Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Structural and Vibrational Properties of Lanthanide Lindqvist Polyoxometalate Complexes

Primadi J. Subintoro¹ and Korey P. Carter^{1*} ¹Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States

Table of Contents

Crystallographic parameters for complexes 1-14 ($LaW_{10} - LuW_{10}$)	S1
MIR spectra of sodium paratungstate	S2
Polyhedral representation and crystallographic parameters for sodium paratungstate	S3
Ball and stick representation of complex 10 (HoW ₁₀)	S4
Distortion parameters scheme and methodological details	S4-S5
Polyhedral representations of complexes 1 and 2 that highlight differences in lattice	56
packing	50
Polyhedral representation of cell packing for complexes 1, 4, 7, and 10	S7
Plots of LnW ₁₀ structural distortion parameters versus lanthanide ionic radii	S8-S10
Plot of d _{Ln-Na} versus lanthanide ionic radii	S11
Fitted far IR spectra of complexes 1-14	S12-S25
Summary table of fitted FIR modes in complexes 1-14	S26
Comparison of Raman peak intensities in spectra from different crystals of complex 2	S27
Fitted Raman spectra of complexes 1-14	S28-S41
Summary table of fitted Raman modes in complexes 1-14	S42
Representative example of fitted MIR spectra for LnW ₁₀ series	S43
Plots of FIR and Raman vibrational mode $[\nu(WO_5)_2, \rho(LnO_8), \nu/\rho(LnO_8), \delta(W-O-$	
W/W=O/Ln-O-W), v(Ln-O-W)] frequencies versus LnW ₁₀ structural distortion	S44-S58
parameters	
Partial least squares (PLS) analysis methodological details	S59-S60
Partial least squares (PLS) analysis plots	S61-S71
References	S72

Supporting Information

	Na ₉ LaW ₁₀ O ₃₆	Na ₉ CeW ₁₀ O ₃₆	Na ₉ PrW ₁₀ O ₃₆	Na ₀ NdW ₁₀ O ₃₆	Na ₉ SmW ₁₀ O ₃₆	Na ₉ EuW ₁₀ O ₃₆	Na ₀ GdW ₁₀ O ₃₆
Formula	•34H2O (1)	•28H2O (2)	•29H ₂ O (3)	•32H ₂ O (4)	•36H2O (5)	•36H ₂ O (6)	•36H ₂ O (7)
Mr	3304.32	3209.53	3228.72	3269.65	3347.76	3349.37	3354.66
SG	P-1	P-1	P-1	P-1	P-1	P-1	P-1
a (Å)	12.8892 (13)	12.8331 (6)	12.8137 (6)	12.7722 (5)	12.9063 (17)	12.9037 (5)	12.8985 (5)
b (Å)	12.9526 (12)	12.9660 (6)	12.9517 (7)	13.0343 (6)	13.1156 (15)	13.1129 (5)	13.1035 (3)
c (Å)	20.1296 (19)	20.1117 (10)	20.0978 (12)	19.6802 (8)	20.911 (3)	20.8991 (7)	20.9180 (8)
α (°)	102.062 (4)	101.615 (2)	101.581 (2)	98.160 (2)	76.931 (5)	77.072 (1)	77.025 (1)
β (°)	97.834 (4)	98.179 (2)	98.253 (2)	102.820 (2)	83.975 (5)	83.923 (2)	83.922(1)
γ (°)	101.546 (4)	101.864 (2)	101.755 (2)	101.538 (2)	77.418 (5)	77.463 (2)	77.519(1)
$V(Å^3)$	3163.8 (5)	3148.5 (3)	3139.3 (3)	3070.0 (2)	3359.4 (7)	3358.3 (2)	3357.7 (2)
R _{int}	0.0839	0.0969	0.0878	0.1081	0.0945	0.0861	0.0703
R1	0.0512	0.0489	0.0451	0.0339	0.0361	0.0426	0.0412
wR2	0.1202	0.1264	0.1181	0.0899	0.0865	0.1012	0.0882
