Electronic Supplementary Information

Crystal-to-Crystal Polymerisation of Monosubstituted [PW₁₁O₃₉Cu(H₂O)]^{5–} Keggin-Type Anions

Estibaliz Ruiz-Bilbao,^{a,b} Aroa Pache,^a Unai Barrenechea,^a Santiago Reinoso,^c Leire San Felices,^d Maria dM. Vivanco,^e Luis Lezama,^a Beñat Artetxe,^{*a} and Juan M. Gutiérrez-Zorrilla^{*a,b}

- [b] BCMaterials Edificio Martina Casiano, 3rd Floor, UPV/EHU Science Park, Barrio Sarriena s/n, 48940 Leioa, Spain.
- [c] Institute for Advanced Materials and Mathematics (INAMAT2), Departamento de Ciencias, Universidad Pública de Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain.
- [d] Servicios Generales de Investigación SGlker, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU P.O. Box 644, 48080 Bilbao, Spain.
- [e] Cancer Heterogeneity Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain.

[[]a] Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain.

FIGURES
Figure S1. FTIR spectrum of 1 (blue) compared to that of the $K_7[\alpha-PW_{11}O_{39}]$ ·14H ₂ O precursor
Figure S2 . PXRD diffraction patterns for the syntheses carried out for different POM:Cu ²⁺ :pic ratios
Figure S3. TGA curve for 1
Figure S4 . Comparison of the PXRD patterns collected for 1 at room temperature and 250 °C with those calculated from SCXRD data for 1 and 2a , respectively
Figure S5 . Identification of the final residue from the thermal decomposition of 1 by PXRD analyses. Blue lines correspond to diffraction maxima from monoclinic <i>Pmnb</i> WO ₃ (PDF: 01-071-0131) and green lines to monoclinic <i>C2/c</i> CuO (PDF: 00-002-1041)
Figure S6 . ORTEP representation of 1 and 2a showing 50% probability ellipsoids and atom labelling scheme. Colour code: Mo, grey; P, dark red; Cu, blue; O, red; N, green; C, black; H, light grey. The disordered Cu ^{II} atom in the Keggin anion has been omitted for 1 , but has been depicted on the addenda metal positions 7 and 9 for 2a . Symmetry codes: i) $-x$, $-y$, $1-z$; ii) $1-x$, $\frac{1}{2}+y$, $\frac{1}{2}-z$
Figure S7 . View of the crystal packing of 1 along the crystallographic y axis

TABLE OF CONTENTS

Figure S8. Polyhedral representation of $\{PW_{11}O_{39}Cu\}_n$ chains in 2a.....7

EQUATIONS

TABLES

Table S1 . Copper population factors for the addenda metal positions within the inorganic $[PW_{11}O_{39}Cu(H_2O)]^{5-}$ building-block in 1 , 2a and 2h .
Table S2.Cu–O and Cu–N bond lengths (Å) and O–Cu–N and O–Cu–O angles (°) in themetalorganic units of 1, 2a and 2h11
Table S3. Geometrical parameters of the intermolecular N–H…O and C–H…O hydrogen bonds in 1, 2a and 2h.
Table S3 (continuation). Geometrical parameters of the intermolecular N–H…O and C–H…O type hydrogen bonds in 1, 2a and 2h.
Table S4 Distances (Å) from the O atoms of W1-W2-W3 trimers to picolinate ring centroids in2a and 2h (Cg _{pic} = N1A, C2A, C3A, C4A, C5A, C6A)
Table S5. Distances (Å) from the O atoms of W1-W2-W3 trimers to picolinate ring planes (N1A,C2A, C3A, C4A, C5A, C6A) in 2a and 2h

Figure S1. FTIR spectrum of **1** (blue) compared to that of the $K_7[\alpha$ -PW₁₁O₃₉]·14H₂O precursor.

Figure S2. PXRD diffraction patterns for the syntheses carried out for different POM:Cu²⁺:pic ratios.

Figure S3. TGA curve for 1.

Figure S4. Comparison of the PXRD patterns collected for **1** at room temperature and 250 °C with those calculated from SCXRD data for **1** and **2a**, respectively.

Figure S5. Identification of the final residue from the thermal decomposition of **1** by PXRD analyses. Blue lines correspond to diffraction maxima from monoclinic *Pmnb* WO₃ (PDF: 01-071-0131) and green lines to monoclinic C2/c CuO (PDF: 00-002-1041).

