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Figure S1: FT-IR spectrum of H2L.  

  

Figure S2: FT-IR spectrum of compound 1. 
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Figure S3: FT-IR spectrum of compound 2. 

  

Figure S4: FT-IR spectrum of compound 3. 
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Figure S5: FT-IR spectrum of compound 4. 

  

Figure S6: FT-IR spectrum of compound 5. 
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Figure S7: FT-IR spectrum of compound 6. 

 

Figure S8: 1H NMR (400 MHz, DMSO-d6) spectrum of H2L. 
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Figure S9: 13C(1H) NMR (100 MHz, DMSO-d6) spectrum of H2L. 

 

Figure S10: 1H NMR (400 MHz, CDCl3) spectrum of compound 1. 

C-7 

C15-17 

C-14 
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Figure S11: 13C{1H} NMR (100 MHz, CDCl3) spectrum of compound 1. 

 

Figure S12: 119Sn NMR (149 MHz, CDCl3) spectrum of compound 1. 
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Figure S13: 1H NMR (400 MHz, CDCl3) spectrum of compound 2. 

 

Figure S14: 13C{1H} NMR (100 MHz, CDCl3) spectrum of compound 2. 



S11 
 

 

Figure S15: 119Sn NMR (149 MHz, CDCl3) spectrum of compound 2. 

 

Figure S16: 1H NMR (400 MHz, CDCl3) spectrum of compound 3. 
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Figure S17: 13C{1H} NMR (100 MHz, CDCl3) spectrum of compound 3. 

 

Figure S18: 119Sn NMR (149 MHz, CDCl3) spectrum of compound 3. 
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Figure S19: 1H NMR (400 MHz, CDCl3) spectrum of compound 4. 

 

Figure S20: 13C{1H} NMR (100 MHz, CDCl3) spectrum of compound 4. 
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Figure S21: 119Sn NMR (149 MHz, CDCl3) spectrum of compound 4. 

 

Figure S22: 1H NMR (400 MHz, CDCl3) spectrum of compound 5. 
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Figure S23: 13C{1H} NMR (100 MHz, CDCl3) spectrum of compound 5. 

 

Figure S24: 119Sn NMR (149 MHz, CDCl3) spectrum of compound 5. 
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Figure S25: 1H NMR (400 MHz, CDCl3) spectrum of compound 6. 

 

Figure S26: 13C{1H} NMR (100 MHz, CDCl3) spectrum of compound 6. 
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Figure S27: 119Sn NMR (149 MHz, CDCl3) spectrum of compound 6. 

 

Figure S28: HRMS (ESI) spectrum of compound 1. 

[M+H]
+
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Figure S29: HRMS (ESI) spectrum of [M+H]+ ion of compound 1. 

 

Figure S30: ESI-MS spectrum of compound 2. 

[M+H]
+
 

Experimental 

Simulated 
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Figure S31: HRMS (ESI) spectrum of compound 3. 

 

Figure S32: HRMS (ESI) spectrum of compound 4. 

[M+H]
+
  

[M+H]
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Figure S33: HRMS (ESI) spectrum of [M+H]+ ion of compound 4. 

 

Figure S34: HRMS (ESI) spectrum of compound 5. 

[M+H]
+
  

Experimental 

Simulated 
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Figure S35: HRMS (ESI) spectrum of compound 6. 

 

X-ray crystallography: 

The crystallographic data of 1-6 were collected on a Rigaku SuperNova diffractometer equipped 

with an Eos S2 CCD detector, using Mo-Kα radiation with graphite monochromator ( = 

0.71073 Å) at T = 293(2) K. The structure was solved with the ShelXT 2014/5 (Sheldrick, 2014) 

structure solution program and by using Olex2 as the graphical interface.1,2 The model was refined 

with version 2018/3 of XL using Least Squares minimization.3 Non-hydrogen atoms were 

anisotropically refined. H-atoms were included in the refinement of calculated positions riding on 

their carrier atoms. The function minimized was [w(Fo2- Fc2)2] (w = 1 / [σ2 (Fo
2) + (aP)2 + bP]), 

where P = (Max(Fo
2,0) + 2Fc

2) / 3 with σ2(Fo
2) from counting statistics. The function R1 and wR2 

were (σ||Fo| - |Fc||) / σ|Fo| and [σw (Fo
2 - Fc

2)2 / σ(wFo
4)]1/2, respectively. Specific refinement details: 

Compound 2: O3 atom is split over two positions O3A and O3B with 57% and 43% respectively. 

Regarding compound 3, some highly disordered carbon atoms were refined isotropically. 

