388.0	24100.1	44602.4	77207.1
18425.1	24112.6	44602.4	77216.6
18467.3	24162.9	44721.3	77294.6
18531.4	24165.9	44721.7	77320.9
18563.7	27020.8	44837.8	77350.9
28676.2	27021.0	44841.0	77399.9
28718.7	27106.5	44942.0	77411.2
28763.3	27106.7	44948.4	77496.8
28785.8	27181.1	44998.8	77500.8
28841.7	27184.1	45036.3	110456.9
28853.2	27235.8	45045.7	110512.0
28876.7	27244.5	45112.4	110717.1
28927.0	27270.4	45114.5	110821.3
28954.3	27277.0	45206.8	110901.0
46733.9	27285.5	45206.9	111088.0
46874.2	27351.4	45364.0	111096.1
47015.2	27351.6	45364.1	
47193.5	27494.3	50204.1	
47229.2	27494.3	50222.0	
	33115.5	50254.3	
	33118.0	50265.9	
	33152.6	50277.7	
	33228.9	50312.4	
	33321.2	50318.4	

Table S12. RASSI-SO computed low-lying 35 quartets (in red) and 112 doublet states (in black) along with spin-orbit coupled states (in blue, Kramer doublets) for Er centre in **4**. All the values are reported here in cm⁻¹.

SPIN-ORBIT STATES				
0.0	27903.5	42199.7	61058.8	
42.4	27937.6	49456.6	61115.5	
96.4	27975.6	49479.0	61161.7	
171.8	31987.6	49724.3	61170.1	
180.3	32062.6	49809.0	61206.1	
223.2	32139.0	49881.4	61241.3	
252.3	32195.4	50013.0	61291.2	
329.1	32232.3	50069.6	61306.6	
6623.7	32253.4	50090.2	67055.9	
6661.1	32319.4	50108.9	67212.3	
6696.3	32470.2	50146.1	67304.0	
6715.0	32790.0	50171.9	67357.2	
6746.4	32829.3	50211.2	67396.3	
6766.9	32855.7	50220.6	67435.1	
6815.0	32872.1	50323.6	76155.1	
10676.5	32881.9	50410.5	76196.2	
10706.7	32925.2	50481.1	76227.4	
10728.9	33266.4	50556.3	83199.8	
10749.0	33296.7	50627.6	83280.6	
10769.9	33310.7	50714.0	83328.1	
10806.5	33329.2	50868.4	83415.6	
13426.4	33985.0	51447.2	87135.5	
13463.9	34010.9	51603.3	87228.6	
13554.1	34015.8	51713.7	87287.6	
13586.0	34028.6	51835.9	87351.1	
13633.0	34041.9	51950.8	87443.5	
19023.8	37535.7	52018.0	116542.5	
19064.1	37621.7	52074.3	116816.2	
19107.7	37686.1	52118.6	117048.4	
19140 2	37749.4	52162.0	120963 9	
19193.0	37767.0	52102.0	121212.4	
22701.9	378367	52238.4	121212.1	
22701.9	37850.3	54715.2	121603.4	
22723.2	37961.5	54761 5	121005.1	
2275 1.5	37987.1	56235.6		
22713.0	40444 1	56369 5		
22751.9	40671.4	56487 5		
23630.4	40701.3	56579.8		
23688.2	407363	56649 3		
25088.2	40767 1	56732.2		
25107.4	40707.9	56833 4		
25257.5	40830 8	56977 6		
25200.7	40866.0	58633.8		
23372.0	40943 0	58678 0		
	0775.0	20070.0		

27323.6	40991.0	58709.2	
27358.5	41336.2	58733.7	
27588.4	41368.2	58760.6	
27689.3	41390.3	59392.6	
27825.0	42051.8	61033.5	
27840.1	42128.9	61058.8	

Table S13. SINGLE_ANISO computed g-tensors, and the tunnel splitting from ground state g_{zz} orientation for Tb centre in **2**.

		Tb		
Pseudo-KDs Energy (cm ⁻¹)	<i>g_{xx}</i>	g_{yy}	g _{zz}	$\Delta_{tun} (cm^{-1})$
0.0 0.3	0.0002	0.0005	17.6265	0.3
34.7 35.7	0.0003	0.0005	16.4244	0.9
116.8 121.4	0.0005	0.0014	8.2102	4.6
181.1 197.8	0.0000	0.0002	9.8936	16.7
-				
296.1 300.5	0.0001	0.0006	14.3596	4.4

Table S14. SINGLE_ANISO computed g-tensors, the angle of deviation from ground state g_{zz} orientation and relative energies of eight low-lying Kramers' doublets for Dy centre in complex **3**.

	Dy			
KDs Energy(cm ⁻¹)	g_{xx}	g_{yy}	g_{zz}	θ (° angle)
0.0	0.0298	0.0440	19.5632	0.0
152.1	0.9274	1.7941	16.2973	39.0
201.1	10.2639	6.9153	3.1207	59.0
235.2	0.9086	2.0811	10.8589	72.5
289.3	1.6572	4.0687	11.1803	62.5
325.5	1.9910	5.3975	12.1462	72.0

391.0	0.0871	0.2387	18.1467	65.9
485.9	0.0179	0.0341	19.8171	88.0

Table S15. SINGLE_ANISO computed g-tensors, the angle of deviation from ground state g_{zz} orientation and relative energies of eight low-lying Kramers doublets for Er centre in 4.

