Supporting information for:

Reactions of cyclonickelated complexes with hydroxylamines and TEMPO: isolation of new TEMPOH adducts of Ni(II) and their reactivities with nucleophiles and oxidants

Rajib K. Sarker, and Davit Zargarian*

Département de chimie, Université de Montréal, Montréal (Québec), Canada H3C 3J7

zargarian.davit@umontreal.ca

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required

according to the journal that you are submitting your paper to)

Table of Contents	
General experimental considerations	S1
Synthetic Procedures	S2
NMR spectra	\$8
Crystallographic data	S49
Schemes S1 and S2	S54
Cyclic Voltammetry traces	S55
References	S56

1. General experimental considerations

All manipulations were carried out under a nitrogen atmosphere using standard Schlenk techniques and an inert-atmosphere box. The transfer/addition of all liquid reagents/reactants was performed with BRAND Transferpette® micropipettes (20-200 μ L and 100-1000 μ L). Reported volumes should be considered to be within $\pm 7 \mu$ L (for > 200 μ L transfers) and $\pm 3 \mu$ L (for < 200 μ L transfers) of the measurements, with a >99% confidence level.¹ Solvents (CH₂Cl₂, DCM, tetrahydrofuran, THF, acetonitrile, MeCN, toluene, etc.) were dried by passage over a column of activated alumina, collected under nitrogen, and stored over 3 Å molecular sieves inside transfer/storage flasks equipped with high vacuum valves (Straus flasks). Et₃N was dried over CaH₂. The Ni^{II} precursor [(*i*-PrCN)NiBr₂]_n used throughout this study was prepared as reported previously.^{2,3} Other reagents were purchased from Sigma-Aldrich or FisherSci and used without further purification.

The NMR spectra were recorded at 500 MHz (¹H), 125.72 MHz (¹³C), and 202.4 MHz (³¹P). Chemical shift values are reported in ppm (δ) and referenced internally to the residual solvent signals (¹H and ¹³C: 1.94 and 118.26 ppm for CD₃CN; 7.26 and 77.16 for CDCl₃; 7.16 and 128.06 for C₆D₆) or externally (³¹P: H₃PO₄ in D₂O, δ = 0). The minimal precision of the NMR spectra was found to be 0.3 Hz for ¹H, 0.7 Hz for ¹³C and 2 Hz for ³¹P.

Single crystals of complexes **3a-3d** and **7a** were grown from Et₂O solutions cooled to -35 °C. Whereas complex **5a** was grown from DCM-Hexane mixture and complex **6a** was grown from DCM-Et₂O mixture. The crystallographic data for all structures were collected on either a Bruker Microsource (Cu radiation) or a Bruker Venture Metaljet (Ga radiation) via the Bruker APEX II or APEX III⁴ software packages. Cell refinement and data reduction were performed using SAINT.⁵ An empirical absorption correction, based on multiple measurements of equivalent reflections, was applied using the program SADABS or TWINABS.⁶ The space group was confirmed by the XPREP⁷ routine in APEX. The structures were solved in OLEX⁸ using the SHELX⁹ suite and refined by full-matrix least squares with SHEXL. All non-hydrogen atoms were refined with anisotropic displacement parameters, whereas hydrogen atoms were set in calculated positions and refined via the riding model, with thermal parameters being 1.5 times that of the carbon bearing the H in question. All Thermal ellipsoid plots were drawn using OLEX.

2. Procedures for the synthesis of Ni-TEMPOH complexes **3a-3d**

 $[\{\kappa^{P}, \kappa^{C}-(i-Pr)_{2}PO-(C_{6}H_{4})\}$ Ni(Br)(TEMPOH)], 3a. A 25 mL Schlenk flask containing 10 mL of DCM was charged with dimer $[\{\kappa^P, \kappa^C - (i-Pr)_2 PO - C_6 H_4\} Ni(\mu-Br)]_2$ (95 mg, 0.137 mmol, 1.00 equiv) and Et₂NOH (27.5 µL, 0.273 mmol, 2.00 equiv). The resulting mixture was stirred overnight under inert atmosphere at room temperature. To this mixture was added TEMPO (43 mg, 0.273 mmol, 2 equiv) and the stirring was continued under the same conditions for 3 h. The final reaction mixture was placed under vacuum to remove all volatiles, and the resulting sticky yellow solid residue was treated with ca. 1 mL of Et₂O, filtered and the filtrate kept at -35 °C overnight. Brown crystals were separated and washed with cold hexane. Yield: 106 mg, 0.211 mmol, 77%. ¹H NMR (400 MHz, 20 °C, C_6D_6): δ 1.10 (s, 6H, CCH₃), 1.11 (br s, 6H, CH₂), $1.25(dd, 6H, {}^{3}J_{HP} = 14.3, {}^{3}J_{HH} = 7.0, CHCH_{3}), 1.54(dd, 6H, {}^{3}J_{HP} = 17.1, {}^{3}J_{HH} = 7.2, CHCH_{3}), 1.75(s, 1.54)$ 6H, CCH₃), 2.24 (sept, 2H, PCH, $J_{\text{HH}} = 7.1$), 6.91 (dd, 1H, C3_{Ar}-H, ${}^{3}J_{\text{HH}} = 7.7$, ${}^{4}J_{\text{HH}} = 1.1$), 7.03 (t, 1H, ${}^{3}J_{\text{HH}} = 7.4$, C4_{Ar}-H),), 7.09 (t, 1H, ${}^{3}J_{\text{HH}} = 7.3$, C5_{Ar}-H), 7.93 (d, 1H, C6_{Ar}-H, ${}^{3}J_{\text{HH}} = 7.6$), 8.48 (br s, 1H, NH). ¹³C{¹H} NMR (125.72 MHz, 20 °C, C₆D₆): δ 16.06 (s, 1C, CHCH₃), 17.16 (d, 2C, $J_{PC} = 1.5$, CHCH₃), 18.71 (d, 1C, $J_{PC} = 3.9$, CHCH₃), 20.69 (s, 2C, CCH₃), 28.81 (d, 2C, $J_{PC} = 26.5$, PCH), 30.14 (s, 2C, CCH₃), 37.21 (s, 3C, CH₂), 66.27 (s, 2C, CCH₃), 110.05 (d, 1C, $J_{PC} = 13.0$, $C3_{Ar}$), 120.48 (d, 1C, $J_{PC} = 2.3$, C4/5_{Ar}), 126.64 (s, 1C, C5/4_{Ar}), 134.28 (d, 1C, $J_{PC} = 35.8$, C1/6_{Ar}), 134.83 (d, 1C, $J_{PC} = 3.9$, C6/1_{Ar}), 167.64 (d, 1C, $J_{PC} = 13.4$, C2_{Ar}). ³¹P{¹H} NMR (202.4 MHz, 20 °C, C₆D₆): δ 201.49 (s, 1P). Anal. calc. for C₂₁H₃₇BrNNiO₂P: C, 49.94; H, 7.38, N, 2.77. Found: C, 49.72; H, 7.32; N, 2.72.