Compound 5: three disordered carbon atoms (C19-C21) are split over two positions with 57% and 

43% occupancy. Compound 6: C22-C25 atoms are split over two positions with 59% and 41% 

occupancy respectively. C15-C17 are split over two position with 84% and 16% occupancy. 

CCDC 2270674-2270679 contain the supplementary crystallographic data for compounds 1-6. 

[M+H]
+
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These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 

Table S1 : Single crystal data collection and data refinement parameters for compounds 1-6. 

Compound 1∙ MeOH 2 3 4 5 6 

Formula C31H32N2O
6Sn 

C26H36N2O
5Sn 

C52H72N4O1

0Sn2 
C29H26N2O4

Sn 
C25H34N2O4

Sn 
C25H34N2O4

Sn 

Formula mass 647.320 575.26 1150.51 585.21 545.23 545.270 

T/K 293(2) 293(2) 293(2) 293(2) 293(2) 293(2) 

λ/Å 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 

Crystal system triclinic triclinic triclinic triclinic triclinic triclinic  

Space group P-1 P-1 P-1 P-1 P-1 P-1 

a/Å 10.7364(3) 11.8788(5) 10.3278(6) 10.4626(3) 11.6108(4) 10.3748(7) 

b/Å 12.0005(3) 13.7443(3) 15.8695(8)  12.2766(4) 13.7661(4) 10.7560(6) 

c/Å 12.1066(3) 18.5417(4) 17.9400(12)  12.4511(5) 17.6211(5) 13.2715(6) 

α/° 90.921(2) 70.101(2) 112.274(5) 64.844(4) 79.327(2) 90.075(4) 

β/° 97.576(2) 81.539(2) 93.904(5) 65.315(3) 81.161(3) 110.462(5) 

γ/° 112.023(2) 76.408(3) 96.094(4) 66.761(3) 77.032(3) 111.715(6) 

V/Å3 1429.75(7) 2759.29(2) 2686.7(3) 1268.69(9) 2678.62(15) 1274.47(1) 

Z 2 4 2 2 4 2 

Dc/g cm−3 1.504 1.382 1.422 1.532 1.352 1.421 

µ/mm−1 0.940 0.962 0.988 1.045 0.984 1.034 

F(000) 659 1184 1184 592 1120 559 

2θ Range/° 4.14 to 
54.00 

4.096 to 
54.00 

3.994- 
54.00 

3.8 to 54.00 4.164 to 
54.00 

4.12 to 50 

Measured 
reflections 

23232 44097 25148 19775 23275 11420 

Independent 
reflections/Rint 

6211/Rint = 
0.0620 

11981[Rint 
= 0.0608 

11557[Rint 
= 0.0424 

5491 [Rint = 
0.0431,  

11494 
[Rint = 
0.0349 

4491 [Rint = 
0.0559 

Parameters 367 642 573 328 611 375 

R1 (I >2σ(I))a  0.0275 0.0458 0.0585 0.0302  0.0382  0.0392 

wR2 (all data)b 0.0667  0.1158 0.1733 0.0749 0.0779  0.0727 

Goodness-of-fit 
on F2 

1.052 1.056 1.039 1.047 0.964 0.887 

Δρmax, min/e Å−3 0.65/-0.54 1.41/-0.62 1.35/-1.10 0.46/-0.53 0.43/-0.55 
 

0.88/-0.76 

 

http://www.ccdc.cam.ac.uk/data_request/cif
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Figure S36: Packing of 1 within the unit cell viewed along crystallographic a axis. 

 

 

Figure S37: Packing of 2 within the unit cell viewed along crystallographic a axis. 
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Figure S38: Packing of 3 within the unit cell viewed along crystallographic a axis. 

 

Figure S39: Packing of 4 within the unit cell viewed along crystallographic a axis. 
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Figure S40: Packing of 5 within the unit cell viewed along crystallographic b axis. 

 

Figure S41: Packing of 6 within the unit cell viewed along crystallographic a axis. 
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Table S2: Isolated yield of 1,2- disubstituted benzimidazoles. 