GooF	1.200	1.075	1.115	1.041	1.121	1.100	1.148
Mu (mm ⁻¹)	18.947	19.071	19.18	19.670	18.086	18.151	18.208
F000	2912	2818	2838	2878	2954	2956	2958
Z	2	2	2	2	2	2	2
Density (g/cm ³)	3.469	3.385	3.416	3.537	3.310	3.312	3.318
Temperature (K)	100 (2)	100 (2)	100 (2)	100 (2)	100 (2)	100 (2)	100 (2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
0 ()							
	NaoTbW10O36	Na ₉ DvW ₁₀ O ₃₆	Na ₉ HoW ₁₀ O ₃₆	Na ₉ ErW ₁₀ O ₃₆	Na ₉ TmW ₁₀ O ₃₆	Na ₉ YbW ₁₀ O ₃₆	Na ₉ LuW ₁₀ O ₃₆
Formula	Na ₉ TbW ₁₀ O ₃₆ •37H ₂ O (8)	Na ₉ DyW ₁₀ O ₃₆ •35H ₂ O (9)	Na ₉ HoW ₁₀ O ₃₆ •35H ₂ O (10)	Na ₉ ErW ₁₀ O ₃₆ •35H ₂ O (11)	Na ₉ TmW ₁₀ O ₃₆ •35H ₂ O (12)	Na ₉ YbW ₁₀ O ₃₆ •37H ₂ O (13)	Na ₉ LuW ₁₀ O ₃₆ •32H ₂ O (14)
Formula	Na ₉ TbW ₁₀ O ₃₆ •37H ₂ O (8) 3372.33	Na ₉ DyW ₁₀ O ₃₆ •35H ₂ O (9) 3343.91	Na ₉ HoW ₁₀ O ₃₆ •35H ₂ O (10) 3346.34	Na ₉ ErW ₁₀ O ₃₆ •35H ₂ O (11) 3364.67	Na ₉ TmW ₁₀ O ₃₆ •35H ₂ O (12) 3350.34	Na ₉ YbW ₁₀ O ₃₆ •37H ₂ O (13) 3387.25	Na ₉ LuW ₁₀ O ₃₆ •32H ₂ O (14) 3356.38
Formula Mr SG	Na ₉ TbW ₁₀ O ₃₆ •37H ₂ O (8) 3372.33 P-1	Na ₉ DyW ₁₀ O ₃₆ •35H ₂ O (9) 3343.91 P-1	Na ₉ HoW ₁₀ O ₃₆ •35H ₂ O (10) 3346.34 P-1	Na ₉ ErW ₁₀ O ₃₆ •35H ₂ O (11) 3364.67 P-1	Na ₉ TmW ₁₀ O ₃₆ •35H ₂ O (12) 3350.34 P-1	Na ₉ YbW ₁₀ O ₃₆ •37H ₂ O (13) 3387.25 P-1	Na ₉ LuW ₁₀ O ₃₆ •32H ₂ O (14) 3356.38 P-1
Formula Mr SG a (Å)	Na ₉ TbW ₁₀ O ₃₆ •37H ₂ O (8) 3372.33 P-1 12.8721 (6)	Na ₉ DyW ₁₀ O ₃₆ •35H ₂ O (9) 3343.91 P-1 12.7414 (5)	Na ₉ HoW ₁₀ O ₃₆ •35H ₂ O (10) 3346.34 P-1 12.727 (3)	Na ₉ ErW ₁₀ O ₃₆ •35H ₂ O (11) 3364.67 P-1 12.7343 (9)	Na ₉ TmW ₁₀ O ₃₆ •35H ₂ O (12) 3350.34 P-1 12.8752 (9)	Na ₉ YbW ₁₀ O ₃₆ •37H ₂ O (13) 3387.25 P-1 12.8747 (6)	Na ₉ LuW ₁₀ O ₃₆ •32H ₂ O (14) 3356.38 P-1 12.7347 (7)
Formula Mr SG a (Å) b (Å)	Na ₉ TbW ₁₀ O ₃₆ •37H ₂ O (8) 3372.33 P-1 12.8721 (6) 13.0881 (7)	$\begin{array}{c} Na_9 Dy W_{10} O_{36} \\ \bullet 35 H_2 O \left(9 \right) \\ 3343.91 \\ P-1 \\ 12.7414 \left(5 \right) \\ 13.0651 \left(5 \right) \end{array}$	Na ₉ HoW ₁₀ O ₃₆ •35H ₂ O (10) 3346.34 P-1 12.727 (3) 13.063 (5)	Na ₉ ErW ₁₀ O ₃₆ •35H ₂ O (11) 3364.67 P-1 12.7343 (9) 13.0518 (8)	Na ₉ TmW ₁₀ O ₃₆ •35H ₂ O (12) 3350.34 P-1 12.8752 (9) 13.0761 (9)	Na ₉ YbW ₁₀ O ₃₆ •37H ₂ O (13) 3387.25 P-1 12.8747 (6) 13.0649 (6)	Na9LuW10O36 •32H2O (14) 3356.38 P-1 12.7347 (7) 13.0458 (7)
Formula Mr SG a (Å) b (Å) c (Å)	Na ₉ TbW ₁₀ O ₃₆ •37H ₂ O (8) 3372.33 P-1 12.8721 (6) 13.0881 (7) 20.8876 (11)	$\begin{array}{c} Na_9 Dy W_{10} O_{36} \\ \bullet 35 H_2 O \left(9 \right) \\ 3343.91 \\ P-1 \\ 12.7414 \left(5 \right) \\ 13.0651 \left(5 \right) \\ 20.4611 \left(9 \right) \end{array}$	Na ₉ HoW ₁₀ O ₃₆ •35H ₂ O (10) 3346.34 P-1 12.727 (3) 13.063 (5) 20.465 (7)	$\begin{array}{c} Na_9 Er W_{10} O_{36} \\ \bullet 35 H_2 O \ (11) \\ 3364.67 \\ P-1 \\ 12.7343 \ (9) \\ 13.0518 \ (8) \\ 20.4813 \ (15) \end{array}$	Na ₉ TmW ₁₀ O ₃₆ •35H ₂ O (12) 3350.34 P-1 12.8752 (9) 13.0761 (9) 20.8761 (12)	Na ₉ YbW ₁₀ O ₃₆ •37H ₂ O (13) 3387.25 P-1 12.8747 (6) 13.0649 (6) 20.9095 (9)	Na ₉ LuW ₁₀ O ₃₆ •32H ₂ O (14) 3356.38 P-1 12.7347 (7) 13.0458 (7) 20.4697 (12)