	Er			
KDs Energy	g_{xx}	g_{yy}	g_{zz}	θ (° angle)
(cm ⁻¹)				
0.0	0.9655	1.9316	15.0560	0.0
42.4	1.3515	3.3578	12.7371	110.4
96.4	0.2539	3.5666	9.7213	72.6
171.8	5.3683	4.2753	0.0387	98.0
180.3	1.1524	2.4267	12.4983	43.2
223.2	0.4572	3.2031	11.5457	66.9
252.3	0.1223	3.1282	11.6367	65.3
329.1	0.1408	0.3750	15.8410	79.4

Table S16. SINGLE_ANISO computed crystal field parameters for the Tb centre in **2**; Dy centre in **3** and Er centre in **4** respectively. The major dominating values are kept in **bold**.

k	q	B_k^q	B_k^q	B_k^q
		Tb	Dy	Er
2	-2	-0.39E+00	1.20E+00	6.80E-01
	-1	-0.38E+01	2.50E+00	1.30E+00
	0	-0.24E+01	-3.70E+00	-6.50E-01
	1	0.17E+01	3.90E+00	5.10E-01
	2	0.30E+01	5.30E+00	3.80E-01
4	-4	0.38E-02	2.10E-02	1.50E-03
	-3	-0.24E-01	-2.90E-01	2.90E-03
	-2	-0.73E-02	-6.90E-03	-2.00E-03
	-1	0.47E-01	-4.20E-02	-7.50E-03
	0	-0.80E-03	-1.90E-02	-9.40E-04
	1	-0.72E-02	4.10E-02	-3.00E-03
	2	0.79E-02	-1.30E-02	4.50E-03
	3	0.31E-01	5.20E-02	-1.10E-02
	4	0.16E-02	4.30E-02	-9.40E-03
6	-6	0.15E-03	1.80E-03	2.10E-04
	-5	-0.25E-03	-3.10E-03	5.50E-04
	-4	-0.81E-04	-1.00E-03	9.30E-06
	-3	0.45E-04	-7.20E-03	2.00E-04
	-2	0.76E-04	5.00E-04	2.80E-04
	-1	0.13E-03	-3.20E-03	2.00E-04
	0	-0.12E-04	-7.80E-04	-3.00E-05

1	-0.19E-03	-2.70E-03	2.00E-04
2	-0.30E-03	2.90E-03	-6.50E-05
3	-0.13E-03	1.50E-03	-4.70E-04
4	0.21E-03	3.40E-03	1.10E-04
5	-0.37E-03	-6.20E-03	9.10E-04
6	-0.52E-04	-1.30E-03	4.20E-04

Table S17. SINGLE_ANISO computed wave function decomposition analysis for Tb centre in **2**. The major dominating values are kept in bold.

±mJ	wave function decomposition analysis Tb
1	95.9% ±6> + 3.4% ±4>
2	33.4% ±5⟩ + 27.3% ±4⟩+ 23.5% ±3⟩+ 10.2% ±2⟩
3	57.6% ±5 ⟩+ 16.1% ±2⟩ + 8.9% ±4⟩+ 8.0% ±1⟩ + 6.4% ±3⟩
4	44.2% $ \pm 4\rangle + 24.4\% \pm 1\rangle + 11.7\% \pm 3\rangle + 8.0\% 0\rangle + 7.9\% \pm 2\rangle$
5	40.5% $ \pm 3\rangle$ + 21.3% $ 0\rangle$ + 17.8% $ \pm 1\rangle$ + 14.0% $ \pm 2\rangle$
6	41.0% $ \pm 2\rangle$ + 20.5% $ \pm 1\rangle$ + 17.4% $ 0\rangle$ + 10.3% $ \pm 3\rangle$ + 9.0% $ \pm 4\rangle$
7	52.6% $ \pm1\rangle$ + 21.4% $ \pm2\rangle$ + 14.9% $ \pm3\rangle$ + 9.0% $ \pm4\rangle$

Table S18. SINGLE_ANISO computed wave function decomposition analysis for Dy centre in **3**. The major dominating values are kept in bold.

±mJ	wave function decomposition analysis Dy
KD1	94.1% ±15/2} + 3.0% ±9/2>
KD2	40.3% $ \pm 13/2\rangle + 24.6\% \pm 7/2\rangle + 13.7\% \pm 9/2\rangle + 10.1\% \pm 11/2\rangle + 5.0\% \pm 3/2\rangle$
KD3	31.2% $ \pm 5/2\rangle + 19.4\% \pm 13/2\rangle + 16.9\% \pm 1/2\rangle + 13.6\% \pm 11/2\rangle + 9.2\% \pm 3/2\rangle$
KD4	24.7% $ \pm 3/2\rangle + 17.5\% \pm 11/2\rangle + 15.5\% \pm 9/2\rangle + 13.3\% \pm 1/2\rangle + 9.2\% \pm 7/2\rangle$
KD5	23.7% $ \pm 5/2\rangle + 20.0\% \pm 9/2\rangle + 16.9\% \pm 11/2\rangle + 12.9\% \pm 5/2\rangle + 11.5\% \pm 13/2\rangle$
KD6	39.2% $ \pm 3/2\rangle + 28.0\% \pm 1/2\rangle + 15.3\% \pm 5/2\rangle + 7.3\% \pm 11/2\rangle + 5.8\% \pm 9/2\rangle$
KD7	26.6% $ \pm 7/2\rangle + 23.4\% + \pm 9/2\rangle + 18.3\% \pm 1/2\rangle + 12.8\% \pm 11/2\rangle + 11.8\% \pm 5/2\rangle$
KD8	45.4% $ \pm 1/2\rangle + 31.0\% \pm 3/2\rangle + 14.8\% \pm 5/2\rangle + 5.3 \pm 7/2\rangle$

Table S19. SINGLE_ANISO computed wave function decomposition analysis for Er centre in 4. The major dominating values are kept in bold.