Figure S6. ORTEP representation of **1** and **2a** showing 50% probability ellipsoids and atom labelling scheme. Colour code: Mo, grey; P, dark red; Cu, blue; O, red; N, green; C, black; H, light grey. The disordered Cu^{II} atom in the Keggin anion has been omitted for **1**, but has been depicted on the addenda metal positions 7 and 9 for **2a**. Symmetry codes: i) -x, -y, 1-z; ii) 1-x, $\frac{1}{2}+y$, $\frac{1}{2}-z$.

Figure S7. View of the crystal packing of 1 along the crystallographic y axis.

Figure S8. Polyhedral representation of $\{PW_{11}O_{39}Cu\}_n$ chains in 2a.

Figure S9. TGA curve for the dehydration of **1** (blue) compared to those of samples of **2a** left to hydrate in open air for 1 (pink) or 3 days (grey), as well as that of **2h** dehydrated at 170 °C and exposed to ambient moisture for 1 day (orange).

Figure S10. Experimental PXRD pattern of **2h** prepared by exposing crystals of **2a** to room atmosphere for one day compared to those calculated from scXRD data for **2a** and **2h**.

Figure S11. Structural comparison of the polymeric entities in **2a** (left) and **2h** (right). Hydrogen-bonding interactions involving water molecules are depicted as red lines.

Figure S12. X-band EPR spectra at room temperature and 4K for 1 (left) and 2a (right).

Figure S13. Evolution of the X-band EPR single-crystal spectra of **1** for the three perpendicular xy, xz and yz planes. The spectra were recorded for different angles every 10°.

Figure S14. Angular variation of the linewidth in X-band EPR single-crystal spectra of 1 for the xy, xz and yz planes.

Equation 1. Set of equations employed to fit the angular variation of the EPR signal in three mutually perpendicular planes. The principal g values were calculated by diagonalization of the obtained g^2 tensor.

 $g_{(xy)}^{2} = g_{xx}^{2} \cos^{2}(\theta) + 2 g_{xy} \cos(\theta) \sin(\theta) + g_{yy}^{2} \sin^{2}(\theta)$ $g_{(xz)}^{2} = g_{xx}^{2} \cos^{2}(\theta) + 2 g_{xz} \cos(\theta) \sin(\theta) + g_{zz}^{2} \sin^{2}(\theta)$ $g_{(yz)}^{2} = g_{yy}^{2} \cos^{2}(\theta) + 2 g_{yz} \cos(\theta) \sin(\theta) + g_{zz}^{2} \sin^{2}(\theta)$ **Table S1.** Copper population factors for the addenda metal positions within the inorganic $[PW_{11}O_{39}Cu(H_2O)]^{5-}$ building-block in **1**, **2a** and **2h**.

	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12
1	-	4.8	7.9	9.0	7.9	3.2	10.6	18.6	18.5	4.2	6.9	8.4
2a	-	-	-	-	-	-	44.9	-	55.1	-	-	-
2h	-	-	-	-	-	-	45.0	-	55.0	-	-	-
2a 2h	_	_	_	_	_	_	44.9	_	55.0	_	_	_

Table S2. Cu–O and Cu–N bond lengths (Å) and O–Cu–N and O–Cu–O angles (°) in the metalorganic units of **1**, **2a** and **2h**.

1	L	2a		21	ı
Cu1A-01T	2.507(5)	Cu1A…O2T	3.79(3)	Cu1A-O2T	3.99(3)
Cu1A–O1T ⁱ	2.507(5)	Cu1A…O2T ⁱ	3.79(3)	Cu1A–O2T ⁱ	3.99(3)
Cu1A–O8A	1.945(5)	Cu1A–O8A	1.91(2)	Cu1A–O8A	1.89(3)
Cu1A–O8A ⁱ	1.945(5)	Cu1A–O8A ⁱ	1.91(2)	Cu1A–O8A ⁱ	1.89(3)
Cu1A–N1A	1.951(7)	Cu1A–N1A	1.99(4)	Cu1A–N1A	1.87(4)
Cu1A–N1A ⁱ	1.951(7)	Cu1A–N1A ⁱ	1.99(4)	Cu1A–N1A ⁱ	1.87(4)

Symmetry code: i)1 -x, 1-y, 1-z.

Table S3. Geometrical parameters of the intermolecular N–H…O and C–H…O hydrogen bonds in 1, 2a and 2h.

