## **Electronic Supplementary Information (ESI)**

## Solvent vapour-responsive structural transformations in molecular crystals composed of a luminescent mononuclear aluminium(III) complex

Fumiya Kobayashi\*.<sup>a</sup>, Azuki Yoshida<sup>a</sup>, Misato Gemba<sup>a</sup>, Yuta Takatsu<sup>a</sup> and Makoto Tadokoro\*.<sup>a</sup>

<sup>a</sup> Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.

Corresponding author:

- F. Kobayashi, fkobayashi@rs.tus.ac.jp
- M. Tadokoro, tadokoro@rs.tus.ac.jp



**Figure S1.** PXRD patterns for the crystalline samples of  $Al \cdot Me_2CO$  (red) and  $Al \cdot MeCN$  (blue) and  $Al \cdot DMSO$  (green) at 298 K and their simulations (black). The additional peak observed for  $Al \cdot MeCN$  ( $2\theta = 8^\circ$ ) and  $Al \cdot DMSO$  are attributed to the de-solvation of lattice solvents on the crystal surface.



Figure S2. FT-IR spectra for Al·Me<sub>2</sub>CO (red), Al·MeCN (blue) and Al·DMSO (black).

| Compound                            | Al·Me <sub>2</sub> CO | Al·MeCN                | Al·DMSO                                            |
|-------------------------------------|-----------------------|------------------------|----------------------------------------------------|
| Temperature / K                     | 173                   | 173                    | 173                                                |
| Formula                             | $C_{21}H_{24}NAlO_6$  | $C_{20}H_{21}N_2AlO_5$ | C <sub>20</sub> H <sub>24</sub> NSAlO <sub>6</sub> |
| Crystal system                      | Orthorhombic          | Orthorhombic           | Monoclinic                                         |
| Space group                         | <i>P</i> bca (#61)    | <i>P</i> bca (#61)     | $P2_1/n$ (#14)                                     |
| <i>a</i> / Å                        | 20.5632(7)            | 20.2047(13)            | 13.6042(18)                                        |
| b / Å                               | 8.3967(2)             | 8.4969(6)              | 8.4261(11)                                         |
| <i>c</i> / Å                        | 23.2444(7)            | 22.9627(15)            | 17.987(2)                                          |
| lpha / °                            | 90                    | 90                     | 90                                                 |
| eta / °                             | 90                    | 90                     | 94.771(5)                                          |
| γ / °                               | 90                    | 90                     | 90                                                 |
| $V/ m \AA^3$                        | 4013.4(2)             | 3942.2(5)              | 2054.8(5)                                          |
| Ζ                                   | 8                     | 8                      | 4                                                  |
| $D_{\rm calc}$ / g cm <sup>-3</sup> | 1.368                 | 1.336                  | 1.401                                              |
| $\mu$ / mm <sup>-1</sup>            | 0.140                 | 0.137                  | 0.238                                              |
| F(000)                              | 1744                  | 1664                   | 912                                                |
| $R_{1,} w R_{2} (I > 2\sigma(I))$   | 0.0407, 0.0916        | 0.0655, 0.1391         | 0.0984, 0.1184                                     |
| $R_1$ , $wR_2$ (for all data)       | 0.0613, 0.1068        | 0.1523, 0.2035         | 0.2526, 0.2692                                     |
| GOF                                 | 1.071                 | 1.056                  | 1.054                                              |
| Reflections/Parameters              | 4098/267              | 4039/257               | 3565/268                                           |
| CCDC                                | 2337339               | 2337340                | 2337341                                            |

Table S1. Crystallographic data for Al·Me<sub>2</sub>CO, Al·MeCN and Al·DMSO.



Figure S3. Crystal structure of Al·Me<sub>2</sub>CO at 173 K with the atom-numbering scheme.



**Figure S4.** Crystal packing structures for  $Al \cdot Me_2CO$  at 173 K along (a) *a*, (b) *b*, (c) *c* axes. Hydrogen atoms are omitted for clarity.



**Figure S5.** Dimeric structure constructed by hydrogen bonding of (a) **Al·Me<sub>2</sub>CO**, (b) **Al·MeCN** and (c) **Al·DMSO** (bottom).