±mJ	wave function decomposition analysis Er
KD1	67.8% ±15/2>+ 11.3% ±9/2> + 7.5% ±11/2>+ 4.4% ±13/2>
KD2 KD3	32.5% $ \pm 7/2\rangle + 27.3\% \pm 5/2\rangle + 9.7\% \pm 3/2\rangle + 9.1\% \pm 1/2\rangle + 7.3\% \pm 11/2\rangle$ 26.2% $ \pm 9/2\rangle + 21.7\% \pm 3/2\rangle + 13.8\% \pm 1/2\rangle + 11.5\% \pm 7/2\rangle + 10.6\% \pm 13/2\rangle$
KD4	33.1% $ \pm 13/2\rangle + 13.5\% \pm 9/2\rangle + 13.0\% \pm 3/2\rangle + 10.9\% \pm 11/2\rangle + 9.3\% \pm 5/2\rangle +$
	$7.4\% \ket{\pm 1/2} + 6.9\% \ket{\pm 15/2} + 5.9\% \ket{\pm 7/2}$
KD5	34.0% ±11/2⟩ + 23.8% ±13/2⟩ + 10.2% ±15/2⟩ + 10.2% ±5/2⟩ + 7.7% ±9/2⟩ + 7.7% ±1/2⟩
KD6	22.6% ±9/2> + 20.3% ±7/2> + 13.0% ±5/2> + 12.4% ±3/2>+ 12.3% ±11/2>+ 11.1% ±13/2>
KD7	32.3% $ \pm 7/2\rangle$ + 24.0% + $ \pm 9/2\rangle$ + 23.4% $ \pm 5/2\rangle$ + 15.3% $ \pm 1/2\rangle$
KD8	39.5% $ \pm 1/2\rangle$ + 34.0% $ \pm 3/2\rangle$ + 12.0% $ \pm 5/2\rangle$ + 5.0% $ \pm 13/2\rangle$

Figure S11. Comparison of computed ground state g_{zz} orientations in 2-4. The angle shows the relative orientations of ground state g_{zz} on Tb^{III}, Dy^{III} and Er^{III} ions in 2-4.

Figure S12. CASSCF computed LoProp charges on the first coordinating atoms of (a) Tb, (b) Dy and (c) Er in complexes **2-4**.

Figure S13. DFT computed overlap integral between the seven 4f-orbitals of Gd^{III} centres in Gddimer obtained from 1. The orbitals were constructed using the contour value of 0.03 e⁻/bohr³.

Figure S14. DFT computed spin-density plot for S=7 state of Gd^{III} centres. The iso-density surface here is constructed with a contour value of $0.0005e^{-1}/bohr^{3}$. The purple and orange colour represents the positive and negative spin densities respectively.

Table S20. BS-DFT computed energies of high-spin and broken-symmetry solution of Gd_2 using $H=-2JS_1S_2$ formalism.

Solution	Energy (E _h)	ρ ^{Gd1}	ρ ^{Gd2}	<\$**2>	J (cm ⁻¹)
HS	-29049.398021413388	7.0202	7.0217	56.0122	-0.00049
BS	-29049.398021464465	7.0202	-7.0217	7.0122	

J values are estimated using the following equation,

$$J = -\frac{E_{HS} - E_{BS}}{\langle S^{**2} \rangle_{HS} - \langle S^{**2} \rangle_{BS}}$$

Table S21. DI	T computed	overlap integ	ral values	for the sever	n corresponding	orbitals	between
Gd ^{III} centres in	1.						

Corresponding Orbital 4f-orbitals	Overlap Integral value (S _{ab})
436	0.00149
437	0.00053
438	0.00014
439	0.00009
440	0.00001
441	0.00000
442	0.00000

Table S22. Hydrogen optimized cartesian coordinates of monomeric complexes 2-4 and dimeric complex 1 respectively.

Monomeric complex 2								
Tb	0.00000000000000000000000000000000000	0.0000000000000	0.000000000000					
Р	-0.102791000000	-3.662325000000	-0.531056000000					
Р	-1.387522000000	3.281525000000	1.222042000000					
Р	1.586260000000	3.054738000000	-0.858318000000					
0	-0.084769000000	-2.412016000000	0.298561000000					
0	-0.349529000000	-4.918746000000	0.229606000000					
0	-1.405544000000	4.531834000000	0.392425000000					
0	1.680469000000	3.767594000000	0.438094000000					
0	1.166476000000	0.793404000000	2.082706000000					

0	2.262508000000	-0.930198000000	0.103792000000	
0	1.457622000000	1.569449000000	-0.826910000000	
0	-1.140784000000	2.025104000000	0.461379000000	
0	0.440550000000	-0.885480000000	-2.229461000000	
0	-2.271430000000	-0.670220000000	-0.08520000000	
0	-0.978988000000	0.740492000000	-2.230724000000	
0	-0.622890000000	-0.378718000000	2.363938000000	
0	0.463467000000	0.376773000000	4.098083000000	
0	-0.360460000000	-0.155126000000	-4.125522000000	
Ν	-1.213716000000	-3.527059000000	-1.775301000000	
Ν	0.298120000000	-3.647882000000	-3.603852000000	
Ν	1.293516000000	-3.768705000000	-1.444610000000	
Ν	2.565629000000	-3.560390000000	-3.359263000000	
Ν	-1.957481000000	-3.497895000000	-3.948623000000	
Ν	0.337364000000	0.255950000000	2.874777000000	
Ν	-0.276598000000	3.416791000000	2.466287000000	
Ν	-1.788433000000	3.295968000000	4.294838000000	
Ν	-2.783829000000	3.175145000000	2.135595000000	
Ν	2.877626000000	3.454288000000	-1.857433000000	
Ν	-0.303733000000	-0.096797000000	-2.896259000000	
Ν	0.373831000000	3.730653000000	-1.791908000000	
Ν	1.532145000000	3.458454000000	-3.834903000000	
Ν	-4.055942000000	3.383460000000	4.050249000000	
Ν	0.467168000000	3.445955000000	4.63960900000	
Ν	3.823352000000	3.602886000000	-3.956746000000	
Ν	-0.764730000000	3.666769000000	-3.797718000000	
С	-0.932499000000	-3.564556000000	-3.104024000000	
С	1.353639000000	-3.645105000000	-2.804380000000	
С	2.724768000000	-3.413180000000	-4.802609000000	
С	-1.727282000000	-3.595109000000	-5.391066000000	
С	3.767375000000	-3.575666000000	-2.549863000000	
С	-3.343820000000	-3.486785000000	-3.484897000000	
С	-0.557815000000	3.379294000000	3.795010000000	
С	0.392445000000	3.609830000000	-3.150956000000	
С	-2.843952000000	3.298745000000	3.495366000000	
С	2.719343000000	3.507061000000	-3.219550000000	
С	-2.053145000000	3.684823000000	-3.094999000000	
С	3.741433000000	3.705655000000	-5.407312000000	
С	3.524032000000	-0.249562000000	0.210111000000	
С	-4.215082000000	3.530670000000	5.493594000000	
С	0.236968000000	3.348741000000	6.082052000000	
С	-0.830724000000	3.663992000000	-5.26110000000	
С	5.158337000000	3.587610000000	-3.353126000000	
С	-5.257688000000	3.368184000000	3.240849000000	
С	1.853507000000	3.457065000000	4.175882000000	
Н	0.416169000000	-5.304685000000	0.273289000000	