[$\{\kappa^{p}, \kappa^{C}-(i-Pr)_{2}PO-(5-Cl-C_{6}H_{3})\}$ Ni(Br)(TEMPOH)], 3b. A 25 mL Schlenk flask containing 10 mL of DCM was charged with TEMPO (36 mg, 0.230 mmol, 2.00 equiv) and Et₂NOH (23.1 µL, 0.230 mmol, 2.00 equiv). The resulting mixture was stirred for 20 min under inert atmosphere at room temperature, followed by addition of the dimeric precursor [$\{\kappa^{p}, \kappa^{C}-(i-Pr)_{2}PO-(5-Cl-C_{6}H_{3})\}$ Ni(μ -Br)]₂ (88 mg, 0.115 mmol, 1 equiv) and continued stirring for 2 h under the same conditions. The final reaction mixture was placed under vacuum to remove all volatiles, and the resulting sticky dark brown solid residue was treated with ca. 1 mL of Et₂O, filtered and the filtrate kept at -35 °C overnight. Brown crystals were separated and washed with cold hexane. Yield: 57 mg, 0.106 mmol, 46%. ¹H NMR (400 MHz, 20 °C, C₆D₆): δ 1.03 (s, 6H, CCH₃), 1.08 (br s, 6H, CH₂), 1.18 (dd, 6H, ³J_{HP} =14.5, ³J_{HH} =6.9, CHCH₃), 1.48 (dd, 6H, ³J_{HP} =17.2, ³J_{HH} =7.3, CHCH₃), 1.70 (s, 6H, CCH₃), 2.16 (ps oct, 2H, PCH, ³J_{HH} = 7.0), 6.95 (d, 1H, C6_{Ar}-H, ⁴J_{HH} = 2.0), 7.05 (d,

1H,³ J_{HH} = 8.3, C3_{Ar}-*H*),), 7.74 (dd, 1H,³ J_{HH} = 8.3, ⁴ J_{HH} = 1.6, C4_{Ar}-*H*), 8.35 (br s, 1H, N-*H*). ¹³C{¹H} NMR (125.72 MHz, 20 °C, C₆D₆): δ 16.00 (s, 1C, CHCH₃), 17.02 (d, 1C, ² J_{PC} = 1.7, CHCH₃), 18.55 (d, 2C, ² J_{PC} = 3.7, CHCH₃), 20.59 (s, 2C, CCH₃), 28.79 (d, 1C, ² J_{PC} = 26.4, PCH) , 30.10 (s, 2C, CCH₃), 37.17 (s, 1C, CH₂), 66.32 (s, 2C, CCH₃), 110.65 (d, ² J_{PC} = 26.4, 1C, C6_{Ar}), 120.45 (d, 1C, ² J_{PC} = 2.1, 1C, C3_{Ar}), 131.90 (s, 1C, C5_{Ar}), 132.69 (d, J_{PC} = 36.1, 1C, C1_{Ar}), 135.41 (d, 1C, J_{PC} = 4.07, 1C, C4_{Ar}), 167.56 (d, J_{PC} = 14.4, 1C, C2_{Ar}) . ³¹P{¹H} NMR (202.4 MHz, 20 °C, C₆D₆): δ 203.02 (s, 1P). Anal. calc. for C₂₁H₃₆BrClNNiO₂P: C, 46.75; H, 6.73; N, 2.60. Found: C, 46.57; H, 6.81; N, 2.53.

[{ κ^{P} , κ^{C} -(*i*-Pr)₂PO-(5-OMe-C₆H₃)}Ni(Br)(TEMPOH)], 3c. A 25 mL Schlenk flask containing 10 mL of DCM was charged with TEMPO (29 mg, 0.186 mmol, 2.00 equiv) and Et₂NOH (18.7 µL, 0.186 mmol, 2.00 equiv). The resulting mixture was stirred for 20 min under inert atmosphere at room temperature, followed by addition of the dimeric precursor $[{\kappa^P, \kappa^C-(i-Pr)_2PO-(5-OMe C_6H_3$ Ni(μ -Br)]₂ (70 mg, 0.093 mmol, 1 equiv) and continued stirring for 2 h under the same conditions. The final reaction mixture was placed under vacuum to remove all volatiles, and the resulting sticky dark brown solid residue was treated with ca. 1 mL of Et₂O, filtered and the filtrate kept at -35 °C overnight. Brown crystals were separated and washed with cold hexane. Yield: 44 mg, 0.082 mmol, 43%. ¹H NMR (400 MHz, 20 °C, C_6D_6): δ 1.10 (s, 6H, CCH₃), 1.12 (br s, 6H, CH_2), 1.27 (dd, 6H, ${}^{3}J_{HP} = 14.4$, ${}^{3}J_{HH} = 7.0$, CHC H_3), 1.57 (dd, 6H, ${}^{3}J_{HP} = 17.0$, ${}^{3}J_{HH} = 7.2$, CHC H_3), 1.77 (s, 6H, CCH₃), 2.25 (ps oct, 2H, ${}^{3}J_{HH} = 7.1$, PCH), 3.39 (s, 3H, OCH₃), 6.65 (d, 1H, C3_{Ar}-H, ${}^{4}J_{\rm HH} = 2.6$), 6.73 (dd, 1H, ${}^{3}J_{\rm HH} = 8.5$, ${}^{4}J_{\rm HP} = 2.0$, C6_{Ar}-H), 7.78 (dd, 1H, ${}^{3}J_{\rm HH} = 8.6$, ${}^{4}J_{\rm HH} = 1.7$, C4_{Ar}-*H*), 8.48 (s, 1H, N-*H*). ¹³C{¹H} NMR (125.72 MHz, 20 °C, C₆D₆): δ 16.07 (s, 1C, CH*C*H₃), 17.17 (d, 1C, ${}^{2}J_{PC}$ = 1.5, CHCH₃), 18.71 (d, 2C, ${}^{2}J_{PC}$ = 3.9, CHCH₃), 20.66 (s, 2C, CCH₃), 28.75 $(d, 1C, {}^{2}J_{PC} = 26.3, PCH)$, 30.17 (s, 2C, CCH₃), 37.21 (s, 3C, CH₂), 54.86 (s, 1C, OCH₃), 66.25 (s, 2C, CCH₃), 97.06 (d, ${}^{2}J_{PC} = 13.9$, 1C, C3_{Ar}), 106.77 (s, 1C, C6_{Ar}), 123.30 (d, 1C, ${}^{2}J_{PC} = 37.7$, 1C, $C5_{Ar}$), 134.67 (d, $J_{PC} = 4.3$, $C4_{Ar}$), 160.42 (s, 1C, $C1_{Ar}$), 167.69 (d, $J_{PC} = 14.9$, 1C, $C2_{Ar}$). ³¹P{¹H} NMR (202.4 MHz, 20 °C, C₆D₆): δ 200.80 (s, 1P). Anal. calc. for C₂₂H₃₉BrNNiO₃P.Et₂O: C, 51.26; H, 8.11, N, 2.30. Found: C, 51.06; H, 7.61; N, 2.62.