**Figure S6.** Intermolecular interactions of (a) **Al·Me<sub>2</sub>CO**, (b) **Al·MeCN** and (c) **Al·DMSO** in the crystal at 173 K. Blue dashed lines represent the hydrogen-bonding of dimers, orange dashed lines represent the CH $-\pi$  interaction and light green dashed lines represent the CH-O interaction between each dimer.



**Figure S7.** Intermolecular interactions around the lattice solvent in (a)  $Al \cdot Me_2CO$ , (b)  $Al \cdot MeCN$  and (c)  $Al \cdot DMSO$  at 173 K. Blue dashed lines represent the hydrogen-bonding of dimers, orange dashed lines represent the CH– $\pi$  interaction and light green dashed lines represent the CH–O interaction between each dimer.



Figure S8. Crystal structure of Al·MeCN at 173 K with the atom-numbering scheme.



**Figure S9.** Crystal packing structures of **Al·MeCN** at 173 K along (a) a, (b) b, (c) c axis. Hydrogen atoms and disordered atoms are omitted for clarity.



Figure S10. Crystal structure of Al·DMSO at 173 K with the atom-numbering scheme.



**Figure S11.** Crystal packing structures of **Al·DMSO** at 173 K along (a) a, (b) b, (c) c axis. Hydrogen atoms and disordered atoms are omitted for clarity.

|                           | ~ / -    |
|---------------------------|----------|
| $C(1) \cdots H(5) - C(5)$ | 2.848    |
| C(4)····H(20A)–C(20)      | 2.862    |
| C(5)····H(20A)–C(20)      | 2.885    |
| C(7)····H(18A)–C(18)      | 2.894    |
| C(17)····H(14C)–C(14)     | 2.836    |
| C(17)····H(20B)–C(20)     | 2.714    |
| N(1)····H(18B)–C(18)      | 2.714    |
| O(1)····H(21A)–C(20)      | 2.634    |
| O(4)····H(20A)–C(20)      | 2.862    |
| O(5)····O(6)              | 2.845(2) |
| O(5)····H(18B)–C(18)      | 2.684    |

Table S2. Selected distances of intermolecular interactions (Å) for Al·Me<sub>2</sub>CO.

Table S3. Selected distances of intermolecular interactions (Å) for Al·MeCN.

| C(7)····H(18B)–C(18) | 2.885    |
|----------------------|----------|
| C(7)····H(18C)–C(18) | 2.729    |
| O(1)····H(20B)–C(20) | 2.674    |
| $N(2)\cdots O(5)$    | 2.886(5) |
| O(4)····H(7)–C(7)    | 2.700    |
| O(5)····H(18B)–C(18) | 2.640    |
|                      |          |

| Table S4 Selected distances of i | intermolecular interactions ( | ۲Å١ | for Al-DMSO   |
|----------------------------------|-------------------------------|-----|---------------|
| Table 54. Selected distances of  | intermolecular interactions ( | A)  | IOI APDINISU. |

| C(4)····H(20C)–C(20)  | 2.898    |
|-----------------------|----------|
| C(7)···H(18A)–C(18)   | 2.884    |
| C(7)····H(18C)–C(18)  | 2.784    |
| O(1)…H(19A)–C(19)     | 2.674    |
| O(5)…O(6)             | 2.722(8) |
| O(5)…H(18C)–C(18)     | 2.664    |
| C(16)····H(20A)–C(20) | 2.828    |
| C(17)····H(20A)–C(20) | 2.628    |
|                       |          |



**Figure S12.** Hirshfeld  $d_{norm}$  surface analysis for (a) **Al·Me<sub>2</sub>CO**, (b) **Al·MeCN** and (c) **Al·DMSO**, obtained by using CrystalExplorer. Red regions of the surface indicate points where interactions with adjacent atoms exceed dispersion forces.

[Ref.] S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka and M. A. Spackman, *CrystalExplorer 3.1*, University of Western Australia, 2012.