Н	-2.038864000000	-3.422901000000	-1.553456000000
Н	3.074835000000	-4.228388000000	-5.170846000000
Н	3.332702000000	-2.693797000000	-4.986727000000
Н	1.872712000000	-3.222919000000	-5.201533000000
Н	-0.928335000000	-3.111817000000	-5.620312000000
Н	-2.474292000000	-3.217363000000	-5.860388000000
Н	-1.624808000000	-4.517252000000	-5.638363000000
Н	3.742016000000	-2.847951000000	-1.925304000000
Н	4.537035000000	-3.485396000000	-3.116660000000
Н	3.819283000000	-4.406151000000	-2.069711000000
Н	-3.496874000000	-4.242276000000	-2.912685000000
Н	-3.935240000000	-3.534003000000	-4.241227000000
Н	-3.511578000000	-2.677132000000	-2.997524000000
Н	2.329755000000	-1.711937000000	0.453798000000
Н	2.231869000000	1.239199000000	-0.954168000000
Н	-1.906483000000	1.639165000000	0.417696000000
Н	-2.791481000000	-0.000972000000	0.101806000000
Н	-2.441858000000	-1.245310000000	0.542247000000
Н	0.548551000000	3.520949000000	2.244442000000
Н	3.644836000000	3.629273000000	-1.511939000000
Н	-2.023842000000	3.075153000000	-2.354914000000
Н	-2.751255000000	3.422346000000	-3.699702000000
Н	-2.227729000000	4.572247000000	-2.771889000000
Н	3.835283000000	2.833507000000	-5.795405000000
Н	4.445095000000	4.276439000000	-5.728617000000
Н	2.891397000000	4.076457000000	-5.65460900000
Н	3.725575000000	0.183734000000	-0.622033000000
Н	4.213885000000	-0.885619000000	0.415891000000
Н	3.475741000000	0.405937000000	0.910484000000
Н	-4.565148000000	2.715462000000	5.861832000000
Н	-4.823015000000	4.250053000000	5.677713000000
Н	-3.363026000000	3.720931000000	5.892518000000
Н	-0.561978000000	3.832033000000	6.311298000000
Н	0.983979000000	3.726487000000	6.551374000000
Н	0.134495000000	2.426598000000	6.329349000000
Н	0.058060000000	3.697322000000	-5.622117000000
Н	-1.325730000000	4.430593000000	-5.560744000000
Н	-1.268787000000	2.862672000000	-5.560744000000
Н	5.240051000000	4.318103000000	-2.735787000000
Н	5.822520000000	3.675102000000	-4.042668000000
Н	5.289798000000	2.758514000000	-2.887414000000
Н	-5.232329000000	4.095899000000	2.616289000000
Н	-6.027348000000	3.458454000000	3.807645000000
Н	-5.309596000000	2.537699000000	2.760696000000
Н	2.006561000000	2.701574000000	3.603671000000
Н	2.444927000000	3.409847000000	4.932213000000

Н	2.021265000000	4.266718000000	3.688510000000	
_	Mo	nomeric complex 3		
Dy	0.000000000000	0.000000000000	0.000000000000	
Р	-3.284534250000	-1.436413470000	0.862992350000	
Р	2.244886520000	2.698208450000	-1.340521350000	
Р	3.508922930000	-0.254799930000	0.374838410000	
0	-2.253380260000	-0.879839400000	-0.07/807/4350000	
0	-4.621461010000	-1.659437340000	0.249502100000	
0	4.026825840000	0.049510570000	-0.963957410000	
0	3.4/5969880000	3.171934320000	-0.620325090000	
0	-1.488555320000	1.787406040000	0.384984490000	
0	1.316092300000	1.889453810000	-0.505811750000	
0	0.901319810000	-0.569181490000	-2.254150930000	
0	2.112994/90000	-0.748225910000	0.477555870000	
0	-0.33038/360000	-0.925379800000	2.218932540000	
0	-0.912282940000	0.598108820000	-2.213174090000	
0	0.039389490000	-2.417702290000	-0.297663210000	
0	0.579943070000	1.036071980000	2.238462230000	
0	-0.017108880000	0.027284100000	-4.128935860000	
0	0.266031690000	-0.055244530000	4.119976640000	
Ν	-2.705142550000	-2.015632390000	3.856082890000	
Ν	-2.707492740000	-2.802709370000	1.613999630000	
Ν	-1.758496210000	-4.033918560000	3.325874060000	
Ν	-3.438715070000	-0.462776060000	2.210448290000	
Ν	-3.433267190000	0.064933370000	4.446179860000	
Ν	0.0000000000000	0.000000000000	-2.909319880000	
Ν	4.505777750000	-1.345426000000	1.185311690000	
Ν	3.745405950000	1.057831610000	1.387638070000	
Ν	1.703931870000	3.294930220000	-4.337364630000	
Ν	1.473127820000	3.975832590000	-2.072516360000	
Ν	0.189411080000	0.0000000000000	2.890139190000	
Ν	4.220140230000	-0.266250630000	3.293153570000	
Ν	3.478376480000	1.917922190000	3.508220840000	
Ν	0.887653480000	5.372571600000	-3.819783840000	
Ν	2.658147320000	1.842552220000	-2.713271930000	
Ν	5.284716100000	-2.295008090000	3.140097410000	
Ν	2.697857060000	1.335393100000	-4.953312690000	
С	-3.192856490000	-0.839496590000	3.487810880000	
С	-2.402688350000	-2.904154170000	2.950922460000	
С	-4.042690200000	1.364487670000	4.171904800000	
С	-1.375056720000	-4.247552470000	4.709917230000	
С	-1.379333410000	-5.063924880000	2.389423500000	
С	-3.270001270000	-0.305687850000	5.858531330000	
С	3.804289270000	0.909019830000	2.749613610000	
С	4.668245850000	-1.266979240000	2.542937680000	