Donor-H···Acceptor	D-H	Н…А	D····A	D–H…A
1				
N1G–H1GA…O3W ⁱ	0.88	1.93	2.743(18)	153
N1G-H1GB…O1W	0.88	2.03	2.889(17)	167
N2G–H2GA…O910 ⁱⁱ	0.88	2.42	3.127(11)	138
N2G–H2GB…O2W ⁱⁱⁱ	0.88	2.19	3.065(14)	174
N3G–H3GB…O2T	0.88	2.48	3.278(18)	152
N4G–H4GA…O910 ^{iv}	0.88	2.05	2.920(9)	170
N4G–H4GB…O67	0.88	2.18	3.030(91)	163
N5G–H5GA…O12 ⁱⁱ	0.88	2.49	3.326(9)	159
N5G–H5GB…O810 ^{iv}	0.88	2.16	3.030(9)	168
N10G–H10B…0712 ^v	0.88	2.24	2.926(16)	135
N10G-H10A…O5W	0.88	2.14	2.85(2)	137
N6G–H6GA…O14 ⁱⁱ	0.88	2.17	2.953(9)	148
N6G–H6GB…O6T	0.88	2.25	3.043(9)	150
N7G–H7GA…O9A	0.88	2.36	3.024(10)	133
N13G–H13A…O4T ⁱⁱ	0.88	2.19	3.040(10)	163
N13G–H13B…O37	0.88	2.29	3.096(11)	151
N14G–H14A…O45 ⁱⁱ	0.88	2.05	2.912(10)	167
N14G–H14B…O11T ⁱ	0.88	2.35	3.077(11)	140
N8G–H8GB…O9A	0.88	2.08	2.820(9)	141
N15G–H15A…O2W ⁱⁱ	0.88	2.15	3.011(14)	165
N15G–H15B…O3T	0.88	2.45	3.194(11)	143
N8G–H8GB…O56 ⁱ	0.88	2.49	3.103(11)	127
N9G–H9GA…O411 ⁱⁱ	0.88	2.04	2.906(8)	168
N9G–H9GB…O511 ⁱ	0.88	2.12	2.961(8)	160
C3A–H3A…O89 ^{vi}	0.95	2.28	3.212(11)	166
C5A–H5A…O612 ⁱ	0.95	2.33	3.043(11)	131