Formula Mr SG a (Å) b (Å) c (Å) α (°)	Na ₉ TbW ₁₀ O ₃₆ •37H ₂ O (8) 3372.33 P-1 12.8721 (6) 13.0881 (7) 20.8876 (11) 77.102 (2)	$\begin{array}{c} Na_9 Dy W_{10} O_{36} \\ \bullet 35 H_2 O \left(9 \right) \\ 3343.91 \\ P-1 \\ 12.7414 \left(5 \right) \\ 13.0651 \left(5 \right) \\ 20.4611 \left(9 \right) \\ 82.874 \left(2 \right) \end{array}$	Na ₉ HoW ₁₀ O ₃₆ •35H ₂ O (10) 3346.34 P-1 12.727 (3) 13.063 (5) 20.465 (7) 82.848 (7)	$\begin{array}{c} Na_9 Er W_{10} O_{36} \\ \bullet 35 H_2 O \ (11) \\ 3364.67 \\ P-1 \\ 12.7343 \ (9) \\ 13.0518 \ (8) \\ 20.4813 \ (15) \\ 82.805 \ (3) \end{array}$	Na ₉ TmW ₁₀ O ₃₆ •35H ₂ O (12) 3350.34 P-1 12.8752 (9) 13.0761 (9) 20.8761 (12) 77.097 (2)	$\begin{array}{c} Na_9YbW_{10}O_{36}\\ \bullet 37H_2O~(\textbf{13})\\ 3387.25\\ P-1\\ 12.8747~(6)\\ 13.0649~(6)\\ 20.9095~(9)\\ 77.190~(2)\\ \end{array}$	Na ₉ LuW ₁₀ O ₃₆ •32H ₂ O (14) 3356.38 P-1 12.7347 (7) 13.0458 (7) 20.4697 (12) 82.887 (2)
Formula Mr SG a (Å) b (Å) c (Å) a (°) β (°)	Na ₉ TbW ₁₀ O ₃₆ •37H ₂ O (8) 3372.33 P-1 12.8721 (6) 13.0881 (7) 20.8876 (11) 77.102 (2) 83.865 (2)	$\begin{array}{c} Na_9 Dy W_{10} O_{36} \\ \bullet 35 H_2 O \left(9 \right) \\ 3343.91 \\ P-1 \\ 12.7414 \left(5 \right) \\ 13.0651 \left(5 \right) \\ 20.4611 \left(9 \right) \\ 82.874 \left(2 \right) \\ 74.520 \left(2 \right) \end{array}$	$\begin{array}{c} Na_9HoW_{10}O_{36}\\ \bullet 35H_2O~(10)\\ 3346.34\\ P-1\\ 12.727~(3)\\ 13.063~(5)\\ 20.465~(7)\\ 82.848~(7)\\ 74.548~(8)\\ \end{array}$	$\begin{array}{c} Na_9 Er W_{10}O_{36} \\ \bullet 35 H_2 O \ (11) \\ 3364.67 \\ P-1 \\ 12.7343 \ (9) \\ 13.0518 \ (8) \\ 20.4813 \ (15) \\ 82.805 \ (3) \\ 74.496 \ (3) \end{array}$	Na ₉ TmW ₁₀ O ₃₆ •35H ₂ O (12) 3350.34 P-1 12.8752 (9) 13.0761 (9) 20.8761 (12) 77.097 (2) 83.853 (2)	$\begin{array}{c} Na_9YbW_{10}O_{36}\\ \bullet 37H_2O~(\textbf{13})\\ 3387.25\\ P-1\\ 12.8747~(6)\\ 13.0649~(6)\\ 20.9095~(9)\\ 77.190~(2)\\ 83.860~(2)\\ \end{array}$	Na ₉ LuW ₁₀ O ₃₆ •32H ₂ O (14) 3356.38 P-1 12.7347 (7) 13.0458 (7) 20.4697 (12) 82.887 (2) 74.479 (2)