 
Entry  R Product  Code  Yield(%) TON TOF (h-1) 

1  

 

 

2a 92 36.8 18.4  

2  

 

 

2b 82 32.8 16.4 

3  
 
 

     

 

2c 85 34 17 

4  
 
 

 

 

2d 87 34.8 17.4 

5  
 

 

 

2e 81 32.4 16.2 

6  
 

 

 

2f 79 31.6 15.8 
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7  
 

 

 

2g 72 28.8 14.4 

8  
 

 

 

2h 86 34.4 17.2 

9  
 

 

 

2i 82 32.8 16.4 

10  
          

 

 

2j 84 33.6 16.8 

11  

 

 

2k 73 29.2 14.6 

12  

 

 

2l 76 30.4 15.2 
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Table S3: Characterization of isolated 1,2-disubstituted benzimidazoles: 

 

 

2a4: Off white solid. Rf = 0.24 (20% EtOAc/ 

Petroleum ether). 1H NMR (400 MHz, CDCl3): 

δ = 7.80 (d, J = 8.0 Hz, 1H), 7.67–7.56 (m, 2H), 

7.43 – 7.31 (m, 3H), 7.26-7.22 (m,, 4H), 7.16-

7.12 (m, 2H), 7.05–6.98 (m, 2H), 5.37 (s, 2H). 
13C{1H} NMR (100 MHz, CDCl3): δ = 154.2, 

143.2, 136.4, 136.1, 130.1, 129.9, 129.3, 129.1, 

128.8, 127.8, 126.0, 123.1, 122.7, 120.0, 110.5, 

48.4. 

 

 

2b4: Off white solid. Rf = 0.2 (20% EtOAc/ 

Petroleum ether). 1H NMR (400 MHz, CDCl3): 

δ = 7.87 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 8.1 Hz, 

2H), 7.32-7.28 (m, 1H), 7.24 (d, J = 6.6 Hz, 2H), 

7.23– .19 (m, 2H), 7.14 (d, J = 7.9 Hz, 2H), 7.00 

(d, J = 8.0 Hz, 2H), 5.41 (s, 2H), 2.39 (s, 3H), 

2.34 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): 

δ = 154.4, 142.9, 140.2, 137.5, 136.0, 133.4, 

129.7, 129.5, 129.2, 126.8, 125.9, 123.0, 122.5, 

119.7, 110.6, 48.2, 21.4, 21.1. 

 

 

2c5: White solid. Rf = 0.4 (20% EtOAc/ 

Petroleum ether). 1H NMR (400 MHz, CDCl3): 

δ = 7.87-7.86 (d, J = 8.0 Hz, 1H), 7.65 – 7.63 

(m, 2H), 7.33-7.28 (m, 3H), 7.24 – 7.21 (m, 2H), 

7.19-7.17 (d, J = 8.1 Hz, 2H),  7.04 (d, J = 8.2 

Hz, 2H), 5.44 (s, 2H), 3.01-2.84 (m, 2H),  1.28-

1.23 (m, 12H). 13C{1H} NMR (100 MHz, 

CDCl3): δ = 154.4, 150.9, 148.4, 143.2, 136.1, 

133.8, 129.3, 127.5, 127.1, 126.9, 126.0, 122.8, 

122.5, 119.8, 110.6, 48.2, 34.1, 33.8, 23.9, 23.8. 

 

 

2d6: Pale brown solid. Rf = 0.4 (20% EtOAc/ 

Petroleum ether). 1H NMR (400 MHz, CDCl3): 

δ = 7.88-7.86 (d, J = 8.0 Hz, 1H), 7.68-7.66 (d, 

J = 8.3 Hz, 2H), 7.48 (d, J = 8.3 Hz, 2H), 7.39-

7.32 (m, 3H), 7.22 (d, J = 3.0 Hz, 2H), 7.06 (d, 

J = 8.1 Hz, 2H), 5.43 (s,  2H), 1.35 (s, 9H), 1.31 

(s, 9H). 13C{1H} NMR (100 MHz, CDCl3): δ = 

154.3, 153.6, 150.7, 143.2, 136.1, 133.4, 129.0, 

127.7, 126.0, 125.8, 125.7, 122.8, 122.5, 119.8, 

110.6, 48.2, 34.9, 34.6, 31.3, 31.2. 

 2e7: Pale yellow solid. Rf = 0.25 (20% EtOAc/ 

Petroleum ether).1H NMR (400 MHz, CDCl3): δ 

= 7.86 (d, J = 7.9 Hz, 1H), 7.59 (d, J = 8.4 Hz, 

2H), 7.51 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.3 

Hz, 2H), 7.35 – 7.25 (m,  2H), 7.19 (d, J = 8.0 
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Hz, 1H), 6.95 (d, J = 8.3 Hz, 2H), 5.37 (s, 

2H).13C{1H} (100 MHz, CDCl3) δ = 152.9, 

143.1, 135.9, 135.2, 132.4, 132.1, 130.67, 128.8, 

127.6, 124.7, 123.5, 123.1, 121.9, 120.2, 110.3, 

47.9. 