2a				
N1G–H1GA…O9Avii	0.88	2.12	2.87(3)	143
N2G–H2GA…O910 ^{viii}	0.88	2.07	2.89(3)	155
N2G–H2GB…O12T	0.88	2.07	2.85(3)	148
N3G–H3GA…O9A ^{vii}	0.88	2.11	2.87(3)	144
N3G–H3GB…O49 ^{viii}	0.88	2.46	3.17(3)	138
N4G–H4GA…O67 ^{ix}	0.88	2.12	2.95(3)	159
N4G–H4GB…O89×	0.88	2.08	2.95(3)	168
N5G–H5GA…O8T×	0.88	1.88	2.75(3)	172
N5G–H5GB…O2T	0.88	2.31	3.11(4)	151
N5G–H5GB…O25	0.88	2.25	2.93(3)	134
N10G–H10A…O78	0.88	2.33	3.07(3)	142
N6G–H6GA…O6T ^{ix}	0.88	1.93	2.80(3)	171
N11G–H11A…O6T ^{xi}	0.87	2.51	3.13(4)	129
N11G–H11B…O1T ^{vii}	0.88	2.26	3.05(4)	149
N6G–H6GB…O14	0.89	2.58	3.27(3)	135
N12G–H12A…O810	0.88	2.15	3.01(4)	168
N12G–H12B…O5T0 ^{xi}	0.88	2.21	2.96(4)	144
N7G–H7GA…O9A ^{xii}	0.88	1.97	2.81(3)	159
N13G–H13B…O45 ^{xii}	0.88	2.05	2.91(3)	165
N7G–H7GB…O411 ^{×iii}	0.88	1.96	2.80(3)	161
N14G–H14A…O10Tvii	0.88	2.29	3.09(3)	152
N14G–H14B…O5T ^{xii}	0.88	2.03	2.90(3)	171
N8G–H8GA…O8A ^{xii}	0.87	2.36	3.20(4)	161
N15G-H15A…O23	0.88	2.19	2.98(4)	150
N15G–H15B…O12T ⁱ	0.88	2.18	2.91(4)	139
N8G-H8GB…0612	0.88	2.13	2.95(4)	154
		-	()	-
2h				
2h N1G–H1GA…O9 ^{xiv}	0.88	1.99	2,78(5)	149
2h N1G–H1GA…O9 ^{xiv} N1G–H1GB…O1W ^{xiv}	0.88	1.99	2.78(5)	149
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii}	0.88 0.88 0.88	1.99 1.91 2.05	2.78(5) 2.70(6) 2.92(4)	149 150 172
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii} N2G-H2GA…O12T ^{viii}	0.88 0.88 0.88 0.88	1.99 1.91 2.05 2.22	2.78(5) 2.70(6) 2.92(4) 2.98(5)	149 150 172 147
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii} N2G-H2GA…O12T ^{viii} N3-H3A…O10T ^{vii}	0.88 0.88 0.88 0.87 0.87	1.99 1.91 2.05 2.22 2.27	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3)	149 150 172 147 161
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii} N2G-H2GA…O12T ^{viii} N3-H3A…O10T ^{vii} N3-H3B…O5T ^{xii}	0.88 0.88 0.88 0.87 0.87 0.87	1.99 1.91 2.05 2.22 2.27 2.21	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4)	149 150 172 147 161 160
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii} N2G-H2GA…O12T ^{viii} N3-H3A…O10T ^{vii} N3-H3B…O5T ^{xii} N2G-H2GB…O910	0.88 0.88 0.88 0.87 0.87 0.87 0.88 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4)	149 150 172 147 161 160 154
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii} N2G-H2GA…O12T ^{viii} N3-H3A…O10T ^{vii} N3-H3B…O5T ^{xii} N2G-H2GB…O910 N3G-H3GA…O9 ^{xiv}	0.88 0.88 0.88 0.87 0.87 0.87 0.88 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5)	149 150 172 147 161 160 154 136
2h N1G-H1GA···O9 ^{xiv} N1G-H1GB···O1W ^{xiv} N2-H2A···O45 ^{xii} N2G-H2GA···O12T ^{viii} N3-H3A···O10T ^{vii} N3-H3B···O5T ^{xii} N2G-H2GB···O910 N3G-H3GA···O9 ^{xiv} N3G-H3GB···O49	0.88 0.88 0.88 0.87 0.87 0.87 0.88 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4)	149 150 172 147 161 160 154 136 141
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii} N2G-H2GA…O12T ^{viii} N3-H3A…O10T ^{vii} N3-H3B…O5T ^{xii} N2G-H2GB…O910 N3G-H3GA…O9 ^{xiv} N3G-H3GB…O49 N4G-H4GA…O89 ^{xv}	0.88 0.88 0.88 0.87 0.87 0.87 0.88 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3)	149 150 172 147 161 160 154 136 141 169
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii} N3G-H2GA…O12T ^{viii} N3-H3A…O10T ^{vii} N3-H3B…O5T ^{xii} N2G-H2GB…O910 N3G-H3GA…O9 ^{xiv} N3G-H3GB…O49 N4G-H4GA…O89 ^{xv} N4G-H4GB…O67 ^{ix}	0.88 0.88 0.87 0.87 0.87 0.88 0.88 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08 2.14	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3) 2.98(3)	149 150 172 147 161 160 154 136 141 169 160
