Interlayer confinement mediated oxidation of Americium by sodium bismuthate and stability of its higher redox states in acidic solution

Parveen K. Verma, Arunasis Bhattacharyya*, Prasanta K. Mohapatra *

Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, INDIA

Contents

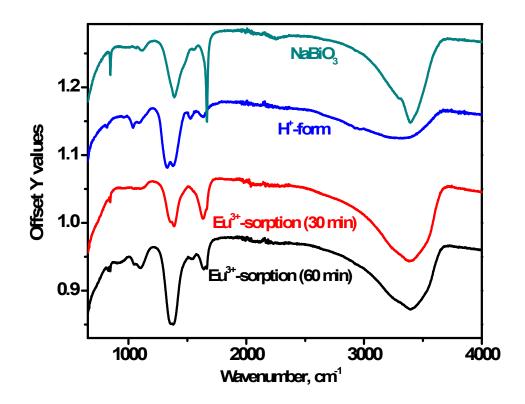
NaBiO ₃ characterization	2
X-ray diffraction analysis	2
ATR-FTIR of NaBiO ₃ .xH ₂ O (x= 2-3)and its derivatives	3
Hexavalent Americium reduction rate	4
Am ³⁺ oxidation at higher ionic strength	5
Americium oxidation assisted dissolution of $NaBiO_3.xH_2O$ (x= 2-3)	7
References	9

List of Table and Figures

Table S1: Common methods for oxidizing Am^{3+} to AmO_2^{2+} in acidic medium
Figure S 1. The ATR-FTIR of pristine, acid treated (H^+ -form), and Eu^{3+} sorbed NaBiO ₃ .xH ₂ O (x= 2-3) at different time of equilibration
Figure S 2. Variation in the rate of AmO_2^{2+} conversion to the lower valent Am oxidation state
Figure S3.Comparison of XRD spectra of pristine NaBiO ₃ , with acid equilibrated NaBiO ₃ at different time
intervals in pH 1 HNO ₃
Figure S 4. The vis-NIR spectra of initial Am ³⁺ and after its oxidation in presence and absence of 1 M NaClO ₄ in pH 1 HNO ₃
Figure S 5. The emission and excitation spectra Eu ³⁺ of aqueous phase before and after equilibration with
$NaBiO_3.xH_2O$ (x= 2-3)
Figure S 6. The vis-NIR spectra of Am-NaBiO ₃ .xH ₂ O (x= 2-3) supernatant after 20 minutes of equilibration at pH 1 HNO ₃

Initial	Conditions	Final	Ref.
Am ³⁺	NaBiO ₃ at room temperature in nitric acid	AmO ₂ ²⁺	1, 2
	NaBiO ₃ at room temperature in H ₃ PO ₄		3
	Cu ³⁺ -iodate in nitric acid		4
	Excess (NH ₄)S ₂ O ₈ in 0.1 M nitric acid at 85°C		5
	Na ₄ XeO ₆ /Ag ⁺ in 1 M nitric acid		6
	0.013 M CsSO ₄ F/0.001 M Ag ⁺ in 0.9 M nitric acid		7
	0.5% AgNO ₃ / 2.5% (NH ₄)S ₂ O ₈ in 0.3 M nitric acid		8
	Electrochemical in 6 M HClO ₄		5
	Electrochemical oxidation using a dipyrazinylpyridine modified ITO electrode in 0.1 M nitric acid		9
	Photolytic conversion in 0.1 M nitric acid using a $Ti TiO_2$ electrode		10
	Resonance enhanced multi photon excitation for Am ³⁺ oxidation		11

Table S1: Common methods for oxidizing Am^{3+} to AmO_2^{2+} in acidic medium.