**Figure S13.** TGA curve for (a) **Al·Me<sub>2</sub>CO**, (b) **Al·MeCN** and (c) **Al·DMSO**. 17.7%, 15.1% and 22.2% weight loss were observed for **Al·Me<sub>2</sub>CO**, **Al·MeCN** and **Al·DMSO** above 230 °C, respectively. This shows good agreement with the Me<sub>2</sub>CO, MeCN and DMSO content of **Al·Me<sub>2</sub>CO**, **Al·MeCN** and **Al·DMSO** (H<sub>2</sub>O+Me<sub>2</sub>CO = 18.4%, H<sub>2</sub>O+MeCN = 14.9%, H<sub>2</sub>O+DMSO = 22.2%), respectively.



**Figure S14.** Schematic representation of the procedures for the solvent vapour-induced structural transformation of **Al·Me<sub>2</sub>CO**, **Al·MeCN** and **Al·DMSO** in a closed petri dish under a high concentration of solvent vapour (Me<sub>2</sub>CO or MeCN or DMSO).



Figure S15. TGA curve for (a) Al·reMe<sub>2</sub>CO, (b) Al·reMeCN and (c) Al·reDMSO. 17.3%, 14.1% and 19.3% weight losses were observed, respectively.



Figure S16. Excitation spectra of Al·Me<sub>2</sub>CO (red), Al·MeCN (blue) and Al·DMSO (black) in the solid state at 298 K.

| Table S5 | <ul> <li>Photophysical d</li> </ul> | ata for Al·Me <sub>2</sub> CO, | Al·MeCN and A | I·DMSO in the | solid state at 298 K. |
|----------|-------------------------------------|--------------------------------|---------------|---------------|-----------------------|
|----------|-------------------------------------|--------------------------------|---------------|---------------|-----------------------|

|                       | $\lambda_{\rm ex}$ [nm] | $\lambda_{\rm em}$ [nm] | $arPsi^{[\mathrm{a}]}$ |
|-----------------------|-------------------------|-------------------------|------------------------|
| Al·Me <sub>2</sub> CO | 478                     | 539                     | 0.27                   |
| Al·MeCN               | 485                     | 540                     | 0.22                   |
| Al·DMSO               | 474                     | 552                     | 0.07                   |

[a] Emission quantum yields (380-700 nm),  $\lambda_{ex} = 430$  nm.



Figure S17. UV-Vis spectra of (a) Al·Me<sub>2</sub>CO in Me<sub>2</sub>CO and (b) Al·MeCN in MeCN at 298 K (1.0  $\times 10^{-5}$  M).



Figure S18. Emission spectra of Al·Me<sub>2</sub>CO in Me<sub>2</sub>CO (red), Al·MeCN in MeCN (blue) and Al·DMSO in DMSO (black) at 298 K  $(1.0 \times 10^{-5} \text{ M})$ .

**Table S6.** Photophysical data for Al·Me<sub>2</sub>CO, Al·MeCN and Al·DMSO in solution  $(1.0 \times 10^{-5} \text{ M})$  at 298 K.

|                                               | $\lambda_{\rm ex}$ [nm] | $\lambda_{\rm em}$ [nm] | $arPsi^{[a]}$ |
|-----------------------------------------------|-------------------------|-------------------------|---------------|
| Al·Me <sub>2</sub> CO (in Me <sub>2</sub> CO) | 424                     | 523                     | 0.47          |
| Al·MeCN (in MeCN)                             | 426                     | 526                     | 0.42          |
| Al·DMSO (in DMSO)                             | 430                     | 527 <sup>[b]</sup>      | 0.76          |

[a] Emission quantum yields (380-700 nm),  $\lambda_{ex} = 430$  nm.