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii} N3-H2GA…O12T ^{viii} N3-H3A…O10T ^{vii} N3-H3B…O5T ^{xii} N2G-H2GB…O910 N3G-H3GA…O9 ^{xiv} N3G-H3GB…O49 N4G-H4GA…O89 ^{xv} N4G-H4GB…O67 ^{ix} N5G-H5GA…O2T	0.88 0.88 0.87 0.87 0.87 0.88 0.88 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08 2.14 2.47	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3) 2.98(3) 3.25(5)	149 150 172 147 161 160 154 136 141 169 160 150
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii} N2G-H2GA…O12T ^{viii} N3-H3A…O10T ^{vii} N3-H3B…O5T ^{xii} N2G-H2GB…O910 N3G-H3GA…O9 ^{xiv} N3G-H3GB…O49 N4G-H4GA…O89 ^{xv} N4G-H4GB…O67 ^{ix} N5G-H5GA…O2T N5G-H5GA…O25	0.88 0.88 0.88 0.87 0.87 0.87 0.88 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08 2.14 2.47 2.25	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3) 2.98(3) 3.25(5) 2.95(4)	149 150 172 147 161 160 154 136 141 169 160 150 137
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii} N2G-H2GA…O12T ^{viii} N3-H3A…O10T ^{vii} N3-H3B…O5T ^{xii} N2G-H2GB…O910 N3G-H3GA…O9 ^{xiv} N3G-H3GB…O49 N4G-H4GA…O89 ^{xv} N4G-H4GB…O67 ^{ix} N5G-H5GA…O2T N5G-H5GA…O25 N5G-H5GB…O8T ^{xv}	0.88 0.88 0.88 0.87 0.87 0.87 0.88 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08 2.14 2.47 2.25 1.89	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3) 2.98(3) 3.25(5) 2.95(4) 2.77(4)	149 150 172 147 161 160 154 136 141 169 160 150 137 172
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii} N2G-H2GA…O12T ^{viii} N3-H3A…O10T ^{vii} N3-H3B…O5T ^{xii} N2G-H2GB…O910 N3G-H3GA…O9 ^{xiv} N3G-H3GB…O49 N4G-H4GA…O89 ^{xv} N4G-H4GB…O67 ^{ix} N5G-H5GA…O2T N5G-H5GA…O25 N5G-H5GB…O8T ^{xv} N10G-H10A…O8T ^{xv}	0.88 0.88 0.87 0.87 0.87 0.88 0.88 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08 2.14 2.47 2.25 1.89 2.36	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3) 2.98(3) 3.25(5) 2.95(4) 2.77(4) 3.05(10)	149 150 172 147 161 160 154 136 141 169 160 150 137 172 136
2h N1G-H1GA···O9 ^{xiv} N1G-H1GB···O1W ^{xiv} N2-H2A···O45 ^{xii} N2G-H2GA···O12T ^{viii} N3-H3B···O5T ^{xii} N2G-H2GB···O910 N3G-H3GA···O9 ^{xiv} N3G-H3GB···O49 N4G-H4GA···O89 ^{xv} N4G-H4GB···O67 ^{ix} N5G-H5GA···O25 N5G-H5GB···O8T ^{xv} N10G-H10A···O8T ^{xv} N10G-H10B···O4T ^{xii}	0.88 0.88 0.88 0.87 0.87 0.87 0.88 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08 2.14 2.47 2.25 1.89 2.36 2.50	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3) 2.98(3) 3.25(5) 2.95(4) 2.77(4) 3.05(10) 3.23(9)	149 150 172 147 161 160 154 136 141 169 160 150 137 172 136 139
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii} N2G-H2GA…O12T ^{viii} N3-H3B…O5T ^{xii} N2G-H2GB…O910 N3G-H3GB…O49 N4G-H4GA…O89 ^{xv} N4G-H4GB…O67 ^{ix} N5G-H5GA…O2T N5G-H5GA…O25 N5G-H5GB…O8T ^{xv} N10G-H10A…O8T ^{xv} N10G-H10B…O4T ^{xii} N6G-H6GA…O14	0.88 0.88 0.88 0.87 0.87 0.87 0.88 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08 2.14 2.47 2.25 1.89 2.36 2.50 2.59	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3) 2.98(3) 3.25(5) 2.95(4) 2.77(4) 3.05(10) 3.23(9) 3.26(4)	149 150 172 147 161 160 154 136 141 169 160 150 137 172 136 139 134
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii} N2G-H2GA…O12T ^{viii} N3-H3B…O5T ^{xii} N2G-H2GB…O910 N3G-H3GB…O99 N4G-H4GA…O9 ^{xiv} N4G-H4GB…O67 ^{ix} N5G-H5GA…O2T N5G-H5GA…O25 N5G-H5GB…O8T ^{xv} N10G-H10A…O8T ^{xv} N10G-H10B…O4T ^{xii} N6G-H6GA…O14 N11G-H11A…O11T ^{xiii}	0.88 0.88 0.88 0.87 0.87 0.87 0.88 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08 2.14 2.47 2.25 1.89 2.36 2.50 2.59 2.12	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3) 2.98(3) 3.25(5) 2.95(4) 2.77(4) 3.05(10) 3.23(9) 3.26(4) 2.98(8)	149 150 172 147 161 160 154 136 141 169 160 150 137 172 136 139 134 170