[{ κ^{p} , κ^{c} -(*i*-Pr)₂PO-(4-MeO-C₁₀H₅)}Ni(Br)(TEMPOH)], 3d. A 25 mL Schlenk flask containing 10 mL of DCM was charged with TEMPO (26 mg, 0.167 mmol, 2.00 equiv) and Et₂NOH (16.8 μ L, 0.167 mmol, 2.00 equiv). The resulting mixture was stirred for 20 min under inert atmosphere

at room temperature, followed by addition of the dimeric precursor $[{\kappa^P, \kappa^C - (i-Pr)_2 PO - (OMe-1-i)}]$ Nap) $Ni(\mu-Br)_2$ (71 mg, 0.083 mmol, 1 equiv) and continued stirring for 2 h under the same conditions. The final reaction mixture was placed under vacuum to remove all volatiles, and the resulting sticky dark brown solid residue was treated with ca. 1 mL of Et₂O, filtered and the filtrate kept at -35 °C overnight. Brown crystals were separated and washed with cold hexane. (Yield: 50 mg, 0.086 mmol, 51%). ¹H NMR (400 MHz, 20 °C, C_6D_6): δ 1.12 (s, 6H, CCH₃), 1.14 (br s, 6H, CH_2), 1.28 (dd, 6H, ${}^{3}J_{HP} = 14.3$, ${}^{3}J_{HH} = 7.0$, $CHCH_3$), 1.58 (dd, 6H, ${}^{3}J_{HP} = 17.2$, ${}^{3}J_{HH} = 7.2$, $CHCH_3$), 1.79 (s, 6H, CCH₃), 2.29 (ps oct, 2H, PCH, ${}^{3}J_{HH} = 7.1$), 3.86 (s, 3H, OCH₃), 7.33 - 7.38 (m, 2H, $C_{Ar}-H$, 7.46 (d, 1H, ${}^{3}J_{HH} = 1.5$, $C_{Ar}-H$),), 8.15 - 8.19 (m, 1H, $C_{Ar}-H$), 8.54 (br s, 1H, N-H), 8.59 -8.64 (m, 1H, C_{Ar}-H). ¹³C{¹H} NMR (125.72 MHz, 20 °C, C₆D₆): δ 16.09 (s, 1C, CCH₃), 17.20 (d, 1C, ${}^{2}J_{PC}$ = 1.7, CHCH₃), 18.74 (d, 2C, ${}^{2}J_{PC}$ = 3.9, CHCH₃), 20.53 (s, 2C, CCH₃), 28.94 (d, 1C, ${}^{2}J_{PC}$ = 26.3, PCH), 30.24 (s, 2C, CH₂), 37.22 (s, 1C, CCH₃), 55.32 (s, 1C, OCH₃), 66.36 (s, 2C, C), 109.47 (d, ${}^{2}J_{PC} = 4.3$, 1C, C6_{Ar}), 122.07 (d, 1C, ${}^{2}J_{PC} = 12.4$, 1C, C_{Ar}), 122.41 (s, C_{Ar}), 122.73 (s, C_{Ar}), 124.08 (s, C_{Ar}), 125.52 (s, C_{Ar}), 126.16 (s, C_{Ar}), 148.20 (d, $J_{PC} = 3.0, C_{Ar}$), 156.03 (d, 1C, $J_{PC} =$ 13.8, $C2_{Ar}$). ³¹P{¹H} NMR (202.4 MHz, 20 °C, C_6D_6): δ 199.38 (s, 1P). Anal. calc. for C₂₆H₄₁BrNNiO₃P: C, 53.36; H, 7.06; N, 2.39. Found: C, 53.26; H, 7.10; N, 2.38.3.

3. Procedures for the synthesis of complexes 5a, 6a, & 7a.

[{ κ^{p} , κ^{C} -(*i*-Pr)₂PO-(C₆H₄)}Ni(Br)(C₄H₉NO)], 5a. Method A: A 25 mL Schlenk flask containing 10 mL of DCM was charged with TEMPO (43 mg, 0.274 mmol, 2 equiv) and Et₂NOH (27.6 µL, 0.274 mmol, 2 equiv). The resulting mixture was stirred for 20 min under inert atmosphere at room temperature, followed by addition of the dimeric precursor [{ κ^{p} , κ^{C} -(*i*-Pr)₂PO-C₆H₄}Ni(μ -Br)]₂ (95 mg, 0.137 mmol, 1 equiv), continued stirring for 20 min under the same conditions before adding morpholine (236 µL, 2.74 mmol, 20 equiv) and continued stirring for 2 h as before. The final reaction mixture was placed under vacuum to remove all volatiles, and the resulting sticky solid residue was treated with ca. 1 mL of DCM and filtered. The filtrate was layered with hexane and finally the filtrate was kept at -35 °C overnight. Brown crystals were separated and washed with cold hexane. **Method B:** A 25 mL Schlenk flask containing 10 mL of DCM was charged with the dimeric precursor [{ κ^{p} , κ^{C} -(*i*-Pr)₂PO-C₆H₄}Ni(μ -Br)]₂ (95 mg, 0.137 mmol, 1 equiv) and morpholine (236 µL, 2.74 mmol, 20 equiv). This mixture was stirred for 2 h and then placed under vacuum to remove all volatiles. The resulting sticky solid residue was treated with ca. 1 mL of DCM and filtered. The filtrate was kept at -35 °C overnight. Brown crystals were separated and washed with cold hexane. Yield: 58 mg, 0.132 mmol, 48%.