[b] From our previous report.<sup>[Ref.]</sup>

[Ref.] F. Kobayashi, M. Gemba, S. Hoshino, K. Tsukiyama, M. Shiotsuka, T. Nakajima and M. Tadokoro, *Chem. Eur. J.*, 2023, **29**, e202203937.

| atom | Х        | Y        | Z        |
|------|----------|----------|----------|
| Al   | -1.44045 | -0.4798  | 0.68847  |
| 0    | 0.33403  | -0.98525 | 0.35524  |
| Ν    | -1.66058 | -2.43441 | 1.14346  |
| С    | 0.64514  | -2.21765 | 0.75307  |
| С    | 1.95963  | -2.71153 | 0.74156  |
| Н    | 2.75611  | -2.05628 | 0.40162  |
| 0    | -3.25428 | -0.23645 | 0.67114  |
| 0    | -1.12674 | 1.3014   | 0.09996  |
| С    | 2.21995  | -4.0125  | 1.16341  |
| Н    | 3.24189  | -4.3834  | 1.15246  |
| С    | 1.18475  | -4.8458  | 1.6083   |
| Н    | 1.40021  | -5.8557  | 1.94465  |
| 0    | -1.1727  | -0.0007  | 2.49782  |
| 0    | -1.54773 | -0.81505 | -1.38846 |
| Н    | -0.57633 | -0.87963 | -1.4905  |
| Н    | -1.80117 | 0.0496   | -1.75519 |
| С    | -0.12546 | -4.37325 | 1.62643  |
| Н    | -0.92252 | -5.01934 | 1.98474  |
| С    | -0.40217 | -3.07076 | 1.19707  |
| С    | -2.7936  | -3.036   | 1.36559  |
| Н    | -2.78771 | -4.10122 | 1.61035  |
| С    | -4.08391 | -2.41405 | 1.30673  |
| С    | -5.22169 | -3.20608 | 1.59281  |
| Н    | -5.06919 | -4.25169 | 1.85419  |
| С    | -6.49963 | -2.68287 | 1.54736  |
| Н    | -7.36083 | -3.30467 | 1.77135  |
| С    | -6.66501 | -1.32777 | 1.20412  |
| Н    | -7.66498 | -0.9021  | 1.16387  |
| С    | -5.57434 | -0.52491 | 0.91549  |
| Н    | -5.69795 | 0.5207   | 0.65016  |
| С    | -4.25479 | -1.03474 | 0.95671  |
| С    | -0.5909  | 3.6009   | 0.04717  |
| Н    | -1.50642 | 3.85049  | -0.50161 |
| Н    | 0.20208  | 3.45669  | -0.69595 |
| Н    | -0.32372 | 4.43716  | 0.69711  |
| С    | -0.80001 | 2.318    | 0.81292  |
| С    | -0.63919 | 2.29182  | 2.20242  |
| Н    | -0.3579  | 3.20819  | 2.70622  |
| С    | -0.83503 | 1.13532  | 2.97614  |
| С    | -0.65511 | 1.18197  | 4.47289  |
| Н    | -1.58878 | 0.87699  | 4.95903  |
| Н    | -0.36882 | 2.1736   | 4.83083  |
| Н    | 0.11109  | 0.45555  | 4,76665  |

Table S7. Cartesian coordinates of the optimized structure of [Al(sap)(acac)(H<sub>2</sub>O)].

| Excited State | 1: | Singlet-A | 2.9248 eV | 423.90 nm | <i>f</i> =0.2046 | <s**2>=0.000</s**2> |
|---------------|----|-----------|-----------|-----------|------------------|---------------------|
| 93 -> 94      |    | 0.65435   |           |           |                  |                     |
| 93 -> 95      |    | -0.25062  |           |           |                  |                     |
|               |    |           |           |           |                  |                     |
| Excited State | 2: | Singlet-A | 3.1221 eV | 397.11 nm | <i>f</i> =0.1152 | <s**2>=0.000</s**2> |
| 93 -> 94      |    | 0.24172   |           |           |                  |                     |
| 93 -> 95      |    | 0.65890   |           |           |                  |                     |
|               |    |           |           |           |                  |                     |
| Excited State | 3: | Singlet-A | 3.4366 eV | 360.78 nm | <i>f</i> =0.0531 | <s**2>=0.000</s**2> |
| 92 -> 94      |    | 0.69675   |           |           |                  |                     |

Table S8. Vertical excitations of  $[Al(sap)(acac)(H_2O)]$ .