NaBiO₃ characterization

X-ray diffraction analysis

The XRD data of the NaBiO₃ used in the present study matched well with the JCPDF file number PDF # 30-1161, suggesting the presence of hydrated form of NaBiO₃ as NaBiO₃.xH₂O (x= 2-3)(NBO).¹² The previous literature studies on the Am³⁺ oxidation by NaBiO₃ is mainly done in HNO₃ medium, except that by Rice et al.,³ where other acidic mediums were chosen Therefore, it essential to understand the structural changes in NaBiO₃ upon contact with HNO₃. The previous study¹³ in this direction showed color change of pristine NaBiO₃ to dark brown upon contact with HNO₃. The study used different HNO₃: NaBiO₃ molar ratios and the mixture were equilibrated for 2 hours and the structural changes were followed by XRD. Since the overall composition, purity, nature of impurity in sodium bismuthate, can vary from source to source and can have profound effect on its properties; we have revisited the effect of HNO₃ on NaBiO₃ at a lower acidity (pH 1) suitable for the present studies. The NaBiO₃.xH₂O (x= 2-3)was equilibrated with pH 1 HNO₃ for 24 hours and the solid was collected after centrifugation, air dried followed by which the XRD was recorded. The color of NaBiO₃.xH₂O (x= 2-3) changed from light yellow to brown (Fig. 1(a)) in <30 minutes of equilibration with pH1 HNO₃ which was also observed by others.¹³ The XRD of the acid equilibrated NaBiO₃.xH₂O (x= 2-3)(H⁺-form) suggested loss of crystallinity and formation of a different amorphous phase than NaBiO₃.xH₂O (x= 2-3)(Fig. 1(a)) as also observed by Kozma et al.¹³

ATR-FTIR of NaBiO₃.xH₂O (x= 2-3)and its derivatives

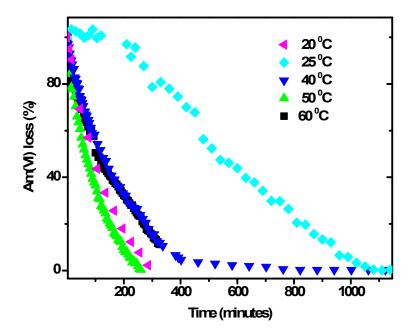
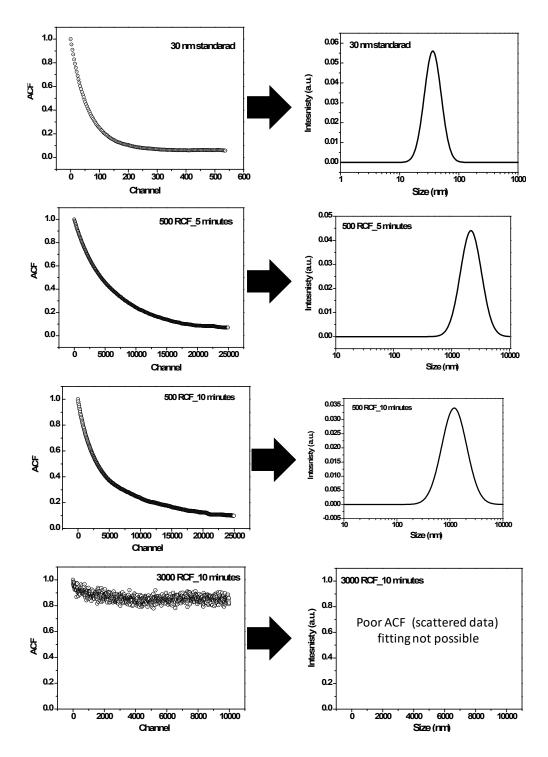
The FTIR spectra showed change in the 1000-2000 cm⁻¹ region for the acid treated NaBiO₃.xH₂O (x= 2-3)as compared with the pristine compound (Fig. S1). The ATR-FTIR of the NaBiO₃.xH₂O (x= 2-3)and acid treated NaBiO₃.xH₂O (x= 2-3)shows substantial difference. The peak in the 500-1000 Cm-1 region due to the Bi-O-Bi stretching¹⁴ is shifted from 846 cm-1 to 820 cm⁻¹ suggesting structural changes in the BiO₆ octahedra of NaBiO₃.xH₂O (x= 2-3). The Bi-O stretching peak at 1390 cm-1 also shifted to 1378 cm-1, with a new peak at 1328 cm-1. These changes can be attributed due to the in situ conversion of Bi⁵⁺→Bi³⁺ in the BiO₆ octahedra of NaBiO₃.xH₂O (x= 2-3).^{13, 15} Strong absorption peaks in the range of 1600–1700 cm-1 and 3000–3800 cm-1 are characteristic absorptions of water¹⁶, along with some BiO₃⁻ absorption peaks. Although, the exact assignment of the BiO3- and water in 1600–1700 cm-1 region is difficult but the change in the water structure after acid treatment can be pointed out by change in the >3000 cm⁻¹ region.