¹H NMR (400 MHz, 20 °C, C₆D₆): δ 1.21 (dd, 6H, ³*J*_{HP} = 14.6, ³*J*_{HH} = 7.0, CHC*H*₃), 1.53 (dd, 6H, ³*J*_{HP} = 17.1, ³*J*_{HH} = 7.2, CHC*H*₃), 2.19 - 2.36 (m, 3H, overlap of N-*H* and PC*H*), 2.45 (br s, 2H, C*H*₂), 2.76 (br s, 2H, C*H*₂), 3.28 (br s, 2H, C*H*₂), 3.50 (br s, 2H, C*H*₂) 6.68 (d, 1H, ³*J*_{HH} = 7.6, C3_{Ar}-*H*), 6.87 (tt, 1H, ³*J*_{HH} = 6.2, ⁴*J*_{HH} = 1.2, C4/5_{Ar}-*H*), 6.91 (dd, 1H, ³*J*_{HH} = 7.9, ⁴*J*_{HH} = 1.3, C6_{Ar}-*H*,), 7.05 (tt, 1H, ³*J*_{HH} = 7.5, ⁴*J*_{HH} = 1.4, C5/4_{Ar}-*H*). ¹³C {¹H} NMR (125.72 MHz, 20 °C, C₆D₆): δ 17.10 (d, 2C, *J*_{PC} = 1.8, CHCH₃), 18.81 (d, 2C, *J*_{PC} = 3.3, CHCH₃), 28.9 (d, 1C, *J*_{PC} = 27.1, P*C*H), 47.37 (s, 2C, CH₂), 68.01 (s, 2C, CH₂) , 111.24 (d, 1C, *J*_{PC} = 12.6, C4/5_{Ar}), 121.46 (d, 1C, *J*_{PC} = 2.3, C5/4_{Ar}), 127.29 (s, 1C, C6_{Ar}), 133.43 (d, 1C, *J*_{PC} = 3.2, C3_{Ar}), 135.05 (d, 1C, *J*_{PC} = 32.1, C1_{Ar}), 168.29 (d, 1C, *J*_{PC} = 12.9, C2_{Ar}). ³¹P {¹H} NMR (202.4 MHz, 20 °C, C₆D₆): δ 196.03 (s, 1P), 193.06 (s, 1P); integration ratio 100:8. Anal. calc. for C₁₆H₂₇Br_{0.93}Cl_{0.07}NNiO₂P: C, 44.49; H, 6.25; N, 3.22. Found: C, 44.29; H, 6.19; N, 3.28.

NB: We believe that the minor ³¹P singlet at 193.06 ppm is due to the presence of the Ni-Cl analogue of **5a** that originates from the presence of the corresponding Ni-Cl analogue in the specific batch of dimeric precursor **1a** used for this synthesis. Previous experience with this family of complexes has shown that the dimeric precursors **1** obtained from the C-H nickelation of the aryl phosphinite ligands R_2OPAr often contain variable amounts of its Ni-Cl analogues if R_2OPAr are contaminated with HCl•NEt₃ generated during their preparation from ArOH, ClPR₂, and NEt₃.

 $[\{\kappa^{p}, \kappa^{C}-(i-\Pr)_{2}PO-(C_{6}H_{4})\}$ Ni(imidazole)₂][Br], 6a. Method A: A 25 mL Schlenk flask containing 10 mL of DCM was charged with TEMPO (34 mg, 0.219 mmol, 2 equiv) and Et₂NOH (22.0 µL, 0.219 mmol, 2 equiv). The resulting mixture was stirred for 20 min under inert atmosphere at room temperature, followed by addition of the dimeric precursor $[\{\kappa^{p}, \kappa^{C}-(i-\Pr)_{2}PO-C_{6}H_{4}\}$ Ni(μ -Br)]₂ (76 mg, 0.110 mmol, 1 equiv), continued stirring for 20 min under the same conditions before adding imidazole (30 mg, 0.439 mmol, 4 equiv) and continued stirring for 1 h as before. The final reaction mixture was placed under vacuum to remove all volatiles, and the resulting sticky yellow solid residue was treated with ca. 1 mL of DCM and Et₂O mixture, filtered and the filtrate kept at -35 °C overnight. Brown crystals were separated and washed with cold hexane. Method B: A 25 mL Schlenk flask containing 10 mL of DCM was charged with the dimeric precursor $[\{\kappa^{p}, \kappa^{C}-(i-\Pr)_{2}PO-C_{6}H_{4}\}$ Ni(μ -Br)]₂ (76 mg, 0.110 mmol, 1 equiv) and imidazole

(30 mg, 0.439 mmol, 4 equiv). This mixture was stirred for 2 h and then placed under vacuum to remove all volatiles. The resulting sticky yellow solid residue was treated with ca. 1 mL of DCM and Et₂O mixture, filtered, and the filtrate kept at -35 °C overnight. Brown crystals were separated and washed with cold hexane. Yield: 66 mg, 0.137 mmol, 62%.

¹H NMR (400 MHz, 20 °C, C₆D₆): δ 1.30 (dd, 6H,³*J*_{HP} = 14.5, ³*J*_{HH} = 7.0, CHC*H*₃), 1.63 (dd, 6H,³*J*_{HP} = 17.2, ³*J*_{HH} = 7.2, CHC*H*₃), 2.40 (ps oct, 2H, PC*H*, ³*J*_{HH} = 7.1), 5.96 (br s, C_{Ar}-*H*), 6.30 (td, 1H, C3_{Ar}-*H*, ³*J*_{HH} = 7.7, ⁴*J*_{HH} = 1.3), 6.68 (tt, 1H,³*J*_{HH} = 7.3, *J*_{HH} = 1.1, C4/5_{Ar}-*H*), 6.92 (dd, 1H, ³*J*_{HH} = 7.9, ⁴*J*_{HH} = 1.3, C6_{Ar}-*H*), 7.00 (tt, 1H, ³*J*_{HH} = 7.8, ⁴*J*_{HH} = 1.4, C5/4_{Ar}-H), 7.13 (br s, C_{Ar}-*H*), 7.20 (br s, C_{Ar}-*H*), 8.56 (br s, 1H, N-*H*). ¹³C{¹H} NMR (125.72 MHz, 20 °C, C₆D₆): δ 17.16 (d, 2C, *J*_{PC} = 1.8, CHCH₃), 18.87 (d, 2C, *J*_{PC} = 3.4, CHCH₃), 28.82 (d, 2C, *J*_{PC} = 27.1, PCH), 110.48 (d, C, *J*_{PC} = 12.9, C6_{Ar}), 115.80 (s, C, C_{Ar}), 121.11 (d, C, *J*_{PC} = 2.3, C4/5_{Ar}), 126.88 (s, C, C5/4_{Ar}), 128.84 (s, C, *C*_{Ar}), 135.72 (d, C, *J*_{PC} = 33.9, C1_{Ar}), 136.87 (s, C, C_{Ar}), 138.95 (d, C, *J*_{PC} = 2.6, C3_{Ar}), 168.38 (d, 1C, *J*_{PC} = 13.3, C2_{Ar}). ³¹P{¹H} NMR (202.4 MHz, 20 °C, C₆D₆): δ 194.93 (s, 1P).

