Supporting Information

Syntheses and Exploration of the Catalytic

Activities of Organotin(IV) Compounds

Manish Kumar^a and Hari Pada Nayek,*^a

^aDepartment of Chemistry & Chemical Biology, Indian Institute of Technology (Indian school of

Mines), Dhanbad-826004, Jharkhand, India,

E-mail: <u>hpnayek@iitism.ac.in</u>

Table of contents

Figure/Table	Content	Page
Figure S1	FT-IR spectrum of H ₂ L .	S4
Figure S2	FT-IR spectrum of compound 1 .	S4
Figure S3	FT-IR spectrum of compound 2 .	S5
Figure S4	FT-IR spectrum of compound 3 .	S5
Figure S5	FT-IR spectrum of compound 4.	S6
Figure S6	FT-IR spectrum of compound 5.	S6
Figure S7	FT-IR spectrum of compound 6 .	S7
Figure S8	¹ H NMR (400 MHz, DMSO-d ₆) spectrum of H_2L .	S7
Figure S9	$^{13}C(^{1}H)$ NMR (100 MHz, DMSO-d ₆) spectrum of H ₂ L.	S 8
Figure S10	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 1 .	S 8
Figure S11	$^{13}C{^{1}H}$ NMR (100 MHz, CDCl ₃) spectrum of compound 1 .	S9
Figure S12	¹¹⁹ Sn NMR (149 MHz, CDCl ₃) spectrum of compound 1 .	S9
Figure S13	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 2 .	S10
Figure S14	$^{13}C{^{1}H}$ NMR (100 MHz, CDCl ₃) spectrum of compound 2 .	S10
Figure S15	¹¹⁹ Sn NMR (149 MHz, CDCl ₃) spectrum of compound 2 .	S11
Figure S16	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 3 .	S11
Figure S17	$^{13}C{^{1}H}$ NMR (100 MHz, CDCl ₃) spectrum of compound 3 .	S12
Figure S18	¹¹⁹ Sn NMR (149 MHz, CDCl ₃) spectrum of compound 3 .	S12
Figure S19	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 4 .	S13
Figure S20	$^{13}C{^{1}H}$ NMR (100 MHz, CDCl ₃) spectrum of compound 4 .	S13
Figure S21	¹¹⁹ Sn NMR (149 MHz, CDCl ₃) spectrum of compound 4 .	S14
Figure S22	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 5 .	S14
Figure S23	$^{13}C{^{1}H}$ NMR (100 MHz, CDCl ₃) spectrum of compound 5 .	S15
Figure S24	¹¹⁹ Sn NMR (149 MHz, CDCl ₃) spectrum of compound 5 .	S15
Figure S25	¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 6 .	S16
Figure S26	$^{13}C{^{1}H}$ NMR (100 MHz, CDCl ₃) spectrum of compound 6 .	S16
Figure S27	¹¹⁹ Sn NMR (149 MHz, CDCl ₃) spectrum of compound 6 .	S17
Figure S28	HRMS (ESI) spectrum of compound 1 .	S17
Figure S29	HRMS (ESI) spectrum of $[M+H]^+$ ion of compound 1.	S18
Figure S30	ESI-MS spectrum of compound 2 .	S18
Figure S31	ESI-MS spectrum of compound 3 .	S19
Figure S32	ESI-MS spectrum of compound 4.	S19
Figure S33	HRMS (ESI) spectrum of [M+H] ⁺ ion of compound 4.	S20
Figure S34	ESI-MS spectrum of compound 5 .	S20
Figure S35	ESI-MS spectrum of compound 6.	S21
Table S1	Single crystal data collection and data refinement parameters for	S22
	compound 1-6 .	
Figure S36	Packing of 1 within the unit cell viewed along crystallographic a	S23
	axis.	
Figure S37	Packing of 2 within the unit cell viewed along crystallographic <i>a</i>	S23
	axis.	

