Supporting Information for

An acid-chromic luminescent lanthanide metallogel for time-dependent information encryption and anti-counterfeiting

Binbin Zhang, *a b Yu Gan, a Chao Liu, a Qiuyu He, a Jingye Chen, a Jiaqi Li, a Yanxiang You, a

Wenxiu Fan, ^a Yujie Wang,^aand Guangyue Bai*^b

*Corresponding authors

^a Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan

Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China

E-mail: <u>zbb@hist.edu.cn;</u>

^b Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals,

Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Post-doctoral

Research Center, School of Chemistry and Chemical Engineering, Henan Normal University,

Xinxiang, Henan 453007, P. R. China

E-mail: <u>baiguangyue@htu.cn</u>

Fig. S1. The ¹H NMR spectrum of H_3L .

Results v/v Solvents	9/1	8/2	7/3	6/4	5/5	4/6	3/7	2/8	1/9
DMF/CH ₃ OH	TS								
DMF/H ₂ O	TS	TS	G	G	G	G	G	G	TS
DMSO/H ₂ O	TS	TS	TS	TS	G	G	G	G	G
DMF/CH ₃ CH ₂ OH	TS								
DMSO/CH ₃ OH	TS								
DMSO/CH ₃ CH ₂ OH	TS								

Table S1. Gelation tests of H₃L/Tb³⁺ in different mixed solvents

G = gel; TS = turbid solution. $C_{\text{H}_{3}\text{L}} = 0.02 \text{ mol/L}; C_{\text{Tb}}^{3+} = 0.02 \text{ mol/L}; C_{\text{NaOH}} = 0.04 \text{ mol/L}.$

Fig. S2. The influence of the mixed solvents of (a) DMSO/H₂O and (b) DMF/H₂O on the luminescence of H_3L/Tb^{3+} (λ_{ex} =344 nm).

Fig. S3. The luminescence decay curve of the H_3L/Tb^{3+} gel ($\lambda_{ex} = 344$ nm and $\lambda_{mon} = 546$ nm)

Fig. S4. SEM image of the dried product of H₃L.

Fig. S5. FT-IR spectra of the H_3L and the H_3L/Tb^{3+} xerogel.

Fig. S6. The adsorption spectra of SR101 and the emission spectra of H_3L/Tb^{3+} .

Table S2. Analyzed lifetime data for Tb^{3+} in H_3L/Tb^{3+} gel and SR101 containing H_3L/Tb^{3+} gel with variable SR101 concentration.

SR101 (µM)	Lifetime (µs)	Average lifetime (µs)	Energy transfer efficiency (%)	
0	τ_{1} =731.99; B_{1} =1654.21 τ_{2} =1142.92; B_{2} =3143.99 2 =1.042	1039.35	0	
2.5	τ_{1} =594.49; B_{1} =1233.18 τ_{2} =1110.34; B_{2} =3513.61 2 =1.132	1028.74	1.02	
5	τ_{1} =539.07; B_{1} =1306.95 τ_{2} =1079.34; B_{2} =3307.34 2 =1.052	990.29	4.72	
10	τ_{1} =424.50; B_{1} =1274.34 τ_{2} =1016.59; B_{2} =3337.56 2 =1.152	935.17	10.02	
15	τ_{1} =383.40; B_{1} =1407.10 τ_{2} =991.30; B_{2} =3195.78 2 =1.125	902.85	13.13	
25	τ_{1} =355.32; B_{1} =1472.89 τ_{2} =966.68; B_{2} =3016.09 2 =1.091	873.64	15.94	
35	τ_{1} =310.26; B_{1} =1709.80 τ_{2} =890.17; B_{2} =2735.85 2 =1.171	786.44	24.33	
70	^τ 1=217.37; ^B 1=2044.86	620.63	40.29	

Fig. S7. Changes of emission spectra and photographs of SR101-doped H_3L/Tb^{3+} gels after spray of glucono- δ -lactone (0.2 mol/L). (a) SR101 = 0 μ M, (b) SR101 = 5 μ M, (c) SR101 = 10 μ M, (d) SR101 = 25 μ M, (e) SR101 = 70 μ M.