Formula Mr SG a $(Å)$ b $(Å)$ c $(Å)$ a $(°)$ β $(°)$ γ $(°)$	Na ₉ TbW ₁₀ O ₃₆ •37H ₂ O (8) 3372.33 P-1 12.8721 (6) 13.0881 (7) 20.8876 (11) 77.102 (2) 83.865 (2) 77.384 (2)	$\begin{array}{c} Na_9 Dy W_{10} O_{36} \\ \bullet 35 H_2 O \left(9 \right) \\ 3343.91 \\ P-1 \\ 12.7414 \left(5 \right) \\ 13.0651 \left(5 \right) \\ 20.4611 \left(9 \right) \\ 82.874 \left(2 \right) \\ 74.520 \left(2 \right) \\ 88.910 \left(2 \right) \end{array}$	$\begin{array}{c} Na_9HoW_{10}O_{36}\\ \bullet 35H_2O~(10)\\ 3346.34\\ P-1\\ 12.727~(3)\\ 13.063~(5)\\ 20.465~(7)\\ 82.848~(7)\\ 74.548~(8)\\ 88.878~(11)\\ \end{array}$	$\begin{array}{c} Na_9 Er W_{10} O_{36} \\ \bullet 35 H_2 O \ (11) \\ 3364.67 \\ P-1 \\ 12.7343 \ (9) \\ 13.0518 \ (8) \\ 20.4813 \ (15) \\ 82.805 \ (3) \\ 74.496 \ (3) \\ 88.750 \ (3) \end{array}$	$\begin{array}{c} Na_9 Tm W_{10} O_{36} \\ \bullet 35 H_2 O \ (12) \\ 3350.34 \\ P-1 \\ 12.8752 \ (9) \\ 13.0761 \ (9) \\ 20.8761 \ (12) \\ 77.097 \ (2) \\ 83.853 \ (2) \\ 77.351 \ (3) \end{array}$	$\begin{array}{c} Na_9YbW_{10}O_{36}\\ \bullet 37H_2O~(\textbf{13})\\ 3387.25\\ P-1\\ 12.8747~(6)\\ 13.0649~(6)\\ 20.9095~(9)\\ 77.190~(2)\\ 83.860~(2)\\ 77.461~(2)\\ \end{array}$	Na ₉ LuW ₁₀ O ₃₆ •32H ₂ O (14) 3356.38 P-1 12.7347 (7) 13.0458 (7) 20.4697 (12) 82.887 (2) 74.479 (2) 88.659 (2)
Formula Mr SG a $(Å)$ b $(Å)$ c $(Å)$ a $(°)$ β $(°)$ γ $(°)$ V $(Å^3)$	$\begin{array}{c} Na_9 TbW_{10}O_{36} \\ \bullet 37H_2O (\textbf{8}) \\ 3372.33 \\ P-1 \\ 12.8721 (6) \\ 13.0881 (7) \\ 20.8876 (11) \\ 77.102 (2) \\ 83.865 (2) \\ 77.384 (2) \\ 3341.1 (3) \end{array}$	$\begin{array}{c} Na_9 Dy W_{10} O_{36} \\ \bullet 35 H_2 O \left(9 \right) \\ 3343.91 \\ P-1 \\ 12.7414 \left(5 \right) \\ 13.0651 \left(5 \right) \\ 20.4611 \left(9 \right) \\ 82.874 \left(2 \right) \\ 74.520 \left(2 \right) \\ 88.910 \left(2 \right) \\ 3256.8 \left(2 \right) \end{array}$	$\begin{array}{c} Na_9HoW_{10}O_{36}\\ \bullet 35H_2O~(10)\\ 3346.34\\ P-1\\ 12.727~(3)\\ 13.063~(5)\\ 20.465~(7)\\ 82.848~(7)\\ 74.548~(8)\\ 88.878~(11)\\ 3253.4~(18)\\ \end{array}$	$\begin{array}{c} Na_9 Er W_{10}O_{36} \\ \bullet 35 H_2O \ (11) \\ 3364.67 \\ P-1 \\ 12.7343 \ (9) \\ 13.0518 \ (8) \\ 20.4813 \ (15) \\ 82.805 \ (3) \\ 74.496 \ (3) \\ 88.750 \ (3) \\ 3254.2 \ (4) \end{array}$	$\begin{array}{c} Na_9 Tm W_{10} O_{36} \\ \bullet 35 H_2 O \ (12) \\ 3350.34 \\ P-1 \\ 12.8752 \ (9) \\ 13.0761 \ (9) \\ 20.8761 \ (12) \\ 77.097 \ (2) \\ 83.853 \ (2) \\ 77.351 \ (3) \\ 3336.5 \ (4) \end{array}$	$\begin{array}{c} Na_9YbW_{10}O_{36}\\ \bullet 37H_2O~(\textbf{13})\\ 3387.25\\ P-1\\ 12.8747~(6)\\ 13.0649~(6)\\ 20.9095~(9)\\ 77.190~(2)\\ 83.860~(2)\\ 77.461~(2)\\ 3341.3~(3)\\ \end{array}$	$\begin{array}{c} Na_9LuW_{10}O_{36}\\ \bullet 32H_2O~(14)\\ 3356.38\\ P-1\\ 12.7347~(7)\\ 13.0458~(7)\\ 20.4697~(12)\\ 82.887~(2)\\ 74.479~(2)\\ 88.659~(2)\\ 3251.3~(3)\\ \end{array}$