Figure S38	Packing of 3 within the unit cell viewed along crystallographic <i>a</i>	S24
	axis.	
Figure S39	Packing of 4 within the unit cell viewed along crystallographic <i>a</i>	S24
Eigung S40	axis. Dealing of 5 within the unit call viewed along areatellographic h	525
rigure 540	axis.	323
Figure S41	Packing of 6 within the unit cell viewed along crystallographic <i>a</i>	S25
U	axis.	
Table S2	Isolated yield of 1,2- disubstituted benzimidazoles.	S26
Table S3	Characterization of isolated 1,2-disubstituted benzimidazoles.	S28
Figure S42	¹ H NMR (400 MHz, CDCl ₃) spectrum of 2a	S31
Figure S43	$^{13}C{^{1}H} NMR (100 MHz, CDCl_3) spectrum of 2a$	S31
Figure S44	¹ H NMR (400 MHz, CDCl ₃) spectrum of 2b	S32
Figure S45	$^{13}C{^{1}H} NMR (100 MHz, CDCl_3) spectrum of 2b$	S32
Figure S46	¹ H NMR (400 MHz, CDCl ₃) spectrum of 2c	S33
Figure S47	$^{13}C{^{1}H} NMR (100 MHz, CDCl_3) spectrum of 2c$	S33
Figure S48	¹ H NMR (400 MHz, CDCl ₃) spectrum of 2d	S34
Figure S49	$^{13}C{^{1}H} NMR (100 MHz, CDCl_3) spectrum of 2d$	S34
Figure S50	¹ H NMR (400 MHz, CDCl ₃) spectrum of 2e	S35
Figure S51	$^{13}C{^{1}H} NMR (100 MHz, CDCl_3) spectrum of 2e$	S35
Figure S52	¹ H NMR (400 MHz, CDCl ₃) spectrum of 2f	S36
Figure S53	$^{13}C{^{1}H} NMR (100 MHz, CDCl_3) spectrum of 2f$	S36
Figure S54	¹ H NMR (400 MHz, CDCl ₃) spectrum of 2g	S37
Figure S55	$^{13}C{^{1}H}$ (100 MHz, CDCl ₃) NMR spectrum of 2g	S37
Figure S56	¹ H NMR (400 MHz, CDCl ₃) spectrum of 2h	S38
Figure S57	$^{13}C{^{1}H} NMR (100 MHz, CDCl_3) spectrum of 2h$	S38
Figure S58	¹ H NMR (400 MHz, DMSO-d ₆) spectrum of 2i .	S39
Figure S59	$^{13}C{^{1}H} NMR (100 MHz, DMSO-d_6)$ spectrum of 2i .	S39
Figure S60	¹ H NMR (400 MHz, CDCl ₃) spectrum of $2i$	S40
Figure S61	$^{13}C{^{1}H} NMR (100 MHz, CDCl_3)$ spectrum of 2i	S40
Figure S62	¹ H NMR (400 MHz, CDCl ₃) spectrum of $2\mathbf{k}$	S41
Figure S63	$^{13}C{^{1}H} NMR (100 MHz, CDCl_3)$ spectrum of 2k	S41
Figure S64	¹ H NMR (400 MHz, CDCl ₃) spectrum of 2	S42
Figure S65	$^{13}C{^{1}H} NMR (100 MHz, CDCl_3) spectrum of 2l.$	S42
Figure S66	¹ H NMR spectrum of the reaction mixture obtained by reacting ρ -	
	phenyldiamine and benzaldehyde in the absence of the catalyst at 60	
	°C in CDCl ₃ .	
Figure S67	¹ H NMR spectrum of the reaction mixture obtained by reacting o -	
	phenyldiamine and benzaldehyde in presence of the pro ligand H_{3L}	
	at 60 °C in CDCl ₃ .	
Figure S68	¹ H NMR spectrum of the reaction mixture obtained by reacting o -	
_	phenyldiamine and benzaldehyde in presence of compound 1 at 60	
	°C in CDCl ₃ .	