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii} N2G-H2GA…O12T ^{viii} N3-H3B…O5T ^{xii} N2G-H2GB…O910 N3G-H3GB…O9 ^{xiv} N3G-H3GB…O49 N4G-H4GB…O67 ^{ix} N5G-H5GA…O2T N5G-H5GA…O2T N5G-H5GB…O8T ^{xv} N10G-H10A…O8T ^{xv} N10G-H10B…O4T ^{xii} N6G-H6GA…O14 N11G-H11A…O11T ^{xiii} N6G-H6GB…O6T ^{ix}	0.88 0.88 0.88 0.87 0.87 0.87 0.88 0.87 0.89 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08 2.14 2.47 2.25 1.89 2.36 2.50 2.59 2.12 2.01	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3) 2.98(3) 3.25(5) 2.95(4) 2.77(4) 3.05(10) 3.23(9) 3.26(4) 2.98(8) 2.87(4)	149 150 172 147 161 160 154 136 141 169 160 150 137 172 136 139 134 170 168
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii} N2G-H2GA…O12T ^{viii} N3-H3B…O5T ^{xii} N2G-H2GB…O910 N3G-H3GB…O49 N4G-H4GB…O67 ^{ix} N5G-H5GA…O27 N5G-H5GA…O27 N5G-H5GA…O27 N5G-H5GB…O8T ^{xv} N10G-H10A…O8T ^{xv} N10G-H10B…O4T ^{xii} N6G-H6GA…O14 N11G-H11A…O11T ^{xiii} N6G-H6GB…O6T ^{ix} N7G-H7GA…O411 ^{xiii}	0.88 0.88 0.88 0.87 0.87 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08 2.14 2.47 2.25 1.89 2.36 2.50 2.59 2.12 2.01 2.01	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3) 2.98(3) 3.25(5) 2.95(4) 2.77(4) 3.05(10) 3.23(9) 3.26(4) 2.98(8) 2.87(4) 2.84(4)	149 150 172 147 161 160 154 136 141 169 160 150 137 172 136 139 134 170 168 156
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii} N2G-H2GA…O12T ^{viii} N3-H3A…O10T ^{vii} N3-H3B…O5T ^{xii} N2G-H2GB…O910 N3G-H3GA…O9 ^{xiv} N3G-H3GB…O49 N4G-H4GB…O67 ^{ix} N5G-H5GA…O27 N5G-H5GA…O27 N5G-H5GB…O8T ^{xv} N10G-H10A…O8T ^{xv} N10G-H10B…O4T ^{xii} N6G-H6GA…O14 N11G-H11A…O11T ^{xiii} N6G-H6GB…O6T ^{ix} N7G-H7GA…O411 ^{xiii} N13G-H13A…O4T ^{xii}	0.88 0.88 0.88 0.87 0.87 0.87 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08 2.14 2.47 2.25 1.89 2.36 2.50 2.59 2.12 2.01 2.01 2.01 2.31	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3) 2.98(3) 3.25(5) 2.95(4) 2.77(4) 3.05(10) 3.23(9) 3.26(4) 2.98(8) 2.87(4) 2.84(4) 3.11(8)	149 150 172 147 161 160 154 136 141 169 160 150 137 172 136 139 134 170 168 156 151
2h N1G-H1GA…O9 ^{xiv} N1G-H1GB…O1W ^{xiv} N2-H2A…O45 ^{xii} N2G-H2GA…O12T ^{viii} N3-H3A…O10T ^{vii} N3-H3B…O5T ^{xii} N2G-H2GB…O910 N3G-H3GA…O9 ^{xiv} N3G-H3GB…O49 N4G-H4GB…O67 ^{ix} N5G-H5GA…O25 N5G-H5GA…O27 N5G-H5GB…O8T ^{xv} N10G-H10A…O8T ^{xv} N10G-H10B…O4T ^{xii} N6G-H6GA…O14 N11G-H11A…O11T ^{xiii} N6G-H6GB…O6T ^{ix} N7G-H7GA…O4T ^{xii} N13G-H13A…O4T ^{xii} N13G-H13A…O4T ^{xii} N7G-H7GA…O9 ^{xii}	0.88 0.88 0.88 0.87 0.87 0.87 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08 2.14 2.47 2.25 1.89 2.36 2.50 2.59 2.12 2.01 2.01 2.01 2.31 1.99	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3) 2.98(3) 3.25(5) 2.95(4) 2.77(4) 3.05(10) 3.23(9) 3.26(4) 2.98(8) 2.87(4) 2.84(4) 3.11(8) 2.83(4)	149 150 172 147 161 160 154 136 141 169 160 150 137 172 136 139 134 170 168 156 151 160
2h N1G-H1GA···O9×iv N1G-H1GB···O1W×iv N2-H2A···O45×ii N2G-H2GA···O12Tviii N3-H3A···O10Tvii N3-H3B···O5T×ii N2G-H2GB···O910 N3G-H3GA···O9×iv N3G-H3GB···O49 N4G-H4GB···O67ix N5G-H5GA···O2T N5G-H5GA···O2T N5G-H5GB···O8T×v N10G-H10A···O8T×v N10G-H10B···O4T×ii N6G-H6GA···O14 N11G-H11A···O11T×iii N6G-H6GB···O6Tix N7G-H7GA···O411×iii N13G-H13A···O4T×ii N7G-H7GA···O9×ii N14G-H14B···O6T	0.88 0.88 0.88 0.87 0.87 0.87 0.88 0.87 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08 2.14 2.47 2.25 1.89 2.36 2.50 2.59 2.12 2.01 2.01 2.01 2.31 1.99 2.38	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3) 2.98(3) 3.25(5) 2.95(4) 2.77(4) 3.05(10) 3.23(9) 3.26(4) 2.98(8) 2.87(4) 2.88(4) 3.11(8) 2.83(4) 3.13(8)	149 150 172 147 161 160 154 136 141 169 160 150 137 172 136 139 134 170 168 156 151 160 145