 

2f8: Pale yellow solid. Rf = 0.3 (20% EtOAc/ 

Petroleum ether).1H NMR (400 MHz, CDCl3): δ 

= 7.87 (d, J = 8.0 Hz, 1H), 7.61-7.56 (m, 2H), 

7.46-7.41 (m, 2H), 7.37-7.26 (m, 4H), 7.19 (d, J 

= 7.9 Hz, 1H), 7.01 (d, J = 8.4 Hz, 2H), 5.39 (s, 

2H). 13C{1H} NMR (100 MHz, CDCl3): δ = 

152.9, 143.1, 136.4, 135.9, 134.7, 133.9, 130.5, 

129.4, 129.2, 128.4, 127.3, 123.51, 123.1, 120.2, 

110.3, 47.8. 

 

2g7: Yellow solid. Rf = 0.2 (20% EtOAc/ 

Petroleum ether). 1H NMR (400 MHz, CDCl3): 

δ = 8.36-8.29 (m, 2H), 8.26-8.20 (m, 2H), 7.93 

(d, J = 8.0 Hz, 1H), 7.87-7.81 (m, 2H), 7.44- 

7.31 (m, 2H), 7.27 (d, J = 8.5 Hz, 2H), 7.21 (d, 

J = 8.0 Hz, 1H), 5.58 (s, 2H). 13C{1H} NMR 

(100 MHz, CDCl3): δ = 151.4, 148.7, 147.9, 

143.2, 142.8, 136.0, 135.8, 130.0, 126.7, 124.7, 

124.6, 124.2, 123.8, 120.9, 110.2, 48.0. 

 

 

2h7: Off white solid. Rf = 0.3 (20% EtOAc/ 

Petroleum ether). 1H NMR (400 MHz, CDCl3): 

δ = 7.84 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 8.7 Hz, 

2H), 7.30-7.28 (m, 1H), 7.21 (d, J = 3.5 Hz, 2H), 

7.03 (d, J = 8.6 Hz, 2H), 6.96 (d, J = 8.7 Hz, 2H), 

6.85 (d, J = 8.7 Hz, 2H), 5.38 (s, 2H), 3.84 (s, J 

= 8.1 Hz, 3H), 3.78 (s, J = 7.0 Hz, 3H). 13C{1H} 

NMR (100 MHz, CDCl3): δ = 160.9, 159.1, 

154.1, 143.1, 136.1, 130.7, 128.5, 127.2, 122.8, 

122.6, 122.4, 119.7, 114.4, 114.2, 110.5, 55.4, 

55.3, 47.0. 

 

 

2i5: White solid. Rf = 0.3 (20% EtOAc/ 

Petroleum ether).1H NMR (400 MHz, DMSO-

D6): δ =  9.96 (s, 1H), 9.44 (s, 1H), 7.63 (dd, J = 

7.3, 1.5 Hz, 1H), 7.55-7.47 (m, 2H), 7.42-7.37 

(m, 1H), 7.21-7.14 (m, 2H), 6.89-6.85 (m, 2H), 

6.81 (d, J = 8.6 Hz, 2H), 6.66- 6.60 (m, 2H), 5.39 

(s, 2H). 13C{1H} NMR (100 MHz, DMSO-d6): δ 

= 159.4, 157.2, 154.1, 143.2, 136.3, 131.1, 

128.6, 128.0, 127.6, 122.6, 122.3, 121.2, 119.3, 

116.0, 116., 111.4, 47.5. 
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2j6: Brown solid. Rf = 0.2 (30% EtOAc/ 

Petroleum ether). 1H NMR (400 MHz, CDCl3): 

δ = 7.91 (d, J = 8.0 Hz, 1H), 7.66-764 (m, 2H), 

7.32–7.28 (m, 3H), 7.24–7.20 (m, 2H), 7.18-

7.16 (m, 2H), 7.05-7.03(m, 2H), 5.43 (s, 2H), 

2.73-2.63 (m, 4H), 1.29-1.22 (m, 6H). 13C{1H}  

NMR (100 MHz, CDCl3): δ = 154.3, 146.4, 

143.8, 143.0, 136.1, 133.7, 129.3, 128.5, 128.3, 

127.2, 126.0, 122.9, 122.7, 119.8, 110.6, 48.3, 

28.8, 28.5, 15.5, 15.4. 

 

 

2k7: White solid. Rf = 0.2 (30% EtOAc/ 

Petroleum ether). 1H NMR (400 MHz, CDCl3): 

δ = 7.85-7.72 (m, 1H), 7.63 (d, J = 1.1 Hz, 1H), 

7.54-7.43 (m, 1H), 7.34-7.23 (m, 3H), 7.24-7.15 

(m, 1H), 6.59 (m, 1H), 6.30-6.17 (m, 2H), 5.61 

(s, 2H). 13C{1H} NMR (100 MHz, CDCl3): δ = 

149.6, 145.4, 144.0, 143.9, 143.0, 142.7, 135.5, 

123.3, 122.9, 119.8, 113.0, 112.1, 110.5, 110.0, 

108.4, 41.7. 