С	2.329435080000	2.181541870000	-3.982545640000	
С	5.521551340000	-2.289391350000	4.577371710000	
С	2.895546540000	3.153992560000	2.976336320000	
С	1.378815400000	4.173132150000	-3.429990520000	
С	3.638854450000	1.867903940000	4.965999180000	
С	3.322327080000	0.042691910000	-4.680507820000	
С	5.722089130000	-3.479048040000	2.394383900000	
С	1.142894960000	-3.300319590000	-0.627780290000	
С	0.752403090000	5.699240480000	-5.228160190000	
С	0.511016610000	6.403741190000	-2.883680700000	
С	2.298886290000	1.598691190000	-6.342750660000	
Н	-4.744931320000	-1.462148390000	-0.700515750000	
Н	-2.470442170000	-3.627902080000	1.054499320000	
Н	-3.328214620000	2.188222000000	4.388196530000	
Н	-4.939508210000	1.506297220000	4.810931730000	
Н	-4.341996310000	1.401855840000	3.111054960000	
Н	-1.761786480000	-3.414234240000	5.318433480000	
Н	-0.269197970000	-4.282577310000	4.812227450000	
Н	-1.798168280000	-5.201470450000	5.088933370000	
Н	-2.257096050000	-5.551830330000	1.904717670000	
Н	-0.835389710000	-5.860390600000	2.927495720000	
Н	-0.700375210000	-4.682628400000	1.593151980000	
Н	-4.181938790000	-0.800626900000	6.258710490000	
Н	-3.079730240000	0.611059480000	6.449316070000	
Н	-2.411770200000	-0.988319390000	5.974085180000	
Н	-1.654876210000	2.595808070000	-0.139262210000	
Н	-2.338263010000	1.536210330000	0.813813810000	
Н	1.809987540000	1.899919920000	0.395040060000	
Н	1.920056600000	-1.232321310000	1.320265990000	
Н	-0.704202960000	-2.578848290000	-0.913344550000	
Н	5.035656610000	-2.046443300000	0.659076120000	
Н	3.262761790000	1.022078470000	-2.550589090000	
Н	5.200450540000	-1.316148010000	4.980825130000	
Н	6.598885280000	-2.444045830000	4.794968590000	
Н	4.941697440000	-3.097706670000	5.072684130000	
Н	3.326363030000	4.016193400000	3.522594930000	
Н	1.795474830000	3.146625930000	3.125524100000	
Н	3.139702280000	3.252338630000	1.899968030000	
Н	2.650789220000	1.986720830000	5.458133230000	
H	4.303261560000	2.690242310000	5.304951200000	
Н	4.070731550000	0.896834610000	5.255202110000	
Н	4.202860390000	0.142648540000	-4.011012350000	
Н	3.685177280000	-0.379361360000	-5.634843080000	
Н	2.604839280000	-0.673991570000	-4.226534750000	
Н	4.906349990000	-3.892419810000	1.762783080000	
Н	6.014737060000	-4.264257160000	3.114389620000	

Н	6.606632860000	-3.274282980000	1.750169440000
Н	1.690525080000	-2.929122310000	-1.517489400000
Н	0.774942220000	-4.329315880000	-0.814447640000
Н	1.821259200000	-3.331069790000	0.243706960000
Н	1.003244980000	4.814639250000	-5.835743420000
Н	1.426627320000	6.539024010000	-5.512502890000
Н	-0.290116520000	6.014307920000	-5.458017270000
Н	-0.572087150000	6.648910210000	-2.975396050000
Н	1.084882230000	7.337588980000	-3.076487590000
Н	0.726971100000	6.044299830000	-1.862344970000
Н	1.324739300000	1.117696980000	-6.578709420000
Н	3.074139500000	1.199212590000	-7.025259320000
Н	2.196950040000	2.686128220000	-6.491236180000
	Ма	onomeric complex 4	
Er	0.0000000000000	0.00000000000000000	0.00000000000
Р	-1.561990000000	3.024620000000	0.883740000000
Р	1.372910000000	3.257420000000	-1.22761000000
Р	0.124770000000	-3.642430000000	0.53876000000
0	1.406280000000	4.503950000000	-0.393010000000
0	-1.665470000000	3.749100000000	-0.408050000000
0	-1.43345000000	1.538530000000	0.840410000000
0	1.120390000000	1.997920000000	-0.47458000000
0	0.576270000000	-0.396330000000	-2.33468000000
0	-0.398010000000	-0.883460000000	2.19764000000
0	0.996580000000	0.754570000000	2.18749000000
0	-1.18073000000	0.813910000000	-2.02796000000
0	-2.210810000000	-0.938660000000	-0.105860000000
0 0	2.239400000000	-0.664040000000	0.060730000000
Ő	0.415530000000	-0.141030000000	4.084380000000
0 0	-0.521950000000	0.373690000000	-4.062080000000
0 0	0.091400000000	-2.395900000000	-0.295840000000
0	0.377300000000	-4.901930000000	-0.214270000000
Ň	-0.346300000000	3.704940000000	1.81097000000
N	-0.381960000000	0.263300000000	-2.84280000000
N	2.766380000000	3.143300000000	-2.14089000000
N	0.263470000000	3.395830000000	-2.47046000000
N	0.337750000000	-0.088590000000	2.85332000000
N	-2.850110000000	3.412390000000	1.89617000000
N	-1.50795000000	3.41101000000	3.866670000000
N	1.785120000000	3.28405000000	-4.301730000000
N	0 79638000000	3 623520000000	3 826790000000
N	4 05250000000	3 34753000000	-4 05338000000
N	-0 47060000000	3 43033000000	-4 64434000000
N	-3 788370000000	3 557290000000	3 995370000000
N	-1 26870000000	-3 75656000000	1 45204000000
11	1.200/000000000	5.1202000000000	1.12401000000