 $[\{\kappa^{P}, \kappa^{C}-(i-Pr)_{2}PO-(C_{6}H_{4})\}$ Ni(OCOCF₃)(TEMPOH)], 7a: A 50 mL Schlenk flask containing 10 mL of DCM was charged with TEMPO (42.8 mg, 0.274 mmol, 2 equiv) and Et₂NOH (27.6 µL, 0.274 mmol, 2 equiv). The resulting mixture was stirred for 20 min under inert atmosphere at room temperature, followed by addition of the dimeric precursor $[{\kappa^{P}, \kappa^{C}-(i-Pr)_{2}PO-C_{6}H_{4}}Ni(\mu-Br)]_{2}$ (95) mg, 0.137 mmol, 1 equiv),), continued stirring for 20 min under the same conditions before adding AgOCOCF₃ (60.5 mg, 0.274 mmol, 2 equiv) and continued stirring for 2 h as before. The final reaction mixture was placed under vacuum to remove all volatiles, and the resulting sticky yellow solid residue was treated with ca. 1 mL of Et₂O, filtered and the filtrate kept at -35 °C overnight. Yellow crystals were separated and washed with cold hexane. Yield: 57.5 mg, 0.107 mmol, 39%) ¹H NMR (400 MHz, 20 °C, C₆D₆): δ 1.05 (s, 6H, CCH₃), 1.15 (br m, 6H, CH₂), 1.19 (dd, 6H, ³J_{HP}) =13.2, ${}^{3}J_{HH}$ =7.0, CHCH₃), 1.49 (dd, 6H, ${}^{3}J_{HP}$ =18.5, ${}^{3}J_{HH}$ =7.3, CHCH₃), 1.52 (s, 6H, CCH₃), 2.48 (dm, 2H, PCH, ${}^{2}J_{HH} = 7.1$, $J_{HH} = 2.3$), 6.78 (dd, 1H, C3_{Ar}-H, ${}^{3}J_{HH} = 7.6$, ${}^{4}J_{HH} = 1.5$), 6.97 (pstpst, $1H_{,3}J_{HH} \sim {}^{3}J_{HH} \sim 7.4, {}^{4}J_{HH} \sim J_{PH} = 1.1, C4/5_{Ar}-H), 7.03 \text{ (pstpst, } 1H_{,3}J_{HH} \sim {}^{3}J_{HH} \sim 7.3, {}^{4}J_{HH} \sim J_{PH} = 1.1, C4/5_{Ar}-H), 7.03 \text{ (pstpst, } 1H_{,3}J_{HH} \sim {}^{3}J_{HH} \sim 7.3, {}^{4}J_{HH} \sim J_{PH} = 1.1, C4/5_{Ar}-H), 7.03 \text{ (pstpst, } 1H_{,3}J_{HH} \sim {}^{3}J_{HH} \sim 7.3, {}^{4}J_{HH} \sim J_{PH} = 1.1, C4/5_{Ar}-H), 7.03 \text{ (pstpst, } 1H_{,3}J_{HH} \sim {}^{3}J_{HH} \sim 7.3, {}^{4}J_{HH} \sim J_{PH} = 1.1, C4/5_{Ar}-H), 7.03 \text{ (pstpst, } 1H_{,3}J_{HH} \sim {}^{3}J_{HH} \sim 7.3, {}^{4}J_{HH} \sim J_{PH} = 1.1, C4/5_{Ar}-H), 7.03 \text{ (pstpst, } 1H_{,3}J_{HH} \sim {}^{3}J_{HH} \sim 7.3, {}^{4}J_{HH} \sim J_{PH} = 1.1, C4/5_{Ar}-H), 7.03 \text{ (pstpst, } 1H_{,3}J_{HH} \sim {}^{3}J_{HH} \sim 7.3, {}^{4}J_{HH} \sim J_{PH} = 1.1, C4/5_{Ar}-H), 7.03 \text{ (pstpst, } 1H_{,3}J_{HH} \sim {}^{3}J_{HH} \sim 7.3, {}^{4}J_{HH} \sim J_{PH} = 1.1, C4/5_{Ar}-H), 7.03 \text{ (pstpst, } 1H_{,3}J_{HH} \sim {}^{3}J_{HH} \sim 7.3, {}^{4}J_{HH} \sim J_{PH} = 1.1, C4/5_{Ar}-H), 7.03 \text{ (pstpst, } 1H_{,3}J_{HH} \sim {}^{3}J_{HH} \sim 7.3, {}^{4}J_{HH} \sim J_{PH} = 1.1, C4/5_{Ar}-H), 7.03 \text{ (pstpst, } 1H_{,3}J_{HH} \sim {}^{3}J_{HH} \sim 7.3, {}^{4}J_{HH} \sim J_{PH} = 1.1, C4/5_{Ar}-H), 7.03 \text{ (pstpst, } 1H_{,3}J_{HH} \sim {}^{3}J_{HH} \sim 7.3, {}^{4}J_{HH} \sim J_{PH} = 1.1, C4/5_{Ar}-H), 7.03 \text{ (pstpst, } 1H_{,3}J_{HH} \sim {}^{3}J_{HH} \sim {}^{3}J_{H} \sim {}^{3}J_{H$ 1.6, C5/4_{Ar}-*H*), 7.74 (pstd, 1H, ${}^{3}J_{HH} \sim {}^{3}J_{HH} \sim 7.6$, J_{PH} =1.6, C6_{Ar}-H), 7.86 (br s, 1H, NH). ${}^{13}C{}^{1}H{}$ NMR (125.72 MHz, 20 °C, C₆D₆): δ 15.91 (s, 1C, CHCH₃), 16.95 (d, 2C, J_{PC} = 3.5, CHCH₃), 19.00 (d, 1C, $J_{PC} = 5.7$, CHCH₃), 19.74 (s, 2C, CCH₃), 29.16 (d, 2C, $J_{PC} = 24.4$, PCH), 29.59 (s, 2C,

 CCH_3), 37.46 (s, 3C, CH_2), 65.60 (s, 2C, CCH_3), 110.08 (d, 1C, $J_{PC} = 12.0, C3_{Ar}$), 120.41 (d, 1C, $J_{PC} = 2.2, C4/5_{Ar}$), 127.03 (s, 1C, C5/4_{Ar}), 134.90 (d, 1C, $J_{PC} = 3.3, C6_{Ar}$), 160.59 (d, 1C, $J_{PC} = 3.3, C6_{Ar}$) 35.8, C1_{Ar}), 168.47 (d, 1C, $J_{PC} = 12.0$, C2_{Ar}). ¹⁹F{¹H} NMR spectrum of **7a** (C₆D₆): -74.3 (s). ³¹P{¹H} NMR (202.4 MHz, 20 °C, C₆D₆): δ 199.84 (s, 1P). Anal. calc. for C₂₃H₃₇F₃NNiO₄P: C, 2.60. Found: С, 50.46; 7.45; 51.33; H, 6.93; N, Н, N, 2.56. 4. NMR spectra of characterized compounds

Figure S1. Full ¹H NMR spectrum of 3a in C_6D_6 .

Figure S2. The expanded aliphatic region of the ¹H NMR spectrum of 3a in C₆D₆.

Figure S3. The expanded aromatic region of the ¹H NMR spectrum of 3a in C₆D₆.

Figure S4. Full ${}^{13}C{}^{1}H$ NMR spectrum of 3a in C_6D_6 .

Figure S5. The expanded aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of 3a in C₆D₆.

Figure S6. The expanded aromatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of 3a in C₆D₆.

Figure S7. Full ¹H-¹H COSY NMR spectrum of 3a in C_6D_6 .

Figure S8. Full HSQC-edited NMR spectrum of 3a in C₆D₆.