 

 

 

2l7: Brown solid. Rf = 0.2 (30% EtOAc/ 

Petroleum ether). 1H NMR (400 MHz, CDCl3): 

δ = 7.85-7.82 (m, 1H), 7.52 (dd, J = 5.1, 1.0 Hz, 

1H), 7.47 (dd, J = 3.7, 1.0 Hz, 1H), 7.39-7.36 

(m, 1H), 7.34-7.28 (m, 2H), 7.25 (dt, J = 5.1, 1.9 

Hz, 1H), 7.14 (dd, J = 5.1, 3.7 Hz, 1H), 6.95 (dd, 

J = 5.1, 3.5 Hz, 1H), 6.89- 6.84 (m, 1H), 5.71 (s, 

2H). 13C{1H} NMR (100 MHz, CDCl3): δ = 

147.6, 143.0, 138.9, 135.9, 131.9, 129.0, 128.0, 

128.0, 127.3, 125.5, 125.5, 123.4, 123.0, 120.0, 

110.0, 44.1. 
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Figure S42: 1H NMR (400 MHz, CDCl3) spectrum of 2a. 

 

Figure S43: 13C{1H} NMR (100 MHz, CDCl3) spectrum of 2a. 



S32 
 

 

Figure 44: 1H NMR (400 MHz, CDCl3) spectrum of 2b. 

  

Figure 45: 13C NMR (100 MHz, CDCl3) spectrum of 2b. 
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Figure S46: 1H NMR (400 MHz, CDCl3) spectrum of 2c. 

 

Figure S47: 13C{1H} NMR (100 MHz, CDCl3) spectrum of 2c. 
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Figure S48: 1H NMR (400 MHz, CDCl3) spectrum of 2d. 

 

Figure S49: 13C {1H} NMR (100 MHz, CDCl3) spectrum of 2d. 



S35 
 

 

Figure S50: 1H NMR (400 MHz, CDCl3) spectrum of 2e. 

 

Figure 51: 13C{1H} NMR (100 MHz, CDCl3) spectrum of 2e. 
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Figure S52: 1H NMR (400 MHz, CDCl3) spectrum of 2f. 

 

Figure S53: 13C{1H} NMR (100 MHz, CDCl3) spectrum of 2f . 
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Figure S54: 1H NMR (400 MHz, CDCl3) spectrum of 2g. 

 

Figure S55: 13C{1H} NMR (100 MHz, CDCl3) spectrum of 2g. 
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Figure 56: 1H NMR (400 MHz, CDCl3) spectrum of 2h. 

 

Figure 57: 13C{1H} NMR (100 MHz, CDCl3) spectrum of 2h. 
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Figure 58: 1H NMR (400 MHz, DMSO-d6) spectrum of 2i. 

  

Figure 59: 13C{1H} NMR (100 MHz, DMSO-d6) spectrum of 2i. 
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Figure S60: 1H NMR (400 MHz, CDCl3) spectrum of 2j. 

 

Figure S61: 13C{1H} NMR (100 MHz, CDCl3) spectrum of 2j. 
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Figure S62: 1H NMR (400 MHz, CDCl3) spectrum of 2k. 

 

Figure S63: 13C{1H} NMR (100 MHz, CDCl3) spectrum of 2K. 
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Figure S64: 1H NMR (400 MHz, CDCl3) spectrum of 2l. 

 

Figure S65: 13C{1H} NMR (100 MHz, CDCl3) spectrum of 2l. 
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Figure S66: 1H NMR spectrum of the reaction mixture obtained by reacting o-phenylenediamine 

and benzaldehyde in the absence of the catalyst at 60 °C in CDCl3. The spectrum was recorded 

within 30 minutes of adding the reactants.  
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Figure S67: 1H NMR spectrum of the reaction mixture obtained by reacting o-phenylenediamine 

and benzaldehyde in presence of the pro ligand H3L at 60 °C in CDCl3. The spectrum was recorded 

within 30 minutes of adding the reactants.   
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Figure S68: 1H NMR spectrum of the reaction mixture obtained by reacting o-phenylenediamine 

and benzaldehyde in presence of compound 1 at 60 °C in CDCl3. The spectrum was recorded 

within 30 minutes of adding the reactants.   
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