Figure S1: FT-IR spectrum of H₂L.

Figure S2: FT-IR spectrum of compound 1.

Figure S3: FT-IR spectrum of compound 2.

Figure S4: FT-IR spectrum of compound 3.

Figure S6: FT-IR spectrum of compound 5.

Figure S8: ¹H NMR (400 MHz, DMSO-d₆) spectrum of H₂L.

Figure S9: ${}^{13}C({}^{1}H)$ NMR (100 MHz, DMSO- d_6) spectrum of H₂L.

Figure S10: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 1.

Figure S11: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 1.

Figure S12: ¹¹⁹Sn NMR (149 MHz, CDCl₃) spectrum of compound 1.

Figure S13: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2.

Figure S14: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 2.

Figure S15: ¹¹⁹Sn NMR (149 MHz, CDCl₃) spectrum of compound 2.

Figure S16: ¹H NMR (400 MHz, CDCl₃) spectrum of compound **3**.

Figure S17: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound **3**.

Figure S18: ¹¹⁹Sn NMR (149 MHz, CDCl₃) spectrum of compound 3.

Figure S19: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4.

Figure S20: ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of compound 4.

Figure S21: ¹¹⁹Sn NMR (149 MHz, CDCl₃) spectrum of compound 4.

Figure S22: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5.

Figure S23: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 5.

Figure S24: ¹¹⁹Sn NMR (149 MHz, CDCl₃) spectrum of compound 5.

Figure S25: ¹H NMR (400 MHz, CDCl₃) spectrum of compound 6.

Figure S26: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of compound 6.

Figure S27: ¹¹⁹Sn NMR (149 MHz, CDCl₃) spectrum of compound 6.

Figure S28: HRMS (ESI) spectrum of compound 1.

Figure S29: HRMS (ESI) spectrum of [M+H]⁺ ion of compound 1.

Figure S30: ESI-MS spectrum of compound 2.

Figure S31: HRMS (ESI) spectrum of compound 3.

Figure S32: HRMS (ESI) spectrum of compound 4.

Figure S33: HRMS (ESI) spectrum of [M+H]⁺ ion of compound 4.

Figure S34: HRMS (ESI) spectrum of compound 5.

Figure S35: HRMS (ESI) spectrum of compound 6.

X-ray crystallography:

The crystallographic data of **1-6** were collected on a Rigaku SuperNova diffractometer equipped with an Eos S2 CCD detector, using Mo-K α radiation with graphite monochromator ($\lambda = 0.71073$ Å) at T = 293(2) K. The structure was solved with the ShelXT 2014/5 (Sheldrick, 2014) structure solution program and by using Olex2 as the graphical interface.^{1,2} The model was refined with version 2018/3 of XL using Least Squares minimization.³ Non-hydrogen atoms were anisotropically refined. H-atoms were included in the refinement of calculated positions riding on their carrier atoms. The function minimized was $[\Sigma w(Fo^2 - Fc^2)^2]$ ($w = 1 / [\sigma^2 (F_o^2) + (aP)^2 + bP]$), where P = (Max($F_o^2, 0) + 2F_c^2$) / 3 with $\sigma^2(F_o^2)$ from counting statistics. The function *R*1 and *wR*2 were (σ || F_o | - | F_c ||) / σ | F_o | and [$\sigma w (F_o^2 - F_c^2)^2 / \sigma (wF_o^4)$]^{1/2}, respectively. Specific refinement details: Compound **2**: O3 atom is split over two positions O3A and O3B with 57% and 43% respectively. Regarding compound **3**, some highly disordered carbon atoms were refined isotropically. Compound **5**: three disordered carbon atoms (C19-C21) are split over two positions with 59% and 41% occupancy. Compound **6**: C22-C25 atoms are split over two positions with 84% and 16% occupancy. CCDC 2270674-2270679 contain the supplementary crystallographic data for compounds **1-6**.