N	1.234210000000	-3.504020000000	1.781610000000	
Ν	-0.287440000000	-3.615800000000	3.612880000000	
Ν	-2.55481000000	-3.552320000000	3.364530000000	
Ν	1.968280000000	-3.469520000000	3.955490000000	
С	-0.366920000000	3.566950000000	3.168750000000	
С	0.537760000000	3.358570000000	-3.79959000000	
С	-2.696240000000	3.463450000000	3.253950000000	
С	2.829480000000	3.270250000000	-3.507730000000	
С	-3.706290000000	3.651120000000	5.452850000000	
С	2.074250000000	3.656640000000	3.11980000000	
С	5.258370000000	3.330970000000	-3.24850000000	
С	-3.507890000000	-0.277650000000	-0.204840000000	
С	4.205150000000	3.495190000000	-5.496350000000	
С	0.865310000000	3.600070000000	5.28608000000	
С	-1.863630000000	3.448270000000	-4.176650000000	
С	-5.133780000000	3.544870000000	3.398970000000	
С	-0.232190000000	3.322690000000	-6.09094000000	
С	-1.33180000000	-3.629600000000	2.818880000000	
С	0.959920000000	-3.541280000000	3.11074000000	
С	-3.760690000000	-3.568880000000	2.559650000000	
С	-2.707470000000	-3.404660000000	4.807500000000	
С	3.361310000000	-3.451580000000	3.487800000000	
С	1.729870000000	-3.577160000000	5.40209000000	
Н	-2.231230000000	1.252740000000	0.706990000000	
Н	1.610380000000	1.974460000000	0.213910000000	
Н	-2.295810000000	-1.718340000000	-0.453190000000	
Н	2.748080000000	-0.016840000000	-0.195780000000	
Н	2.377420000000	-1.280890000000	-0.52208000000	
Н	3.503020000000	2.991500000000	-1.722140000000	
Н	-3.999010000000	2.824520000000	5.844410000000	
Н	-4.267880000000	4.365950000000	5.76103000000	
Н	-2.79740000000	3.823620000000	5.71208000000	
Н	2.090630000000	2.965280000000	2.454510000000	
Н	2.789190000000	3.515890000000	3.745210000000	
Н	2.183370000000	4.510850000000	2.697420000000	
Н	5.235070000000	4.056840000000	-2.621280000000	
Н	6.025680000000	3.427570000000	-3.819530000000	
Н	5.316170000000	2.498850000000	-2.775370000000	
Н	-3.467350000000	0.406810000000	-0.877380000000	
Н	-3.731310000000	0.117020000000	0.63992000000	
Н	-4.177320000000	-0.922100000000	-0.44594000000	
Н	4.598980000000	2.69894000000	-5.858910000000	
Н	4.771110000000	4.247270000000	-5.68307000000	
Н	3.343260000000	3.635940000000	-5.89516000000	
Н	-0.023560000000	3.602820000000	5.64863000000	
Н	1.340090000000	4.374230000000	5.59606000000	

Η	1.324910000000	2.806580000000	5.572500000000	
Η	-2.027840000000	2.675480000000	-3.632810000000	
Η	-2.454930000000	3.438610000000	-4.93439000000	
Η	-2.01650000000	4.243130000000	-3.66182000000	
Η	-5.219770000000	4.280390000000	2.78806000000	
Η	-5.792250000000	3.624900000000	4.09326000000	
Η	-5.266540000000	2.719640000000	2.925830000000	
Η	0.519090000000	3.870540000000	-6.33386000000	
Н	-1.010990000000	3.622150000000	-6.56589000000	
Η	-0.048830000000	2.409150000000	-6.31935000000	
Η	-3.489480000000	3.451030000000	1.631510000000	
Н	-0.11270000000	-4.925390000000	-0.90276000000	
Н	-2.005340000000	-3.908350000000	1.03329000000	
Н	-3.737390000000	-2.84302000000	1.932430000000	
Н	-4.52800000000	-3.472280000000	3.130680000000	
Н	-3.818490000000	-4.401000000000	2.086520000000	
Н	-3.10130000000	-4.200910000000	5.17006000000	
Н	-3.273430000000	-2.652580000000	4.99422000000	
Н	-1.84558000000	-3.263910000000	5.206310000000	
Н	3.52552000000	-4.22436000000	2.94396000000	
Н	3.95261000000	-3.461240000000	4.24554000000	
Н	3.51418000000	-2.656720000000	2.97297000000	
Н	0.978590000000	-3 029310000000	5 64501000000	
Н	2 508670000000	-3 277710000000	5 87704000000	
Н	1 546510000000	-4 490700000000	5 63050000000	
	110 100 10000000			
	Ι	Dimeric complex 1		
Gd	-0.003687000000	0.001315000000	-0.005878000000	
Gd	1.578985000000	-6.972212000000	-0.560177000000	
Р	0.198183000000	-3.660380000000	0.637489000000	
Р	3.172093000000	-3.899863000000	-1.476728000000	
Р	1.379848000000	3.309537000000	-1.210353000000	
Р	-1.594258000000	3.076857000000	0.904350000000	
Р	1.374093000000	-10.635055000000	-1.196012000000	
0	0.148359000000	-2.432148000000	-0.204778000000	
0	0.455488000000	-4.917107000000	-0.111837000000	
0	3.271839000000	-3.140449000000	-0.225300000000	
0	3.055831000000	-5.374080000000	-1.38127600000	
0	2.050822000000	-7.826635000000	-2.846382000000	
0	2.759348000000	-6.165794000000	1.54287100000	
0	-0.750471000000	-7.565109000000	-0.518228000000	
0	1.033820000000	-7.404464000000	1.82833400000	
Õ	0.558701000000	-6.312962000000	-2.781298000000	
0	3.821585000000	-7.976833000000	-0.387773000000	
õ	2.149766000000	-6.68640800000	3.542771000000	
Õ	1.198457000000	-7.118399000000	-4.690002000000	
-				