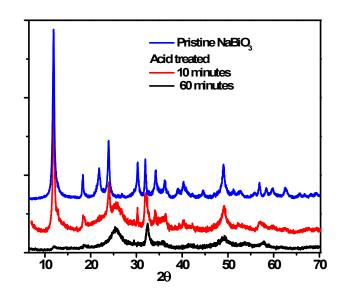
Figure S 1. The ATR-FTIR of pristine, acid treated (H⁺-form), and Eu³⁺ sorbed NaBiO₃.xH₂O (x=2-3) at different time of equilibration.

The FTIR of Eu^{3+} sorbed NaBiO₃.xH₂O (x= 2-3) at two different equilibration time (30 minutes and 60 minutes) was also recorded. The two FTIR spectra are mainly dominated by the features corresponding to the H⁺-form of the NaBiO₃.xH₂O (x= 2-3), especially when equilibrated for longer time interval. The ATR-FTIR after 30 minutes of equilibration shows features due to both NaBiO₃.xH₂O (x= 2-3)and H⁺-form due to its incomplete conversion to H⁺-form.

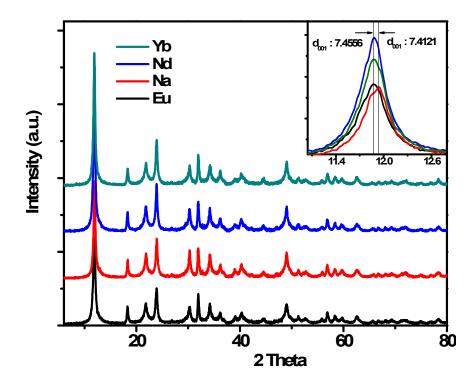
Hexavalent Americium reduction rate

The reduction of AmO_2^{2+} after equilibration with NaBiO₃.xH₂O (x= 2-3)at pH 1 HNO₃ was followed with time at different temperature. All the equilibration for oxidation was carried out at 25 °C and the sample was transferred in 1 ml screw cap quartz cuvette with 10 mm path length for temperature and time dependent spectral measurements. The temperate dependent reduction of AmO_2^{2+} was followed using coupled Peltier attachment of Jasco V-530 double beam spectrophotometer. We didn't observed any definite trends for the AmO_2^{2+} decay with temperature and the rates of the decay also varies just by changing the centrifugation speed for separation of solid NaBiO₃. xH_2O (x= 2-3)from suspension. The reasoning for this variation along with other observation is discussed in main manuscript.


Figure S 2. Variation in the rate of AmO_2^{2+} conversion to the lower valent Am oxidation state.

DLS studies


The DLS studies were performed to understand the effect of colloidal particle density on the Am^{3+} oxidation and its stability of its higher oxidation states. The NaBiO₃ was equilibrated with pH 1 for 15-20 minutes and centrifuged at 500RCF and 3000 RCF for different time. The particle size distribution in the supernatant was followed using Particle size analyzer (Corduan, France). The 30 nm standard (NanosphereTM size standard (Thermo fisher)) was used prior to the supernatant measurements to check the machine performance. The standard shows a value of 31.0 (±0.2) nm using inbuilt cumulant algorithm for the auto correlation function (ACF) fitting. The decay of ACF for sample centrifuged at 500 RCF for 5 minute and 10 minutes confirms the presence of NaBiO₃ particle sin the supernatant. However, supernatant obtained after 3000 RCF centrifugation for 10 minutes shows poor ACF decay and the cumulant analysis fails to give any suitable size (**Fig. S3**). This poor ACF decay suggests absence of any particle in the supernatant.