Formula Mr SG a $(Å)$ b $(Å)$ c $(Å)$ a $(°)$ β $(°)$ γ $(°)$ V $(Å^3)$ R _{int}	$\begin{array}{c} Na_9 TbW_{10}O_{36} \\ \bullet 37H_2O \left(8 \right) \\ 3372.33 \\ P-1 \\ 12.8721 \left(6 \right) \\ 13.0881 \left(7 \right) \\ 20.8876 \left(11 \right) \\ 77.102 \left(2 \right) \\ 83.865 \left(2 \right) \\ 77.384 \left(2 \right) \\ 3341.1 \left(3 \right) \\ 0.1072 \end{array}$	$\begin{array}{c} Na_9 Dy W_{10} O_{36} \\ \bullet 35 H_2 O \left(9 \right) \\ 3343.91 \\ P-1 \\ 12.7414 \left(5 \right) \\ 13.0651 \left(5 \right) \\ 20.4611 \left(9 \right) \\ 82.874 \left(2 \right) \\ 74.520 \left(2 \right) \\ 88.910 \left(2 \right) \\ 3256.8 \left(2 \right) \\ 0.0933 \end{array}$	$\begin{array}{c} Na_9HoW_{10}O_{36}\\ \bullet 35H_2O~(10)\\ 3346.34\\ P-1\\ 12.727~(3)\\ 13.063~(5)\\ 20.465~(7)\\ 82.848~(7)\\ 74.548~(8)\\ 88.878~(11)\\ 3253.4~(18)\\ 0.0898 \end{array}$	$\begin{array}{c} Na_9 Er W_{10} O_{36} \\ \bullet 35 H_2 O \ (11) \\ 3364.67 \\ P-1 \\ 12.7343 \ (9) \\ 13.0518 \ (8) \\ 20.4813 \ (15) \\ 82.805 \ (3) \\ 74.496 \ (3) \\ 88.750 \ (3) \\ 3254.2 \ (4) \\ 0.0967 \end{array}$	$\begin{array}{c} Na_9 TmW_{10}O_{36} \\ \bullet 35H_2O~(12) \\ 3350.34 \\ P-1 \\ 12.8752~(9) \\ 13.0761~(9) \\ 20.8761~(12) \\ 77.097~(2) \\ 83.853~(2) \\ 77.351~(3) \\ 3336.5~(4) \\ 0.0953 \end{array}$	$\begin{array}{c} Na_9YbW_{10}O_{36}\\ \bullet 37H_2O~(13)\\ 3387.25\\ P-1\\ 12.8747~(6)\\ 13.0649~(6)\\ 20.9095~(9)\\ 77.190~(2)\\ 83.860~(2)\\ 77.461~(2)\\ 3341.3~(3)\\ 0.0608\\ \end{array}$	$\begin{array}{c} Na_9LuW_{10}O_{36}\\ \bullet 32H_{2}O~(14)\\ 3356.38\\ P-1\\ 12.7347~(7)\\ 13.0458~(7)\\ 20.4697~(12)\\ 82.887~(2)\\ 74.479~(2)\\ 88.659~(2)\\ 3251.3~(3)\\ 0.0895 \end{array}$
Formula Mr SG a $(Å)$ b $(Å)$ c $(Å)$ a $(°)$ β $(°)$ γ $(°)$ V $(Å^3)$ R _{int} R1	$\begin{array}{c} Na_9 TbW_{10}O_{36} \\ \bullet 37H_2O\left(8 \right) \\ 3372.33 \\ P-1 \\ 12.8721\left(6 \right) \\ 13.0881\left(7 \right) \\ 20.8876\left(11 \right) \\ 77.102\left(2 \right) \\ 83.865\left(2 \right) \\ 77.384\left(2 \right) \\ 3341.1\left(3 \right) \\ 0.1072 \\ 0.0471 \end{array}$	$\begin{array}{c} Na_9 Dy W_{10} O_{36} \\ \bullet 35 H_2 O \ (\textbf{9}) \\ 3343.91 \\ P-1 \\ 12.7414 \ (5) \\ 13.0651 \ (5) \\ 20.4611 \ (9) \\ 82.874 \ (2) \\ 74.520 \ (2) \\ 88.910 \ (2) \\ 3256.8 \ (2) \\ 0.0933 \\ 0.0267 \end{array}$	$\begin{array}{c} Na_9HoW_{10}O_{36}\\ \bullet 35H_2O~(10)\\ 3346.34\\ P-1\\ 12.727~(3)\\ 13.063~(5)\\ 20.465~(7)\\ 82.848~(7)\\ 74.548~(8)\\ 88.878~(11)\\ 3253.4~(18)\\ 0.0898\\ 0.0326\\ \end{array}$	$\begin{array}{c} Na_9 Er W_{10} O_{36} \\ \bullet 35 H_2 O \ (11) \\ 3364.67 \\ P-1 \\ 12.7343 \ (9) \\ 13.0518 \ (8) \\ 20.4813 \ (15) \\ 82.805 \ (3) \\ 74.496 \ (3) \\ 88.750 \ (3) \\ 3254.2 \ (4) \\ 0.0967 \\ 0.0758 \end{array}$	$\begin{array}{c} Na_9 TmW_{10}O_{36} \\ \bullet 35H_2O~(12) \\ 3350.34 \\ P-1 \\ 12.8752~(9) \\ 13.0761~(9) \\ 20.8761~(12) \\ 77.097~(2) \\ 83.853~(2) \\ 77.351~(3) \\ 3336.5~(4) \\ 0.0953 \\ 0.0359 \end{array}$	$\begin{array}{c} Na_9YbW_{10}O_{36}\\ \bullet 37H_2O~(13)\\ 3387.25\\ P-1\\ 12.8747~(6)\\ 13.0649~(6)\\ 20.9095~(9)\\ 77.190~(2)\\ 83.860~(2)\\ 77.461~(2)\\ 3341.3~(3)\\ 0.0608\\ 0.0315\\ \end{array}$	$\begin{array}{c} Na_9LuW_{10}O_{36}\\ \bullet 32H_{2}O~(14)\\ 3356.38\\ P-1\\ 12.7347~(7)\\ 13.0458~(7)\\ 20.4697~(12)\\ 82.887~(2)\\ 74.479~(2)\\ 88.659~(2)\\ 3251.3~(3)\\ 0.0895\\ 0.0360\\ \end{array}$
Formula Mr SG a $(Å)$ b $(Å)$ c $(Å)$ a $(°)$ $\beta (°)$ $\gamma (°)$ V $(Å^3)$ R _{int} R1 wR2	$\begin{array}{c} Na_9 TbW_{10}O_{36}\\ \bullet 37H_2O\left(8\right)\\ 3372.33\\ P-1\\ 12.8721\left(6\right)\\ 13.0881\left(7\right)\\ 20.8876\left(11\right)\\ 77.102\left(2\right)\\ 83.865\left(2\right)\\ 77.384\left(2\right)\\ 3341.1\left(3\right)\\ 0.1072\\ 0.0471\\ 0.1143\\ \end{array}$	$\begin{array}{c} Na_9 Dy W_{10} O_{36} \\ \bullet 35 H_2 O \ (\textbf{9}) \\ 3343.91 \\ P-1 \\ 12.7414 \ (5) \\ 13.0651 \ (5) \\ 20.4611 \ (9) \\ 82.874 \ (2) \\ 74.520 \ (2) \\ 88.910 \ (2) \\ 3256.8 \ (2) \\ 0.0933 \\ 0.0267 \\ 0.0585 \end{array}$	$\begin{array}{c} Na_9HoW_{10}O_{36}\\ \bullet 35H_2O~(10)\\ 3346.34\\ P-1\\ 12.727~(3)\\ 13.063~(5)\\ 20.465~(7)\\ 82.848~(7)\\ 74.548~(8)\\ 88.878~(11)\\ 3253.4~(18)\\ 0.0898\\ 0.0326\\ 0.0764\\ \end{array}$	$\begin{array}{c} Na_9 Er W_{10} O_{36} \\ \bullet 35 H_2 O \ (11) \\ 3364.67 \\ P-1 \\ 12.7343 \ (9) \\ 13.0518 \ (8) \\ 20.4813 \ (15) \\ 82.805 \ (3) \\ 74.496 \ (3) \\ 88.750 \ (3) \\ 3254.2 \ (4) \\ 0.0967 \\ 0.0758 \\ 0.1600 \end{array}$	$\begin{array}{c} Na_9 TmW_{10}O_{36} \\ \bullet 35H_2O~(12) \\ 3350.34 \\ P-1 \\ 12.8752~(9) \\ 13.0761~(9) \\ 20.8761~(12) \\ 77.097~(2) \\ 83.853~(2) \\ 77.351~(3) \\ 3336.5~(4) \\ 0.0953 \\ 0.0359 \\ 0.0848 \end{array}$	$\begin{array}{c} Na_9YbW_{10}O_{36}\\ \bullet 37H_2O~(13)\\ 3387.25\\ P-1\\ 12.8747~(6)\\ 13.0649~(6)\\ 20.9095~(9)\\ 77.190~(2)\\ 83.860~(2)\\ 77.461~(2)\\ 3341.3~(3)\\ 0.0608\\ 0.0315\\ 0.0745\\ \end{array}$	$\begin{array}{c} Na_9LuW_{10}O_{36}\\ \bullet 32H_2O~(14)\\ 3356.38\\ P-1\\ 12.7347~(7)\\ 13.0458~(7)\\ 20.4697~(12)\\ 82.887~(2)\\ 74.479~(2)\\ 88.659~(2)\\ 3251.3~(3)\\ 0.0895\\ 0.0360\\ 0.0807\\ \end{array}$