These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Compound	1· MeOH	2	3	4	5	6
Formula	$\begin{array}{c} C_{31}H_{32}N_{2}O\\ _{6}Sn \end{array}$	C ₂₆ H ₃₆ N ₂ O ₅ Sn	$\begin{array}{c} C_{52}H_{72}N_4O_1\\ _0Sn_2 \end{array}$	C ₂₉ H ₂₆ N ₂ O ₄ Sn	C ₂₅ H ₃₄ N ₂ O ₄ Sn	C ₂₅ H ₃₄ N ₂ O ₄ Sn
Formula mass	647.320	575.26	1150.51	585.21	545.23	545.270
<i>T/</i> K	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)
$\lambda/\check{ m A}$	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	triclinic	triclinic	triclinic	triclinic	triclinic	triclinic
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
a/Ă	10.7364(3)	11.8788(5)	10.3278(6)	10.4626(3)	11.6108(4)	10.3748(7)
$b/{ m \AA}$	12.0005(3)	13.7443(3)	15.8695(8)	12.2766(4)	13.7661(4)	10.7560(6)
$c/{ m \AA}$	12.1066(3)	18.5417(4)	17.9400(12)	12.4511(5)	17.6211(5)	13.2715(6)
$\alpha/^{\circ}$	90.921(2)	70.101(2)	112.274(5)	64.844(4)	79.327(2)	90.075(4)
$\beta/^{\circ}$	97.576(2)	81.539(2)	93.904(5)	65.315(3)	81.161(3)	110.462(5)
$\gamma/^{\circ}$	112.023(2)	76.408(3)	96.094(4)	66.761(3)	77.032(3)	111.715(6)
V/\AA^3	1429.75(7)	2759.29(2)	2686.7(3)	1268.69(9)	2678.62(15)	1274.47(1)
Ζ	2	4	2	2	4	2
$D_{\rm c}/{ m g~cm^{-3}}$	1.504	1.382	1.422	1.532	1.352	1.421
μ/mm^{-1}	0.940	0.962	0.988	1.045	0.984	1.034
<i>F</i> (000)	659	1184	1184	592	1120	559
2θ Range/°	4.14 to 54.00	4.096 to 54.00	3.994- 54.00	3.8 to 54.00	4.164 to 54.00	4.12 to 50
Measured reflections	23232	44097	25148	19775	23275	11420
Independent reflections/R _{int}	$\begin{array}{l} 6211/R_{int} = \\ 0.0620 \end{array}$	$11981[R_{int} = 0.0608$	$11557[R_{int} = 0.0424$	5491 [R _{int} = 0.0431,	11494 [R _{int} = 0.0349	4491 [R _{int} = 0.0559
Parameters	367	642	573	328	611	375
$R_1 (I > 2\sigma(I))^a$	0.0275	0.0458	0.0585	0.0302	0.0382	0.0392
wR_2 (all data) ^b	0.0667	0.1158	0.1733	0.0749	0.0779	0.0727
Goodness-of-fit on F^2	1.052	1.056	1.039	1.047	0.964	0.887
$\Delta ho_{ m max,\ min}/e\ { m \AA}^{-3}$	0.65/-0.54	1.41/-0.62	1.35/-1.10	0.46/-0.53	0.43/-0.55	0.88/-0.76

Table S1 : Single crystal data collection and data refinement parameters for compounds 1-6.

Figure S36: Packing of 1 within the unit cell viewed along crystallographic *a* axis.

Figure S37: Packing of 2 within the unit cell viewed along crystallographic *a* axis.

Figure S38: Packing of 3 within the unit cell viewed along crystallographic *a* axis.

Figure S39: Packing of 4 within the unit cell viewed along crystallographic *a* axis.