Figure S9. ${}^{31}P{}^{1}H$ NMR spectrum of 3a in C₆D₆.

Figure S10. ³¹P{¹H} NMR spectra of an acetonitrile solution of **1a** containing (from bottom to top) 0, 2, and 3 equiv of added TEMPOH (Ni:TEMPOH= 1:0, 1:1, 1:2).

Figure S11. ³¹P{¹H} NMR spectra of a DCM solution of 1a to which were added, successively, 2 equiv of added TEMPOH (blue trace, Ni:TEMPOH:NCMe= 1:1:0), 600 equiv of MeCN (red trace, Ni:TEMPOH:NCMe= 1:1:300) and 2 more equiv of TEMPOH (brown trace, overall Ni:TEMPOH:NCMe= 1:2:300).

Figure S12. ³¹P{¹H} NMR spectra of a DCM solution of **1a** to which were added, successively, 10 equiv of TEMPOH (blue trace, Ni:TEMPOH:NCMe = 1:5:0), 600 equiv of MeCN (red trace, Ni:NCMe = 1:5:300), 2 more equiv of TEMPOH (brown trace, Ni:TEMPOH:NCMe = 1:6:300), and 4 more equiv of TEMPOH (green trace, Ni:TEMPOH:NCMe= 1:8:300). The sample was then allowed to stand for 3 days before a final spectrum was recorded (gray-blue trace).

Complex **3b**

Figure S13. Full ¹H NMR spectrum of 3b in C_6D_6 .

Figure S14. The expanded aliphatic region of the ¹H NMR spectrum of 3b in C₆D₆.

Figure S15. The expanded aromatic region of the ¹H NMR spectrum of 3b in C_6D_6 .

Figure S16. Full ${}^{13}C{}^{1}H$ NMR spectrum of 3b in C_6D_6 .

Figure S17. The expanded aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of 3b in C₆D₆.

Figure S18. The expanded aromatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of 3b in C_6D_6 .

Figure S19. Full ¹H-¹H COSY NMR spectrum of **3b** in C₆D₆.

Figure S20. Full HSQC-Edited NMR spectrum of 3b in C_6D_6 .

Figure S21. ³¹P{¹H} NMR spectrum of 3b in C_6D_6 .

Figure S22. Full ¹H NMR spectrum of 3c in C_6D_6 .

Figure S23. The expanded aliphatic region of the ¹H NMR spectrum of 3c in C_6D_6 .

Figure S24. The expanded aromatic region of the ¹H NMR spectrum of 3c in C_6D_6 .

Figure S25. Full ${}^{13}C{}^{1}H$ NMR spectrum of 3c in C₆D₆.

Figure S26. The expanded aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of 3c in C₆D₆.

Figure S27. The expanded aromatic region of the ${}^{113}C{}^{1}H$ NMR spectrum of 3c in C₆D₆.

Figure S28. Full HSQC-Edited NMR spectrum of 3c in C_6D_6 .

Figure S29. ³¹P{¹H} NMR spectrum of 3c in C_6D_6 .

Figure S30. Full ¹H NMR spectrum of 3d in C₆D₆.

Figure S31. The expanded aliphatic region of the ¹H NMR spectrum of 3d in C₆D₆.

Figure S32. The expanded aromatic region of the ¹H NMR spectrum of 3d in C_6D_6 .

Figure S33. Full ${}^{13}C{}^{1}H$ NMR spectrum of 3d in C_6D_6 .

Figure S34. The expanded aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of 3d in C_6D_6 .

Figure S35. The expanded aromatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of 3d in C_6D_6 .

Figure S36. Full ¹H-¹H COSY NMR spectrum of 3d in C₆D₆.

Figure S37. Full HSQC-Edited NMR spectrum of 3d in C₆D₆.

Figure S38. ${}^{31}P{}^{1}H$ NMR spectrum of 3d in C₆D₆.

Complex 5a

Figure S39. Full ¹H NMR spectrum of 5a in C₆D₆.

Figure S40. The expanded aliphatic region of the ¹H NMR spectrum of 5a in C₆D₆.

Figure S41. The expanded aromatic region of the ¹H NMR spectrum of 5a in C_6D_6 .

Figure S42. Full ${}^{13}C{}^{1}H$ NMR spectrum of 5a in C_6D_6 .

Figure S43. The expanded aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of 5a in C₆D₆.

Figure S44. The expanded aromatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of 5a in C₆D₆.

Figure S45. Full ¹H-¹H COSY NMR of complex 5a in C₆D₆.

Figure S46. Full HSQC- Edited NMR of complex 5a in C₆D₆.

Figure S47. Full ${}^{31}P{}^{1}H$ NMR spectrum of 5a in C₆D₆.

Figure 48. Full ${}^{31}P{}^{1}H$ NMR spectrum of 5a in C₆D₆ from a different batch.

Complex 6a

Figure S49. Full ¹H NMR spectrum of 6a in C₆D₆.

Figure S50. The expanded aliphatic region of the ¹H NMR spectrum of 6a in C_6D_6 .

Figure S51. The expanded aromatic region of the ¹H NMR spectrum of 6a in C₆D₆.

Figure S52. Full $^{13}C\{^{1}H\}$ NMR spectrum of 6a in $C_6D_6.$

Figure S53. The expanded aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of 6a in C₆D₆.

Figure S54. The expanded aromatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of 6a in C₆D₆.

Figure S55. Full $^{1}H-^{1}H$ COSY NMR spectrum of 6a in C₆D₆.

Figure S56. Full HSQC-edited NMR spectrum of 6a in C_6D_6 .

Figure S57. ³¹P $\{^{1}H\}$ NMR spectrum of 6a in C₆D₆.

Figure S58. ³¹P{¹H} NMR spectra of **3a** with 1 equiv (blue trace) and 2 equiv (red trace) of imidazole in CH₂Cl₂.

Figure S59. ³¹P{¹H} NMR spectra of **1a** with 2 equiv (blue trace) of imidazole and 2 equiv (red trace) of TEMPOH (Ni:imidazole:TEMPOH= 1:1:1) in CH₂Cl₂.

Complex 7a

Figure S61. The expanded aliphatic region of the ¹H NMR spectrum of 7a in C_6D_6 .

Figure S62. The expanded aromatic region of the ¹H NMR spectrum of 7a in C₆D₆.

Figure S63. Full ${}^{13}C{}^{1}H$ NMR spectrum of 7a in C₆D₆.

Figure S64. The expanded aliphatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of 7a in C₆D₆.

Figure S65. The expanded aromatic region of the ${}^{13}C{}^{1}H$ NMR spectrum of 7a in C_6D_6 .

Figure S66. Full ¹H-¹H COSY NMR spectrum of 7a in C₆D₆.

Figure S67. Full HSQC-Edited NMR spectrum of 7a in C₆D₆.

Figure S68. Full ${}^{31}P{}^{1}H$ NMR spectrum of 7a in C₆D₆.