0	1.424931000000	-9.405134000000	-0.356273000000	
0	1.121505000000	2.054566000000	-0.458443000000	
0	-1.479213000000	1.602351000000	0.811931000000	
0	-0.476227000000	-0.848013000000	2.282079000000	
0	-1.183386000000	0.804380000000	-2.110581000000	
0	2.325280000000	-0.593589000000	-0.046605000000	
0	0.541120000000	-0.436298000000	-2.393495000000	
0	1.017143000000	0.664290000000	2.213883000000	
0	-2.247115000000	-1.001807000000	-0.176218000000	
0	1.430686000000	4.539457000000	-0.370614000000	
0	-1.693378000000	3.833777000000	-0.348638000000	
0	-0.574235000000	0.279151000000	-4.109406000000	
0	0.376724000000	-0.136690000000	4.124240000000	
Ο	1.115751000000	-11.890026000000	-0.444101000000	
Ν	1.949420000000	-3.269048000000	-2.411587000000	
Ν	1.329688000000	-3.468004000000	1.846857000000	
Ν	-1.179990000000	-3.794952000000	1.569216000000	
Ν	1.986592000000	-6.764272000000	2.340712000000	
Ν	4.452890000000	-3.528152000000	-2.505257000000	
Ν	1.273856000000	-7.078130000000	-3.46976000000	
Ν	-0.140092000000	-3.636999000000	3.710941000000	
Ν	3.115376000000	-3.563086000000	-4.468164000000	
Ν	0.815076000000	-3.391969000000	-4.425294000000	
Ν	-2.424407000000	-3.583271000000	3.512135000000	
Ν	5.383411000000	-3.374531000000	-4.619557000000	
Ν	2.136986000000	-3.505164000000	4.002975000000	
Ν	0.248501000000	3.500358000000	-2.420115000000	
Ν	2.757908000000	3.171911000000	-2.14180000000	
Ν	-0.371063000000	3.708584000000	1.837910000000	
Ν	-2.874747000000	3.451739000000	1.932112000000	
Ν	0.301358000000	-0.098869000000	2.903917000000	
Ν	-0.411125000000	0.203625000000	-2.907189000000	
Ν	1.718138000000	3.326316000000	-4.283845000000	
Ν	-1.537261000000	3.419739000000	3.895086000000	
Ν	0.763180000000	3.588870000000	3.851867000000	
Ν	4.002497000000	3.378568000000	-4.085148000000	
Ν	-0.558830000000	3.459429000000	-4.576153000000	
Ν	-3.805139000000	3.610477000000	4.046091000000	
Ν	0.242746000000	-10.444233000000	-2.405773000000	
Ν	2.752153000000	-10.772680000000	-2.127458000000	
Ν	1.712384000000	-10.618275000000	-4.269504000000	
Ν	3.996743000000	-10.566024000000	-4.070807000000	
Ν	-0.564584000000	-10.485162000000	-4.561812000000	
С	1.083287000000	-3.547402000000	3.187495000000	
С	1.953775000000	-3.428029000000	-3.778111000000	
С	4.277742000000	-3.483452000000	-3.855861000000	

С	-1.211558000000	-3.659677000000	2.924718000000	
С	5.257116000000	-3.254657000000	-6.074566000000	
С	-3.64804000000	-3.612833000000	2.751263000000	
С	-0.480083000000	-3.372608000000	-3.746381000000	
С	-2.507581000000	-3.432538000000	4.962784000000	
С	3.500697000000	-3.443461000000	3.531135000000	
С	5.089221000000	-7.333065000000	-0.338275000000	
С	6.724526000000	-3.352186000000	-4.048976000000	
С	1.934661000000	-3.652809000000	5.440869000000	
С	0.766905000000	-3.463161000000	-5.872622000000	
С	-0.375549000000	3.552418000000	3.204759000000	
С	0.494835000000	3.417999000000	-3.760586000000	
С	2.789586000000	3.304372000000	-3.497576000000	
С	-3.514219000000	-0.357096000000	-0.227041000000	
С	-2.699562000000	3.499073000000	3.282620000000	
С	2.058354000000	3.605765000000	3.172916000000	
С	0.811293000000	3.520615000000	5.299339000000	
С	5.226105000000	3.349561000000	-3.324217000000	
С	4.085793000000	3.526248000000	-5.536104000000	
С	-3.678744000000	3.733239000000	5.500850000000	
С	-5.146236000000	3.632755000000	3.475463000000	
С	-1.922489000000	3.523228000000	-4.104441000000	
С	-0.356628000000	3.308660000000	-6.013739000000	
С	0.489081000000	-10.526592000000	-3.746245000000	
С	2.783832000000	-10.640220000000	-3.483235000000	
С	5.220351000000	-10.595030000000	-3.309876000000	
С	4.080039000000	-10.418343000000	-5.521763000000	
С	-1.928243000000	-10.421363000000	-4.090099000000	
С	-0.362382000000	-10.635931000000	-5.999398000000	
Н	3.921208000000	-5.866697000000	-1.420057000000	
Н	-1.263384000000	-7.050237000000	-1.176229000000	
Н	-1.235234000000	-7.459476000000	0.327952000000	
Н	2.313768000000	-3.423455000000	1.540491000000	
Н	3.858461000000	-8.830670000000	-0.906448000000	
Н	5.362730000000	-3.257146000000	-2.118911000000	
Н	4.839135000000	-4.182457000000	-6.515081000000	
Н	6.255294000000	-3.061910000000	-6.503593000000	
Н	4.582222000000	-2.419509000000	-6.345008000000	
Н	-4.136707000000	-2.610761000000	2.714267000000	
Н	-4.374505000000	-4.318086000000	3.207443000000	
Н	-3.427186000000	-3.945577000000	1.722354000000	
Н	-0.363339000000	-3.735913000000	-2.713492000000	
Н	-1.170122000000	-4.048136000000	-4.288855000000	
Н	-0.902355000000	-2.347355000000	-3.75929000000	
Н	-2.199929000000	-4.359773000000	5.490052000000	
Н	-3.553927000000	-3.203465000000	5.237441000000	