2h N1G-H1GA···O9×iv N1G-H1GB···O1W×iv N2-H2A···O45×ii N2G-H2GA···O12Tviii N3-H3A···O10Tvii N3-H3B···O5T×ii N2G-H2GB···O910 N3G-H3GA···O9×iv N3G-H3GB···O49 N4G-H4GA···O89×v N4G-H4GB···O67i× N5G-H5GA···O25 N5G-H5GB···O8T×v N10G-H10A···O8T×v N10G-H10B···O4T×ii N6G-H6GA···O14 N11G-H11A···O11T×iii N6G-H6GB···O6Ti× N7G-H7GA···O411×iii N13G-H13A···O4T×ii N7G-H7GA···O9×ii N14G-H14B···O6T N8G-H8GA···O612	0.88 0.88 0.88 0.87 0.87 0.87 0.88 0.87 0.88 0.88 0.88 0.88 0.88 0.87 0.88 0.88 0.88 0.88 0.88 0.87 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08 2.14 2.47 2.25 1.89 2.36 2.50 2.59 2.12 2.01 2.01 2.01 2.01 2.31 1.99 2.38 2.15	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3) 2.98(3) 3.25(5) 2.95(4) 2.77(4) 3.05(10) 3.23(9) 3.26(4) 2.98(8) 2.87(4) 2.88(4) 3.11(8) 2.83(4) 3.13(8) 3.00(5)	149 150 172 147 161 160 154 136 141 169 160 150 137 172 136 139 134 170 168 156 151 160 145 163
2h N1G-H1GA···O9×iv N1G-H1GB···O1W×iv N2-H2A···O45×ii N2G-H2GA···O12Tviii N3-H3A···O10Tvii N3-H3B···O5T×ii N2G-H2GB···O910 N3G-H3GA···O910 N3G-H3GA···O990 N4G-H4GB···O49 N4G-H4GA···O89×v N4G-H4GB···O49 N4G-H4GB···O67i× N5G-H5GA···O25 N5G-H5GB···O8T×v N10G-H10A···O8T×v N10G-H10B···O4T×ii N6G-H6GA···O14 N11G-H11A···O11T×iii N6G-H6GB···O6Ti× N7G-H7GA···O411×iii N13G-H13A···O4T×ii N7G-H7GA···O9×ii N14G-H14B···O6T N8G-H8GA···O612 N15G-H15A···O12Ti	0.88 0.88 0.88 0.87 0.87 0.87 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08 2.14 2.47 2.25 1.89 2.36 2.50 2.59 2.12 2.01 2.01 2.01 2.01 2.31 1.99 2.38 2.15 2.36	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3) 2.98(3) 3.25(5) 2.95(4) 2.77(4) 3.05(10) 3.23(9) 3.26(4) 2.98(8) 2.87(4) 2.84(4) 3.11(8) 2.83(4) 3.13(8) 3.00(5) 3.01(5)	149 150 172 147 161 160 154 136 141 169 160 150 137 172 136 139 134 170 168 156 151 160 145 163 132
2h N1G-H1GA···O9×iv N1G-H1GB···O1W×iv N2-H2A···O45×ii N2G-H2GA···O12Tv ⁱⁱⁱ N3-H3A···O10Tv ⁱⁱ N3-H3B···O5T×ii N2G-H2GB···O910 N3G-H3GA···O9×iv N3G-H3GB···O49 N4G-H4GA···O89×v N4G-H4GB···O67 ^{ix} N5G-H5GA···O2T N5G-H5GB···O8T×v N10G-H10A···O8T×v N10G-H10B···O4T×ii N6G-H6GA···O14 N11G-H11A···O11T×iii N6G-H6GB···O6T ^{ix} N7G-H7GA···O411×iii N13G-H13A···O4T×ii N7G-H7GA···O9×ii N14G-H14B···O6T N8G-H8GA···O12 N15G-H15A···O12T ⁱ N15G-H15B···O23	0.88 0.88 0.88 0.87 0.87 0.87 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08 2.14 2.47 2.25 1.89 2.36 2.50 2.59 2.12 2.01 2.01 2.01 2.01 2.31 1.99 2.38 2.15 2.36 2.33	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3) 2.98(3) 3.25(5) 2.95(4) 2.77(4) 3.05(10) 3.23(9) 3.26(4) 2.98(8) 2.87(4) 2.84(4) 3.11(8) 2.83(4) 3.13(8) 3.00(5) 3.01(5) 3.08(4)	149 150 172 147 161 160 154 136 141 169 160 150 137 172 136 139 134 170 168 156 151 160 145 163 132 143
2h N1G-H1GA···O9×iv N1G-H1GB···O1W×iv N2-H2A···O45×ii N2G-H2GA···O12Tv ⁱⁱⁱ N3-H3A···O10Tv ⁱⁱ N3-H3B···O5T×ii N2G-H2GB···O910 N3G-H3GA···O9×iv N3G-H3GB···O49 N4G-H4GB···O67 ^{ix} N5G-H5GA···O27 N5G-H5GA···O27 N5G-H5GB···O8T×v N10G-H10B···O4T×ii N6G-H6GA···O14 N11G-H11A···O11T×iii N6G-H6GB···O6T ^{ix} N7G-H7GA···O411×iii N13G-H13A···O4T×ii N7G-H7GA···O9×ii N14G-H14B···O6T N8G-H8GA···O12T ⁱ N15G-H15B···O23 N8G-H8GB···O8×ii	0.88 0.88 0.88 0.87 0.87 0.87 0.88 0.87 0.88	1.99 1.91 2.05 2.22 2.27 2.21 2.12 2.35 2.32 2.08 2.14 2.47 2.25 1.89 2.36 2.50 2.59 2.12 2.01 2.01 2.01 2.01 2.31 1.99 2.38 2.15 2.36 2.33 2.34	2.78(5) 2.70(6) 2.92(4) 2.98(5) 3.11(3) 2.97(4) 2.94(4) 3.04(5) 3.06(4) 2.94(3) 2.98(3) 3.25(5) 2.98(3) 3.25(5) 2.95(4) 2.77(4) 3.05(10) 3.23(9) 3.26(4) 2.98(8) 2.87(4) 2.84(4) 3.11(8) 2.83(4) 3.13(8) 3.00(5) 3.08(4) 3.20(5)	149 150 172 147 161 160 154 136 141 169 160 150 137 172 136 139 134 170 168 156 151 160 145 163 132 143