Figure S69. Full ${}^{19}F{}^{1}H$ NMR spectrum of 7a in C_6D_6 .

Figure S70. ³¹P{¹H} NMR (CH₂Cl₂) spectra of **3a** with various amounts of AgOCOCF₃ : blue trace, a (1 equiv), red trace, b (3 equiv), brown trace, c (3 equiv, after 24h), green trace, d (4 equiv).

Figure S71. ³¹P{¹H} NMR spectra of **3a** with 1 equivalent of AgOCOCF₃ in CH_2Cl_2 .

Figure S72. ³¹P {¹H} NMR spectra recorded for a DCM sample of **1a** to which were added successive quantities of AgOCOCF₃, as follows: blue trace, 0 equiv (199 ppm, FWHM \approx 100 Hz); red trace, 2 equiv (196 ppm, FWHM \approx 4 Hz); brown trace, 4 equiv (196 ppm, FWHM \approx 9 Hz); green trace, 6 equiv (198 ppm, FWHM \approx 21 Hz).

Figure S73. ¹⁹F{¹H} NMR spectrum of crude mixture of **3a** with 3eq of AgOC(O)CF₃ in CH_2Cl_2 .

Figure S74. ³¹P{¹H} NMR spectra recorded for a DCM sample containing a mixture of **1a** and 2 equiv of AgOCOCF₃ (to generate a 1:1 ratio of Ni : CF₃COO) to which were added successive quantities of TEMPOH, as follows (bottom to top): blue trace, 0 equiv; red trace, 1 equiv; brown trace, 2 equiv; green trace, 4 equiv.

5. Crystallographic data tables

Table S1: Crystal description and refinement indicators for compounds 3a-3c

	3 a	3b	3c
chemical formula	C ₂₁ H ₃₇ BrNNiO ₂ P	C ₂₁ H ₃₆ BrClNNiO ₂ P	C ₂₂ H ₃₉ Br _{0.25} Cl _{0.75} NNiO ₃ P
crystal colour	brown	brown	brown
crystal size (mm)	$0.122 \times 0.175 \times 0.197$	$0.226 \times 0.331 \times 0.472$	$0.118 \times 0.149 \times 0.178$
	$-18 \le h \le 18$	$-19 \le h \le 19$	$-14 \le h \le 14$
index ranges	$-14 \le k \le 13$	$-14 \le k \le 14$	$-17 \le k \le 17$
	$-18 \le l \le 18$	$-18 \le l \le 18$	$-36 \le l \le 36$
Fw; F(000)	505.10; 1056	539.55; 1120.0	501.78; 2132.0
<i>T</i> (K)	150	150	150
wavelength (Å)	1.34139	1.34139	1.34139
space group	P2 ₁ /c	$P2_1/c$	P2 ₁ /c
<i>a</i> (Å)	15.1559(3)	15.8263(4)	11.9270(5)
<i>b</i> (Å)	11.6422(3)	11.6352(3)	14.1466(6)
c (Å)	15.0239(3)	14.8354(4)	29.5812(12
a (deg)	90	90)	90
β (deg)	117.4860(10)	114.5960(10)	98.950(2)
γ (deg)	90	90	90
Z	4	4	8
V (Å ³)	2351.71(9)	2483.95(11)	4930.4(4)
ρ _{calcd} (g·cm ⁻³)	1.427	1.443	1.352
μ (mm ⁻¹)	6.320	6.654	5.623
2θ range (deg);	$5718 - 113912 \cdot 0992$	5 342 - 109 842 0 993	5 262 - 109 846 0 988
completeness			
collected reflections; R_{σ}	24417; 0.0290	30401; 0.0483	45605; 0.0268
unique reflections; R _{int}	4716; 0.0404	4668; 0.0640	9244; 0.0315
R1 ^a ; wR2 ^b [I > $2\sigma(I)$]	0.0266; 0.0705	0.0424; 0.1060	0.0284; 0.0721
R1; wR2 [all data]	0.0278; 0.0711	0.0469; 0.1078	0.0308; 0.0734
GOOF	1.087	1.095	1.029
largest diff peak and hole	0.33 and -0.79	0.91 and -0.96	0.67 and -0.46

]	3d	59	69
chemical formula	$C_{26}H_{41}BrNNiO_3P$	$C_{16}H_{27}Br_{0.24}Cl_{0.76}NNiO_2P$	$C_{21}H_{30}BrN_6NiOP$
crystal colour	crystal colour brown		brown
crystal size (mm)	$0.236 \times 0.354 \times 0.388$	$0.083 \times 0.101 \times 0.168$	$0.088 \times 0.099 \times 0.117$
	$-15 \le h \le 15$	$-9 \le h \le 9$	$-11 \le h \le 10$
index ranges	$-19 \le k \le 19$	$-30 \le k \le 30$	$-0 \le k \le 33$
	$-17 \le l \le 18$	$-11 \le l \le 11$	$-0 \le l \le 12$
Fw; F(000)	585.19; 1220.0	401.18; 841.0	552.10; 1136.0
<i>T</i> (K)	150	150	150
wavelength (Å)	1.34139	1.34139	1.34139
space group	$P2_1/n$	$P2_1/n$	$P2_1/n$
a (Å)	12.4164(6)	7.7771(3)	9.1454(4)
b (Å)	16.3578(8)	24.7633(8)	27.5501(11)
<i>c</i> (Å)	14.9046(7)	9.4301(3)	9.8982(4)
a (deg)	90	90	90
β (deg)	112.769(2)	97.0120(10)	102.159(2)
γ (deg)	90	90	90
Z	4	4	4
V (Å ³)	2791.3(2)	1802.53(11)	2437.97(18)
ρ_{calcd} (g·cm ⁻³)	1.390	1.478	1.504
μ (mm ⁻¹)	5.394	7.580	6.154
θ range (deg); completeness	7.31 - 109.844; 0.978	6.21 - 109.74; 0.969	9.048 - 109.8; 0.986
collected reflections; R_{σ}	20919; 0.0446	15394; 0.0252	42525; 0.0436
unique reflections; R _{int}	5133; 0.0493	3317; 0.0280	9390; 0.0664
R1 ^a ; wR2 ^b [I > $2\sigma(I)$]	0.0678; 0.1716	0.0275; 0.0697	0.0429; 0.1126
R1; wR2 [all data]	0.0687; 0.1735	0.0281; 0.0700	0.0445; 0.1149
GOOF	1.044	1.136	1.065
largest diff peak and hole	2.01 and -1.10	0.39 and -0.38	0.52 and -0.62

Table S2: Crystal description and refinement indicators for compounds 3d, 5a & 6a.