Figure S40: Packing of 5 within the unit cell viewed along crystallographic *b* axis.

Figure S41: Packing of 6 within the unit cell viewed along crystallographic *a* axis.

Table S2: Isolated yield of 1,2- disubstituted benzimidazoles.						
$(1)^{NH_2}$ <u>Complex 1 (2.5 mol%)</u>						
		NH_2 R H_H 120°C, 2 hr, Solve	ent free	N T		
				R		
Entry	R	Product	Code	Yield(%)	TON	TOF (h^{-1})
1			2a	92	36.8	18.4
2		\rightarrow	2b	82	32.8	16.4
		N /				
3		1	2c	85	34	17
4		+	2d	87	34.8	17.4
5		Br	2e	81	32.4	16.2
	ВГ					
		N Br				
			2.0		01 -	1 = 0
6			2f	/9	31.6	15.8
	<u> </u>					
		N 1				

7		O ₂ N	2g	72	28.8	14.4
8		o	2h	86	34.4	17.2
	⊸ОСН₃					
9		HO	2i	82	32.8	16.4
	ОН					
]	N N N				
10			2j	84	33.6	16.8
11	0		2k	73	29.2	14.6
12	S	N S	21	76	30.4	15.2
	\ <u>'</u>	s				

	2a⁴: Off white solid. $R_f = 0.24$ (20% EtOAc/
	Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃):
	$\delta = 7.80 (d, J = 8.0 Hz, 1H), 7.67-7.56 (m, 2H),$
	7.43 – 7.31 (m, 3H), 7.26-7.22 (m,, 4H), 7.16-
	7.12 (m, 2H), 7.05–6.98 (m, 2H), 5.37 (s, 2H).
	$^{13}C{^{1}H}$ NMR (100 MHz, CDCl ₃): $\delta = 154.2$,
Ň	143.2, 136.4, 136.1, 130.1, 129.9, 129.3, 129.1,
	128.8, 127.8, 126.0, 123.1, 122.7, 120.0, 110.5,
	48.4.
	2b ⁴ : Off white solid. $R_f = 0.2$ (20% EtOAc/
	Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃):
	$\delta = 7.87$ (d, $J = 8.0$ Hz, 1H), 7.58 (d, $J = 8.1$ Hz,
	2H), $7.32-7.28$ (m, 1H), 7.24 (d, $J = 6.6$ Hz, 2H),
\rangle	7.2319 (m, 2H), 7.14 (d, $J = 7.9$ Hz, 2H), 7.00
N /	(d, J = 8.0 Hz, 2H), 5.41 (s, 2H), 2.39 (s, 3H),
	2.34 (s, 3H), ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃);
	$\delta = 154.4, 142.9, 140.2, 137.5, 136.0, 133.4,$
	129.7, 129.5, 129.2, 126.8, 125.9, 123.0, 122.5,
	119.7, 110.6, 48.2, 21.4, 21.1.
	$2c^5$: White solid. $R_f = 0.4$ (20% EtOAc/
/	Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃):
	$\delta = 7.87-7.86$ (d, $J = 8.0$ Hz, 1H), 7.65 – 7.63
\square	(m, 2H), 7.33-7.28 (m, 3H), 7.24 – 7.21 (m, 2H),
	7.19-7.17 (d, $J = 8.1$ Hz, 2H), 7.04 (d, $J = 8.2$
\rangle	Hz, 2H), 5.44 (s, 2H), 3.01-2.84 (m, 2H), 1.28-
	1.23 (m, 12H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz,
	CDCl ₃): $\delta = 154.4, 150.9, 148.4, 143.2, 136.1,$
\sim N \sim .	133.8, 129.3, 127.5, 127.1, 126.9, 126.0, 122.8,
	122.5, 119.8, 110.6, 48.2, 34.1, 33.8, 23.9, 23.8.
	2d⁶ : Pale brown solid. $R_f = 0.4$ (20% EtOAc/
/	Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃):
t	$\delta = 7.88-7.86$ (d, $J = 8.0$ Hz, 1H), 7.68-7.66 (d,
	J = 8.3 Hz, 2H), 7.48 (d, $J = 8.3$ Hz, 2H), 7.39-
	7.32 (m, 3H), 7.22 (d, $J = 3.0$ Hz, 2H), 7.06 (d,
\rangle	J = 8.1 Hz, 2H), 5.43 (s, 2H), 1.35 (s, 9H), 1.31
	$(s, 9H)$. ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃): $\delta =$
	154.3, 153.6, 150.7, 143.2, 136.1, 133.4, 129.0,
	127.7, 126.0, 125.8, 125.7, 122.8, 122.5, 119.8,
	110.6, 48.2, 34.9, 34.6, 31.3, 31.2.
	$2e^{7}$: Pale yellow solid. $R_{f} = 0.25$ (20% EtOAc/
	Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃): δ
	= 7.86 (d, J = 7.9 Hz, 1H), 7.59 (d, J = 8.4 Hz,
	2H), 7.51 (d, $J = 8.5$ Hz, 2H), 7.46 (d, $J = 8.3$
	Hz, 2H), $7.35 - 7.25$ (m, 2H), 7.19 (d, $J = 8.0$