Figure S19. HOMO and LUMO of the hydrogen-bonded dimer  $[Al(sap)(acac)(H_2O)]_2$  at the experimental X-ray geometries.

| atom | Х        | Y        | Z        |
|------|----------|----------|----------|
| Al   | -1.89647 | -0.21654 | -5.7571  |
| 0    | -1.70907 | -0.30684 | -3.8885  |
| Ν    | -3.59347 | -1.23534 | -5.3869  |
| С    | -2.72367 | -0.89754 | -3.2342  |
| С    | -2.77407 | -0.99584 | -1.84    |
| Н    | -2.09307 | -0.60074 | -1.3085  |
| 0    | -2.22357 | -0.30364 | -7.5565  |
| 0    | -0.24867 | 0.63476  | -5.9554  |
| С    | -3.82487 | -1.67344 | -1.237   |
| Н    | -3.85257 | -1.74314 | -0.29    |
| С    | -4.83387 | -2.25114 | -1.9916  |
| Н    | -5.53737 | -2.72434 | -1.5635  |
| 0    | -2.82857 | 1.43086  | -5.62    |
| 0    | -0.92957 | -1.91194 | -5.8922  |
| Н    | -0.15087 | -1.83754 | -5.5098  |
| Н    | -0.74657 | -2.07174 | -6.7282  |
| С    | -4.81357 | -2.13524 | -3.3727  |
| Н    | -5.50667 | -2.52154 | -3.895   |
| С    | -3.77077 | -1.44844 | -3.9903  |
| С    | -4.39757 | -1.74224 | -6.2602  |
| Н    | -5.13877 | -2.24424 | -5.9421  |
| С    | -4.24517 | -1.59784 | -7.6855  |
| С    | -5.20857 | -2.21414 | -8.5065  |
| Н    | -5.93277 | -2.68104 | -8.1063  |
| С    | -5.11967 | -2.15204 | -9.8786  |
| Н    | -5.76797 | -2.58054 | -10.4249 |
| С    | -4.06567 | -1.45094 | -10.4502 |
| Н    | -4.00247 | -1.39784 | -11.3967 |
| С    | -3.11107 | -0.83124 | -9.6769  |
| Н    | -2.40517 | -0.35614 | -10.0989 |
| С    | -3.16207 | -0.88914 | -8.2685  |
| С    | 1.43723  | 2.28476  | -6.1642  |
| Н    | 1.59333  | 2.44106  | -7.119   |
| Н    | 2.02803  | 1.56896  | -5.8496  |
| Н    | 1.62443  | 3.10636  | -5.6639  |
| С    | 0.00673  | 1.88346  | -5.9501  |
| С    | -0.95747 | 2.86246  | -5.7857  |
| Н    | -0.67347 | 3.76906  | -5.7718  |
| С    | -2.31777 | 2.60216  | -5.6398  |
| С    | -3.26187 | 3.75336  | -5.5163  |
| Н    | -3.79907 | 3.82426  | -6.3328  |
| Н    | -2.75287 | 4.58086  | -5.3872  |

Table S9. Cartesian coordinates of the optimized structure of the hydrogen-bonded dimer [Al(sap)(acac)(H<sub>2</sub>O)]<sub>2</sub>.