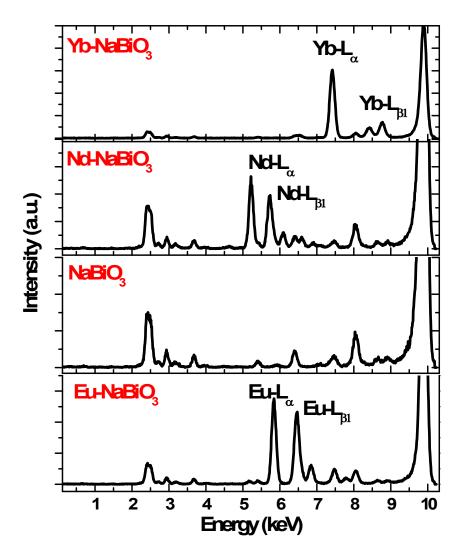

Figure S3. The variation in the autocorrelation function (ACF) after centrifugation at 500 RCF for 5 and 10 minutes and 3000 RCF for 10 minutes for NaBiO₃ suspension equilibrated with pH 1 HNO₃ (left). The resultant size distribution using cumulant algorithm under different centrifugation conditions (right).

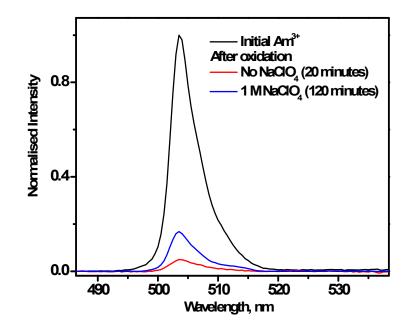
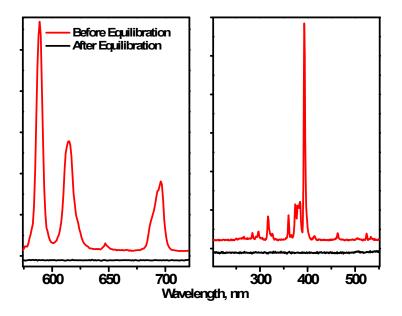
Figure S4.Comparison of XRD spectra of pristine NaBiO₃, with acid equilibrated NaBiO₃ at different time intervals in pH 1 HNO₃.

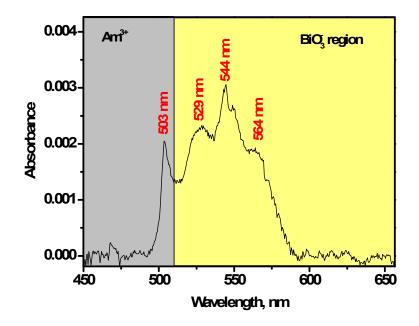
Figure S5. The XRD of the pristine NaBiO₃ and lanthanides loaded NaBiO3, pH ~4, Time of equilibration: 24 hrs, [Ln]: 0.1 M, NaBiO₃ : 30 mg/ml.

Figure S6. The XRF of the pristine NaBiO₃ and lanthanides loaded NaBiO3, pH ~4, Time of equilibration: 24 hrs, [Ln]: 0.1 M, NaBiO₃: 30 mg/ml.

Am³⁺ oxidation at higher ionic strength

The oxidation of Am^{3+} at higher ionic strength (1M NaClO₄) was carried out at pH 1 HNO₃ and the results were compared to the Am^{3+} oxidation without any NaClO₄. The quantitative oxidation of Am^{3+} (>95 %) was observed in the absence of NaClO₄ within 20 minutes whereas only 80-83% oxidation of Am^{3+} was observed at higher ionic strength even after 120 minutes of equilibration with NaBiO₃.xH₂O (x= 2-3)in pH 1 HNO₃.