 Table S3: Characterization of isolated 1,2-disubstituted benzimidazoles:

Br N Br	Hz, 1H), 6.95 (d, $J = 8.3$ Hz, 2H), 5.37 (s, 2H). ¹³ C{ ¹ H} (100 MHz, CDCl ₃) $\delta = 152.9$, 143.1, 135.9, 135.2, 132.4, 132.1, 130.67, 128.8, 127.6, 124.7, 123.5, 123.1, 121.9, 120.2, 110.3, 47.9.
	2f ⁸ : Pale yellow solid. $R_f = 0.3$ (20% EtOAc/ Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃): δ = 7.87 (d, <i>J</i> = 8.0 Hz, 1H), 7.61-7.56 (m, 2H), 7.46-7.41 (m, 2H), 7.37-7.26 (m, 4H), 7.19 (d, <i>J</i> = 7.9 Hz, 1H), 7.01 (d, <i>J</i> = 8.4 Hz, 2H), 5.39 (s, 2H). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃): δ = 152.9, 143.1, 136.4, 135.9, 134.7, 133.9, 130.5, 129.4, 129.2, 128.4, 127.3, 123.51, 123.1, 120.2, 110 3 47 8
	2g ⁷ : Yellow solid. $R_f = 0.2$ (20% EtOAc/ Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃): $\delta = 8.36-8.29$ (m, 2H), 8.26-8.20 (m, 2H), 7.93 (d, $J = 8.0$ Hz, 1H), 7.87-7.81 (m, 2H), 7.44- 7.31 (m, 2H), 7.27 (d, $J = 8.5$ Hz, 2H), 7.21 (d, $J = 8.0$ Hz, 1H), 5.58 (s, 2H). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃): $\delta = 151.4$, 148.7, 147.9, 143.2, 142.8, 136.0, 135.8, 130.0, 126.7, 124.7, 124.6, 124.2, 123.8, 120.9, 110.2, 48.0.
	2h ⁷ : Off white solid. $R_f = 0.3$ (20% EtOAc/ Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃): $\delta = 7.84$ (d, $J = 8.0$ Hz, 1H), 7.63 (d, $J = 8.7$ Hz, 2H), 7.30-7.28 (m, 1H), 7.21 (d, $J = 3.5$ Hz, 2H), 7.03 (d, $J = 8.6$ Hz, 2H), 6.96 (d, $J = 8.7$ Hz, 2H), 6.85 (d, $J = 8.7$ Hz, 2H), 5.38 (s, 2H), 3.84 (s, $J = 8.1$ Hz, 3H), 3.78 (s, $J = 7.0$ Hz, 3H). ¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃): $\delta = 160.9$, 159.1, 154.1, 143.1, 136.1, 130.7, 128.5, 127.2, 122.8, 122.6, 122.4, 119.7, 114.4, 114.2, 110.5, 55.4, 55.3, 47.0.
HO N OH	2i ⁵ : White solid. $R_f = 0.3$ (20% EtOAc/ Petroleum ether). ¹ H NMR (400 MHz, DMSO- D ₆): $\delta = 9.96$ (s, 1H), 9.44 (s, 1H), 7.63 (dd, $J =$ 7.3, 1.5 Hz, 1H), 7.55-7.47 (m, 2H), 7.42-7.37 (m, 1H), 7.21-7.14 (m, 2H), 6.89-6.85 (m, 2H), 6.81 (d, $J = 8.6$ Hz, 2H), 6.66- 6.60 (m, 2H), 5.39 (s, 2H). ¹³ C{ ¹ H} NMR (100 MHz, DMSO- <i>d</i> ₆): δ = 159.4, 157.2, 154.1, 143.2, 136.3, 131.1, 128.6, 128.0, 127.6, 122.6, 122.3, 121.2, 119.3, 116.0, 116., 111.4, 47.5.