| Н  | -3.85277 | 3.61006  | -4.7478 |
|----|----------|----------|---------|
| Al | 1.56933  | -2.17644 | -2.7503 |
| 0  | 1.38193  | -2.08614 | -4.6189 |
| Ν  | 3.26633  | -1.15764 | -3.1205 |
| С  | 2.39653  | -1.49544 | -5.2732 |
| С  | 2.44693  | -1.39714 | -6.6674 |
| Н  | 1.76593  | -1.79224 | -7.1989 |
| 0  | 1.89643  | -2.08934 | -0.9509 |
| 0  | -0.07847 | -3.02774 | -2.552  |
| С  | 3.49773  | -0.71954 | -7.2704 |
| Н  | 3.52543  | -0.64984 | -8.2174 |
| С  | 4.50673  | -0.14184 | -6.5158 |
| Н  | 5.21023  | 0.33136  | -6.9439 |
| 0  | 2.50143  | -3.82384 | -2.8874 |
| Ο  | 0.60243  | -0.48104 | -2.6152 |
| Н  | -0.17627 | -0.55544 | -2.9976 |
| Н  | 0.41943  | -0.32124 | -1.7792 |
| С  | 4.48643  | -0.25774 | -5.1347 |
| Н  | 5.17953  | 0.12856  | -4.6124 |
| С  | 3.44363  | -0.94454 | -4.5171 |
| С  | 4.07043  | -0.65074 | -2.2472 |
| Н  | 4.81163  | -0.14874 | -2.5653 |
| С  | 3.91803  | -0.79514 | -0.8219 |
| С  | 4.88143  | -0.17884 | -0.0009 |
| Н  | 5.60563  | 0.28806  | -0.4011 |
| С  | 4.79253  | -0.24094 | 1.3712  |
| Н  | 5.44083  | 0.18756  | 1.9175  |
| С  | 3.73853  | -0.94204 | 1.9428  |
| Н  | 3.67533  | -0.99514 | 2.8893  |
| С  | 2.78393  | -1.56174 | 1.1695  |
| Н  | 2.07803  | -2.03684 | 1.5915  |
| С  | 2.83493  | -1.50384 | -0.2389 |
| С  | -1.76437 | -4.67774 | -2.3432 |
| Н  | -1.92047 | -4.83404 | -1.3884 |
| Н  | -2.35517 | -3.96194 | -2.6578 |
| Н  | -1.95157 | -5.49934 | -2.8435 |
| С  | -0.33387 | -4.27644 | -2.5573 |
| С  | 0.63033  | -5.25544 | -2.7217 |
| Н  | 0.34633  | -6.16204 | -2.7356 |
| С  | 1.99063  | -4.99514 | -2.8676 |
| С  | 2.93473  | -6.14634 | -2.9911 |
| Н  | 3.47193  | -6.21724 | -2.1746 |
| Н  | 2.42573  | -6.97384 | -3.1202 |
| Н  | 3.52563  | -6.00304 | -3.7596 |

| Excited State 1: | Singlet-A | 3.0081 eV | 412.17 nm | f=0.0000         | <s**2>=0.000</s**2> |
|------------------|-----------|-----------|-----------|------------------|---------------------|
| 185 -> 188       | 0.33328   |           |           |                  |                     |
| 186 -> 187       | 0.61214   |           |           |                  |                     |
|                  |           |           |           |                  |                     |
| Excited State 2: | Singlet-A | 3.0539 eV | 405.99 nm | <i>f</i> =0.5419 | <s**2>=0.000</s**2> |
| 185 -> 187       | 0.29690   |           |           |                  |                     |
| 186 -> 188       | 0.62711   |           |           |                  |                     |
|                  |           |           |           |                  |                     |
| Excited State 3: | Singlet-A | 3.1094 eV | 398.74 nm | <i>f</i> =0.0647 | <s**2>=0.000</s**2> |
| 185 -> 187       | 0.63153   |           |           |                  |                     |
| 186 -> 188       | -0.30958  |           |           |                  |                     |
|                  |           |           |           |                  |                     |
| Excited State 4: | Singlet-A | 3.1115 eV | 398.47 nm | <i>f</i> =0.0000 | <s**2>=0.000</s**2> |
| 185 -> 188       | 0.61638   |           |           |                  |                     |
| 186 -> 187       | -0.34128  |           |           |                  |                     |
|                  |           |           |           |                  |                     |
| Excited State 5: | Singlet-A | 3.4417 eV | 360.24 nm | <i>f</i> =0.0000 | <s**2>=0.000</s**2> |
| 185 -> 190       | 0.40864   |           |           |                  |                     |
| 186 -> 189       | 0.56394   |           |           |                  |                     |
|                  |           |           |           |                  |                     |
| Excited State 6: | Singlet-A | 3.4451 eV | 359.89 nm | <i>f</i> =0.0590 | <s**2>=0.000</s**2> |
| 183 -> 188       | -0.10789  |           |           |                  |                     |
| 184 -> 187       | -0.12040  |           |           |                  |                     |
| 185 -> 189       | 0.40228   |           |           |                  |                     |
| 186 -> 190       | 0.54957   |           |           |                  |                     |

Table S10. Vertical excitations of the hydrogen-bonded dimer  $[Al(sap)(acac)(H_2O)]_2$ .