Table S3 (continuation). Geometrical parameters of the intermolecular N–H…O and C–H…O type hydrogen bonds in **1**, **2a** and **2h**.

Symmetry codes: i) x, ½-y, ½+z; ii) 1-x, -½+y, ½-z; iii) -x, -1/2+y, ½-z; iv) 2-x, -1/2+y, ½-z; v) -1+x, y, z; vi) 2-x, 1-y, 1-z; vii) 1-x, ½+y, ½-z; viii) 1-x, -y, -z; ix) -x, -1/2+y, ½-z; xi 1+x, y, z; xi) 1+x, y, z; xi 1+x, y, z; xii) -x, ½+y, ½-z; xiii) -x, -y, -z; ix) x, -1/2+y, -1/2+z; xv) 1+x, y, z; xi

Table S4 Distances (Å) from the O atoms of W1-W2-W3 trimers to picolinate ring centroids in **2a** and **2h** ($Cg_{pic} = N1A$, C2A, C3A, C4A, C5A, C6A).

	2a	2h
O1T…Cg _{pic}	3.70(2)	3.63(3)
O2T…Cg _{pic}	4.97(2)	5.16(3)
O3T…Cg _{pic}	4.13(3)	4.17(2)
O12…Cg _{pic}	3.79(2)	3.87(2)
O13····Cg _{pic}	3.23(2)	3.26(2)
O23····Cg _{pic}	3.98(2)	4.13(2)

Table S5. Distances (Å) from the O atoms of W1-W2-W3 trimers to picolinate ring planes (N1A, C2A, C3A, C4A,C5A, C6A) in **2a** and **2h**

	2a	2h
O1T…plane	2.724	2.864
O2T…plane	2.676	2.728
O3T…plane	2.613	2.475
O12…plane	3.212	3.357
O13…plane	3.159	3.170
O23…plane	3.109	3.100