	$2j^6$: Brown solid. $R_f = 0.2$ (30% EtOAc/
	Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃):
	$\delta = 7.91$ (d, $J = 8.0$ Hz, 1H), 7.66-764 (m, 2H),
	7.32–7.28 (m, 3H), 7.24–7.20 (m, 2H), 7.18-
	7.16 (m, 2H), 7.05-7.03(m, 2H), 5.43 (s, 2H),
	$2.73-2.63$ (m, 4H), $1.29-1.22$ (m, 6H). ${}^{13}C{}^{1}H{}$
	NMR (100 MHz, CDCl ₃): $\delta = 154.3$, 146.4,
	143.8, 143.0, 136.1, 133.7, 129.3, 128.5, 128.3,
	127.2, 126.0, 122.9, 122.7, 119.8, 110.6, 48.3,
	28.8, 28.5, 15.5, 15.4.
	$2\mathbf{k}'$: White solid. $R_f = 0.2$ (30% EtOAc/
	Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃):
	$\delta = 7.85-7.72$ (m, 1H), 7.63 (d, $J = 1.1$ Hz, 1H),
	7.54-7.43 (m, 1H), 7.34-7.23 (m, 3H), 7.24-7.15
	(m, 1H), 6.59 (m, 1H), 6.30-6.17 (m, 2H), 5.61
	(s, 2H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl ₃): $\delta =$
	149.6, 145.4, 144.0, 143.9, 143.0, 142.7, 135.5,
	123.3, 122.9, 119.8, 113.0, 112.1, 110.5, 110.0,
	108.4, 41.7.
	21 ': Brown solid. $R_f = 0.2$ (30% EtOAc/
	Petroleum ether). ¹ H NMR (400 MHz, CDCl ₃):
	$\delta = 7.85 - 7.82$ (m, 1H), 7.52 (dd, $J = 5.1$, 1.0 Hz,
	1H), 7.47 (dd, $J = 3.7$, 1.0 Hz, 1H), 7.39-7.36
N S ⁻	(m, 1H), 7.34-7.28 (m, 2H), 7.25 (dt, J = 5.1, 1.9)
	Hz, 1H), 7.14 (dd, $J = 5.1$, 3.7 Hz, 1H), 6.95 (dd,
	J = 5.1, 3.5 Hz, 1H), 6.89- 6.84 (m, 1H), 5.71 (s,
Ś	2H). ${}^{13}C{}^{1}H{}^{13}NMR$ (100 MHz, CDCl ₃): $\delta =$
	147.6, 143.0, 138.9, 135.9, 131.9, 129.0, 128.0,
	128.0, 127.3, 125.5, 125.5, 123.4, 123.0, 120.0,
	110.0, 44.1.