Figure S 7. The vis-NIR spectra of initial Am^{3+} and after its oxidation in presence and absence of 1 M NaClO₄ in pH 1 HNO₃

Americium oxidation assisted dissolution of NaBiO₃.xH₂O (x= 2-3)

The dissolution of NaBiO₃.xH₂O (x= 2-3) was investigated in the presence of redox inactive Eu³⁺ and redox active Am³⁺ in pH 1 HNO₃. The photoluminescence of the Eu³⁺ aqueous solution before and after equilibration with NaBiO₃.xH₂O (x= 2-3) studies suggested >99% uptake of Eu³⁺ onto the NaBiO₃.xH₂O (x= 2-3)(Fig. S4). The Uv-vis spectra of the supernatant of Eu³⁺-NaBiO₃.xH₂O (x= 2-3) system lacks any peak of BiO₃- even after 72 hrs of equilibration. However, distinct peak for BiO₃⁻ (Fig. S4, yellow region,) along with peak at 503 due to residual Am³⁺ (grey region, Fig. S5) was seen for Am³⁺-NaBiO₃.xH₂O (x= 2-3) system. The lack of peak in the Eu³⁺-NaBiO₃.xH₂O (x= 2-3) system and its presence in Am³⁺-NaBiO₃.xH₂O (x= 2-3)system, suggest role of Am³⁺ redox transformation in the dissolution of NaBiO₃.xH₂O (x= 2-3)even at pH 1 HNO₃.This observation along with Ce³⁺ oxidation and discussed in the main manuscript.

Figure S8. The emission and excitation spectra Eu^{3+} of aqueous phase before and after equilibration with NaBiO₃.xH₂O (x= 2-3).

Figure S 9. The vis-NIR spectra of Am-NaBiO₃.xH₂O (x= 2-3) supernatant after 20 minutes of equilibration at pH 1 HNO₃

- 1. M. Hara and S. Suzuki, *Journal of Radioanalytical Chemistry*, 1977, **36**, 95-104.
- 2. B. J. Mincher, L. R. Martin and N. C. Schmitt, *Inorg. Chem.*, 2008, **47**, 6984-6989.
- 3. N. T. Rice, E. Dalodière, S. L. Adelman, Z. R. Jones, S. A. Kozimor, V. Mocko, H. D. Root and B. W. Stein, *Inorg. Chem.*, 2022, **61**, 12948-12953.
- 4. S. I. Sinkov and G. J. Lumetta, *Radiochimica Acta*, 2015, **103**, 541-552.
- 5. L. B. Asprey, S. E. Stephanou and R. A. Penneman, J. Am. Chem. Soc., 1951, **73**, 5715-5717.
- 6. H. P. Holcomb, *Anal. Chem.*, 1965, **37**, 415-415.
- 7. E. Appebnan, H. Diamond, E. Horwitz and J. Sullivan, *Radiochimica Acta*, 1991, **55**, 61-64.
- 8. B. Myasoedov, V. Mikhailov, I. Lebedev, O. Koiro and V. Y. Frenkel, *Preparation and stability of Am (IV) and Am (VI) in phosphoric acid solutions*, Inst. of Geochemistry and Analytical Chemistry, Moscow, 1973.
- 9. M. J. Lopez, M. V. Sheridan, J. R. McLachlan, T. S. Grimes and C. J. Dares, *Chem. Commun.*, 2019, **55**, 4035-4038.
- 10. M. V. Sheridan, J. R. Gonzalez-Moya, J. R. McLachlan, T. S. Grimes and C. J. Dares, *ACS Applied Energy Materials*, 2021, **4**, 11854-11857.
- 11. S. Matsuda, K. Yokoyama, T. Yaita, T. Kobayashi, Y. Kaneta, M. Simonnet, T. Sekiguchi, M. Honda, K. Shimojo, R. Doi and N. Nakashima, *Science Advances*, 2022, **8**, 1991-1991.
- 12. Y. Feng, X. Huang, Q. Zhan and D. Jiang, *Journal of Materials Science: Materials in Electronics*, 2019, **30**, 10543-10549.
- 13. K. Kozma, T. W. Surta, P. I. Molina, I. Lyubinetsky, W. Stoxen, N. M. Byrne, M. Dolgos and M. Nyman, *J. Solid State Chem.*, 2018, **263**, 216-223.
- 14. L. Liu, J. Jiang, S. Jin, Z. Xia and M. Tang, *CrystEngComm*, 2011, **13**, 2529-2532.
- 15. Y. Ding, F. Yang, L. Zhu, N. Wang and H. Tang, *Applied Catalysis B: Environmental*, 2015, **164**, 151-158.
- 16. F. Gan, K. Wu, F. Ma and C. Du, *Journal*, 2020, **25**.

References