 $\label{eq:rescaled_states} \begin{array}{l} ^{a} R_{1} = & \Sigma(||F_{o}| - |F_{c}||) / \Sigma |F_{o}| \\ ^{b} w R_{2} = & \{ \Sigma [w(F_{o}{}^{2} - F_{c}{}^{2})^{2}] / \Sigma [w(F_{o}{}^{2})^{2}] \}^{\frac{1}{2}} \end{array}$

	7a	Piperidinium trifluoroacetate		
chemical formula	C ₂₃ H ₃₇ F ₃ NNiO ₄ P	$C_{11}H_{20}F_3NO_2$		
crystal colour	yellow	yellow		
crystal size (mm)	$0.097 \times 0.112 \times 0.148$	$0.099 \times 0.24 \times 0.25$		
	$-18 \le h \le 19$	$-27 \le h \le 25$		
index ranges	$-15 \le k \le 15$	$-11 \le k \le 9$		
	$-17 \le l \le 17$	$-21 \le l \le 21$		
Fw; F(000)	538.21; 1136.0	255.28; 1088.0		
<i>T</i> (K)	150	150		
wavelength (Å)	1.34139	1.34139		
space group	P2 ₁ /c	C2/c		
<i>a</i> (Å)	15.7583(5)	19.9649(14)		
<i>b</i> (Å)	12.7241(4)	8.3817(6)		
<i>c</i> (Å)	14.1830(5)	15.8150(11)		
a (deg)	90	90		
β (deg)	115.546(2)	91.234(4)		
γ (deg)	90	90		
Z	4	8		
V (Å ³)	2565.82(15)	2645.9(3)		
ρ _{calcd} (g·cm ⁻³)	1.393	1.282		
μ (mm ⁻¹)	4.797	0.632		
2θ range; completeness	5.408 - 110.106; 0.993	7.706 –131.816; 0.985		
collected reflections; R_{σ}	24214; 0.0735	29827; 0.0318		
unique reflections; R _{int}	4845; 0.0835	3447; 0.0468		
R1 ^a ; wR2 ^b $[I > 2\sigma(I)]$	0.0568; 0.1171	0.0565; 0.1566		
R1; wR2 [all data]	0.0942; 0.1291	0.0673; 0.1674		
GOOF	1.050	1.058		
largest diff peak and hole	0.39 and -0.42	0.45 and -0.28		

 Table S3: Crystal description and refinement indicators for compounds 7a.

 $\label{eq:rescaled} \begin{array}{l} ^{a}R_{1} = \Sigma(||F_{o}| - |F_{c}||) / \Sigma |F_{o}| \\ ^{b}wR_{2} = \{ \Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}] \}^{\frac{1}{2}} \end{array}$

	Ni1–C2	Ni1–P1	Ni1–Br1 or Ni1-Cl1	Ni1-02/03	Ni1–N	N-O2	C2-Ni1-Br1/ C11/N2/O3	P1-Ni1-N/O
3 a	1.9017(18)	2.0905(5)	2.3897(3)	1.9045(12)		1.3973(18)	170.76(5)	171.64(4)
3b	1.9026(16)	2.0927(5)	2.373(8)	1.9132(11)		1.400(2)	174.0(2)	171.90(4)
3c	1.907(2)	2.0924(6)	2.3872(4)	1.8918(16)		1.3902(19)	172.14(8)	169.73(5)
3d	1.896(3)	2.0995(8)	2.3775(5)	1.908(2)		1.399(3)	173.99(9)	171.23(7)
5a	1.9076(18)	2.1026(5)	2.380(11)		1.9921(17)		168.6(3)	164.72(5)
6a	1.918(2)	2.1210(7)			1.944(2)		175.45(9)	176.01(6)
					1.930(2)			
7a	1.904(4)	2.1138(12)		1.945(3)		1.390(4)	174.86(16)	169.95(9)
				1.902(3)				

Table S4. Pertinent bond angles and distances for complexes 3a-3d and 5a-7a

Table S5. Pertinent bond angles and distances for complexes 3a-3d and 7a

	Br-N/	N1-H1-Br1/	
	O3-N	N1-H1-O3	
3 a	3.167	144.462	
3b	3.167	144.121	
3c	3.136	144.097	
3d	3.190	139,480	
7a	2.665	140.149	

Figure S75. Reaction scheme for formation of piperidinium trifluoroacetate and its molecular diagram. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms have been omitted for clarity.

Scheme S1: Anticipated reactivity of title complexes with hydroxylamines and TEMPO

Scheme S2. Proposed reactivity of 3a with AgOC(O)CF3.

Cyclic voltammetry traces for isolated nickelacycle complexes 3a and 7a.

Conditions: 5 mM solutions of [Ni] in 0.1 M NBu₄SbF₆ in CH₂Cl₂; scan rate 100 mV/s, scanning oxidatively. Potentials are calibrated against the Fc/Fc^+ couple.

Figure S76.

Figure S77.

References

- (1) Post-facto calibration of the 100-1000 μ l micropipette with 20 \in 500 μ l aliquots of deionized H₂O revealed that we must allow an accuracy (systematic error) of +4 μ l and a precision of ±3 μ l for our measurements, with > 99% confidence. The 20-200 μ l micropipette was calibrated by the same procedure, with 150 μ l aliquots, and revealed an accuracy of +0.3 μ l and a precision of ±3 μ l for our measurements, with > 99% confidence.
- (2) Vabre, B.; Spasyuk, D. M.; Zargarian, D. Impact of Backbone Substituents on POCOP-Ni Pincer Complexes: A Structural, Spectroscopic, and Electrochemical Study. *Organometallics* 2012, *31* (24), 8561–8570. https://doi.org/10.1021/om3009475.
- (3) Vabre, B.; Lindeperg, F.; Zargarian, D. Direct, One-Pot Synthesis of POCOP-Type Pincer Complexes from Metallic Nickel. *Green Chemistry* 2013, 15 (11), 3188–3194. https://doi.org/10.1039/c3gc40968f.
- (4) Bruker (2012). APEX2 / Bruker (2016) APEX3, Bruker AXS Inc., Madison, WI, USA.
- (5) Bruker (2012). "SAINT Integration Software for Single Crystal Data", Bruker AXS Inc., Madison, WI, USA. (a).
- (6) (A) G. M. Sheldrick (1996). SADABS/TWINABS. University of Göttingen, Germany. (b) Bruker (2001). SADABS/TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2012). Data Preparation and Reciprocal Space Exploration Program, Bruker AXS Inc., Madi-Son, WI, USA.
- (7) Bruker (2012). Data Preparation and Reciprocal Space Exploration Program, Bruker AXS Inc., Madison, WI, USA.
- (8) A: O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann. "OLEX2: A Com-Plete Structure Solution, Refinement and Analysis Program". J. Appl. Cryst., 2009, 42, 339-341. https://doi.org/10.1021/acs.inorgchem.3c01236.
- (9) Sheldrick, G. M. SHELXT Integrated Space-Group and Crystal-Structure Determination. *Acta Crystallogr A* 2015, *71* (1), 3–8. https://doi.org/10.1107/S2053273314026370.