Н	-1.85476000000	-2.608528000000	5.309345000000
Н	3.816382000000	-4.401415000000	3.064648000000
Н	4.164483000000	-3.243800000000	4.391187000000
Н	3.652915000000	-2.614456000000	2.807253000000
Н	5.350858000000	-6.831304000000	-1.310092000000
Н	5.910805000000	-8.050162000000	-0.137320000000
Н	5.059653000000	-6.599296000000	0.489860000000
Н	6.997766000000	-2.358496000000	-3.625856000000
Н	7.462205000000	-3.589550000000	-4.835618000000
Н	6.844898000000	-4.122533000000	-3.257717000000
Н	0.854679000000	-3.645202000000	5.652032000000
Н	2.425313000000	-2.815202000000	5.977328000000
Н	2.370132000000	-4.611951000000	5.791201000000
Н	0.117780000000	-2.654957000000	-6.26706000000
Н	0.354013000000	-4.443982000000	-6.189785000000
Н	1.782282000000	-3.353235000000	-6.284511000000
Н	0.685821000000	-2.593161000000	-1.118435000000
Н	0.868984000000	4.458622000000	0.477119000000
Н	-1.842134000000	1.103847000000	1.585853000000
Н	2.878533000000	0.161389000000	-0.335261000000
Н	2.838819000000	-1.436134000000	-0.182222000000
Н	-0.724569000000	3.624995000000	-2.095729000000
Н	-2.300219000000	-1.847818000000	0.336371000000
Н	-3.783617000000	3.709916000000	1.536293000000
Н	-3.202836000000	2.831489000000	5.936425000000
Н	-4.684489000000	3.865133000000	5.935559000000
Н	-3.053175000000	4.605810000000	5.774871000000
Н	4.966929000000	3.314227000000	-2.25146000000
Н	5.840170000000	4.254586000000	-3.527976000000
Н	5.843040000000	2.459933000000	-3.590186000000
Н	1.941092000000	3.226346000000	2.144903000000
Н	2.759122000000	2.952437000000	3.728014000000
Н	2.478334000000	4.634059000000	3.142212000000
Н	3.079923000000	3.420803000000	-5.968927000000
Н	4.759320000000	2.752013000000	-5.966315000000
Н	4.501531000000	4.521529000000	-5.809983000000
Н	-2.252160000000	2.560075000000	-3.658281000000
Н	-2.583346000000	3.755282000000	-4.958967000000
Н	-2.065675000000	4.331083000000	-3.355516000000
Н	-3.824073000000	0.044950000000	0.764028000000
Н	-4.301817000000	-1.055917000000	-0.576741000000
Н	-3.431642000000	0.469469000000	-0.956029000000
Н	-5.413053000000	4.620364000000	3.034188000000
Н	-5.885266000000	3.414399000000	4.266311000000
Н	-5.269756000000	2.852593000000	2.693837000000
Н	0.692426000000	3.538144000000	-6.257577000000

Н	-1.025751000000	4.004997000000	-6.557617000000	
Н	-0.580847000000	2.269649000000	-6.339379000000	
Н	1.470848000000	4.319099000000	5.698471000000	
Н	1.214284000000	2.536856000000	5.622290000000	
Н	-0.203101000000	3.642365000000	5.711617000000	
Н	1.255046000000	-9.626716000000	0.594817000000	
Н	-0.735881000000	-10.574767000000	-2.126102000000	
Н	5.662953000000	-9.575404000000	-3.189778000000	
Н	5.976807000000	-11.226875000000	-3.818727000000	
Н	5.017047000000	-11.021696000000	-2.311543000000	
Н	3.826324000000	-11.362326000000	-6.049436000000	
Н	5.114756000000	-10.136670000000	-5.793325000000	
Н	3.388123000000	-9.630781000000	-5.876477000000	
Н	-2.260926000000	-11.364543000000	-3.597924000000	
Н	-2.598694000000	-10.249059000000	-4.951143000000	
Н	-2.085501000000	-9.577106000000	-3.383289000000	
H	0.719417000000	-10.678468000000	-6.19919000000	
Н	-0.806976000000	-9.773826000000	-6.538571000000	
Н	-0.840209000000	-11.569417000000	-6.365327000000	

Figure S15. ORTEP diagrams drawn (using ORTEP-3 software²) for complexes 1-4 at 50% thermal ellipsoid probability.

Figure S16. FTIR spectra of complexes 1-4. The characteristic bands are listed in main text.

Figure S17. Thermogravimetric analysis (TGA) of 3.

The thermal gravimetric analysis (TGA) data indicates that when the temperature reaches 70°C, the sample experiences a weight loss of around 8.5%, equivalent to the departure of two methanol molecules from the crystal lattice. While one of these methanol molecules has been accounted for in the updated cif (Crystallographic Information File), the other molecule was masked due to its significant disorder.

References

- V. Chandrasekhar, T. Senapati, A. Dey, S. Das, M. Kalisz and R. Clérac, Cyclo- and Carbophosphazene-Supported Ligands for the Assembly of Heterometallic (Cu²⁺/Ca²⁺, Cu²⁺/Dy³⁺, Cu²⁺/Tb³⁺) Complexes: Synthesis, Structure, and Magnetism, *Inorg. Chem.*, 2012, **51**, 2031-2038.
- 2. L. J. Farrugia, WinGX and ORTEP for Windows: an update J. Appl. Cryst. (2012), 45, 849-854.