Figure S42: ¹H NMR (400 MHz, CDCl₃) spectrum of 2a.

Figure S43: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of **2a**.

Figure 44: ¹H NMR (400 MHz, CDCl₃) spectrum of 2b.

Figure 45: ¹³C NMR (100 MHz, CDCl₃) spectrum of 2b.

Figure S46: ¹H NMR (400 MHz, CDCl₃) spectrum of 2c.

Figure S47: ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 2c.

Figure S48: ¹H NMR (400 MHz, CDCl₃) spectrum of 2d.

Figure S49: ${}^{13}C$ { ${}^{1}H$ } NMR (100 MHz, CDCl₃) spectrum of 2d.

Figure S50: ¹H NMR (400 MHz, CDCl₃) spectrum of 2e.

Figure 51: ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 2e.

Figure S52: ¹H NMR (400 MHz, CDCl₃) spectrum of 2f.

Figure S53: ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 2f.

Figure S54: ¹H NMR (400 MHz, CDCl₃) spectrum of 2g.

Figure S55: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 2g.

Figure 56: ¹H NMR (400 MHz, CDCl₃) spectrum of 2h.

Figure 57: ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 2h.

Figure 58: ¹H NMR (400 MHz, DMSO-d₆) spectrum of 2i.

Figure 59: ${}^{13}C{}^{1}H$ NMR (100 MHz, DMSO-d₆) spectrum of 2i.

Figure S60: ¹H NMR (400 MHz, CDCl₃) spectrum of 2j.

Figure S61: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of **2***j*.

Figure S62: ¹H NMR (400 MHz, CDCl₃) spectrum of 2k.

Figure S63: ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 2K.

Figure S64: ¹H NMR (400 MHz, CDCl₃) spectrum of 2l.

Figure S65: ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) spectrum of 2l.

Figure S66: ¹H NMR spectrum of the reaction mixture obtained by reacting *o*-phenylenediamine and benzaldehyde in the absence of the catalyst at 60 $^{\circ}$ C in CDCl₃. The spectrum was recorded within 30 minutes of adding the reactants.

Figure S67: ¹H NMR spectrum of the reaction mixture obtained by reacting *o*-phenylenediamine and benzaldehyde in presence of the pro ligand H_3L at 60 °C in CDCl₃. The spectrum was recorded within 30 minutes of adding the reactants.

Figure S68: ¹H NMR spectrum of the reaction mixture obtained by reacting *o*-phenylenediamine and benzaldehyde in presence of compound **1** at 60 °C in CDCl₃. The spectrum was recorded within 30 minutes of adding the reactants.

References:

- 1. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystal., 2009, 42, 339-341.
- 2. G. Sheldrick, Acta Crystallogr. A, 2015, 71, 3-8.
- 3. G. Sheldrick, Acta Crystallogr. A, 2008, 64, 112-122.
- 4. N. Herrera Cano, J. G. Uranga, M. Nardi, A. Procopio, D. A. Wunderlin and A. N. Santiago, *Beilstein J. Org. Chem.* **2016**, *12*, 2410-2419.
- 5. P. Wang, J. Wang, C. Au, R. Qiu, X. Xu, S. Yin, Adv. Synth. Catal. 2016, 358, 1302 1308.
- 6. X. Sang, X. Hu, R. Tao, Y. Zhang, H. Zhu, D. Wang, ChemPlusChem, 2020, 85, 123.
- 7. Fu, J., Yue, Y., Liu, K. Mol Divers, 2023, 7, 873-887.
- 8. Rajesh Chebolu, Damodara N. Kommi, Dinesh Kumar, Narendra Bollineni, and Asit K. Chakraborti, *J. Org. Chem.* **2012**, 77 (22), 10158-10167.