Formula Mr SG a (Å) b (Å) c (Å) c (Å) α (°) β (°) γ (°) V (Å ³) R _{int} R1 wR2 GooF	$\begin{array}{c} Na_9 TbW_{10}O_{36}\\ \bullet 37H_2O\left(8\right)\\ 3372.33\\ P-1\\ 12.8721\left(6\right)\\ 13.0881\left(7\right)\\ 20.8876\left(11\right)\\ 77.102\left(2\right)\\ 83.865\left(2\right)\\ 77.384\left(2\right)\\ 3341.1\left(3\right)\\ 0.1072\\ 0.0471\\ 0.1143\\ 1.1129\end{array}$	$\begin{array}{c} Na_9 Dy W_{10} O_{36} \\ \bullet 35 H_2 O \ (\textbf{9}) \\ 3343.91 \\ P-1 \\ 12.7414 \ (5) \\ 13.0651 \ (5) \\ 20.4611 \ (9) \\ 82.874 \ (2) \\ 74.520 \ (2) \\ 88.910 \ (2) \\ 3256.8 \ (2) \\ 0.0933 \\ 0.0267 \\ 0.0585 \\ 1.021 \end{array}$	$\begin{array}{c} Na_9HoW_{10}O_{36}\\ \bullet 35H_2O~(10)\\ 3346.34\\ P-1\\ 12.727~(3)\\ 13.063~(5)\\ 20.465~(7)\\ 82.848~(7)\\ 74.548~(8)\\ 88.878~(11)\\ 3253.4~(18)\\ 0.0898\\ 0.0326\\ 0.0764\\ 1.111\\ \end{array}$	$\begin{array}{c} Na_9 Er W_{10} O_{36} \\ \bullet 35 H_2 O \ (11) \\ 3364.67 \\ P-1 \\ 12.7343 \ (9) \\ 13.0518 \ (8) \\ 20.4813 \ (15) \\ 82.805 \ (3) \\ 74.496 \ (3) \\ 88.750 \ (3) \\ 3254.2 \ (4) \\ 0.0967 \\ 0.0758 \\ 0.1600 \\ 1.230 \end{array}$	$\begin{array}{c} Na_9 TmW_{10}O_{36} \\ \bullet 35H_2O~(12) \\ 3350.34 \\ P-1 \\ 12.8752~(9) \\ 13.0761~(9) \\ 20.8761~(12) \\ 77.097~(2) \\ 83.853~(2) \\ 77.351~(3) \\ 3336.5~(4) \\ 0.0953 \\ 0.0359 \\ 0.0848 \\ 1.105 \end{array}$	$\begin{array}{c} Na_9YbW_{10}O_{36}\\ \bullet 37H_2O~(\textbf{13})\\ 3387.25\\ P-1\\ 12.8747~(6)\\ 13.0649~(6)\\ 20.9095~(9)\\ 77.190~(2)\\ 83.860~(2)\\ 77.461~(2)\\ 3341.3~(3)\\ 0.0608\\ 0.0315\\ 0.0745\\ 1.135\\ \end{array}$	$\begin{array}{c} Na_9LuW_{10}O_{36}\\ \bullet 32H_2O\ (14)\\ 3356.38\\ P-1\\ 12.7347\ (7)\\ 13.0458\ (7)\\ 20.4697\ (12)\\ 82.887\ (2)\\ 74.479\ (2)\\ 88.659\ (2)\\ 3251.3\ (3)\\ 0.0895\\ 0.0360\\ 0.0807\\ 1.100\\ \end{array}$
Formula Mr SG a (Å) b (Å) c (Å) c (Å) a (°) β (°) γ (°) V (Å ³) R _{int} R1 wR2 GooF Mu (mm ⁻¹)	$\begin{array}{c} Na_9 TbW_{10}O_{36}\\ \bullet 37H_2O\left(8\right)\\ 3372.33\\ P-1\\ 12.8721\left(6\right)\\ 13.0881\left(7\right)\\ 20.8876\left(11\right)\\ 77.102\left(2\right)\\ 83.865\left(2\right)\\ 77.384\left(2\right)\\ 3341.1\left(3\right)\\ 0.1072\\ 0.0471\\ 0.1143\\ 1.1129\\ 18.366\end{array}$	$\begin{array}{c} Na_9 Dy W_{10} O_{36} \\ \bullet 35 H_2 O \ (\textbf{9}) \\ 3343.91 \\ P-1 \\ 12.7414 \ (5) \\ 13.0651 \ (5) \\ 20.4611 \ (9) \\ 82.874 \ (2) \\ 74.520 \ (2) \\ 88.910 \ (2) \\ 3256.8 \ (2) \\ 0.0933 \\ 0.0267 \\ 0.0585 \\ 1.021 \\ 18.899 \end{array}$	$\begin{array}{c} Na_9HoW_{10}O_{36}\\ \bullet 35H_2O~(10)\\ 3346.34\\ P-1\\ 12.727~(3)\\ 13.063~(5)\\ 20.465~(7)\\ 82.848~(7)\\ 74.548~(8)\\ 88.878~(11)\\ 3253.4~(18)\\ 0.0898\\ 0.0326\\ 0.0764\\ 1.111\\ 18.986\\ \end{array}$	$\begin{array}{c} Na_9 Er W_{10} O_{36} \\ \bullet 35 H_2 O \ (11) \\ 3364.67 \\ P-1 \\ 12.7343 \ (9) \\ 13.0518 \ (8) \\ 20.4813 \ (15) \\ 82.805 \ (3) \\ 74.496 \ (3) \\ 88.750 \ (3) \\ 3254.2 \ (4) \\ 0.0967 \\ 0.0758 \\ 0.1600 \\ 1.230 \\ 19.058 \end{array}$	$\begin{array}{c} Na_9 TmW_{10}O_{36} \\ \bullet 35H_2O\ (12) \\ 3350.34 \\ P-1 \\ 12.8752\ (9) \\ 13.0761\ (9) \\ 20.8761\ (12) \\ 77.097\ (2) \\ 83.853\ (2) \\ 77.351\ (3) \\ 3336.5\ (4) \\ 0.0953 \\ 0.0359 \\ 0.0848 \\ 1.105 \\ 18.657 \end{array}$	$\begin{array}{c} Na_9YbW_{10}O_{36}\\ \bullet 37H_2O~(\textbf{13})\\ 3387.25\\ P-1\\ 12.8747~(6)\\ 13.0649~(6)\\ 20.9095~(9)\\ 77.190~(2)\\ 83.860~(2)\\ 77.461~(2)\\ 3341.3~(3)\\ 0.0608\\ 0.0315\\ 0.0745\\ 1.135\\ 18.706\\ \end{array}$	$\begin{array}{c} Na_9LuW_{10}O_{36}\\ \bullet 32H_2O\ (14)\\ 3356.38\\ P-1\\ 12.7347\ (7)\\ 13.0458\ (7)\\ 20.4697\ (12)\\ 82.887\ (2)\\ 74.479\ (2)\\ 88.659\ (2)\\ 3251.3\ (3)\\ 0.0895\\ 0.0360\\ 0.0807\\ 1.100\\ 19.300\\ \end{array}$
Formula Mr SG a (Å) b (Å) c (Å) a (°) β (°) γ (°) V (Å ³) R _{int} R1 wR2 GooF Mu (mm ⁻¹) F000	$\begin{array}{c} Na_9 TbW_{10}O_{36}\\ \bullet 37H_2O\left(8\right)\\ 3372.33\\ P-1\\ 12.8721\left(6\right)\\ 13.0881\left(7\right)\\ 20.8876\left(11\right)\\ 77.102\left(2\right)\\ 83.865\left(2\right)\\ 77.384\left(2\right)\\ 3341.1\left(3\right)\\ 0.1072\\ 0.0471\\ 0.1143\\ 1.1129\\ 18.366\\ 2976\end{array}$	$\begin{array}{c} Na_9 Dy W_{10} O_{36} \\ \bullet 35 H_2 O \ (\textbf{9}) \\ 3343.91 \\ P-1 \\ 12.7414 \ (5) \\ 13.0651 \ (5) \\ 20.4611 \ (9) \\ 82.874 \ (2) \\ 74.520 \ (2) \\ 88.910 \ (2) \\ 3256.8 \ (2) \\ 0.0933 \\ 0.0267 \\ 0.0585 \\ 1.021 \\ 18.899 \\ 2946 \end{array}$	$\begin{array}{c} Na_9HoW_{10}O_{36}\\ \bullet 35H_2O\;(10)\\ 3346.34\\ P-1\\ 12.727\;(3)\\ 13.063\;(5)\\ 20.465\;(7)\\ 82.848\;(7)\\ 74.548\;(8)\\ 88.878\;(11)\\ 3253.4\;(18)\\ 0.0898\\ 0.0326\\ 0.0764\\ 1.111\\ 18.986\\ 2948\\ \end{array}$	$\begin{array}{c} Na_9 Er W_{10} O_{36} \\ \bullet 35 H_2 O \ (11) \\ 3364.67 \\ P-1 \\ 12.7343 \ (9) \\ 13.0518 \ (8) \\ 20.4813 \ (15) \\ 82.805 \ (3) \\ 74.496 \ (3) \\ 88.750 \ (3) \\ 3254.2 \ (4) \\ 0.0967 \\ 0.0758 \\ 0.1600 \\ 1.230 \\ 19.058 \\ 2966 \end{array}$	$\begin{array}{c} Na_9 TmW_{10}O_{36} \\ \bullet 35H_2O\ (12) \\ 3350.34 \\ P-1 \\ 12.8752\ (9) \\ 13.0761\ (9) \\ 20.8761\ (12) \\ 77.097\ (2) \\ 83.853\ (2) \\ 77.351\ (3) \\ 3336.5\ (4) \\ 0.0953 \\ 0.0359 \\ 0.0848 \\ 1.105 \\ 18.657 \\ 2952 \end{array}$	$\begin{array}{c} Na_9YbW_{10}O_{36}\\ \bullet 37H_2O~(\textbf{13})\\ 3387.25\\ P-1\\ 12.8747~(6)\\ 13.0649~(6)\\ 20.9095~(9)\\ 77.190~(2)\\ 83.860~(2)\\ 77.461~(2)\\ 3341.3~(3)\\ 0.0608\\ 0.0315\\ 0.0745\\ 1.135\\ 18.706\\ 2987\\ \end{array}$	$\begin{array}{c} Na_9LuW_{10}O_{36}\\ \bullet 32H_2O~(14)\\ 3356.38\\ P-1\\ 12.7347~(7)\\ 13.0458~(7)\\ 20.4697~(12)\\ 82.887~(2)\\ 74.479~(2)\\ 88.659~(2)\\ 3251.3~(3)\\ 0.0895\\ 0.0360\\ 0.0807\\ 1.100\\ 19.300\\ 2956 \end{array}$
Formula Mr SG a (Å) b (Å) c (Å) a (°) β (°) γ (°) V (Å ³) R _{int} R1 wR2 GooF Mu (mm ⁻¹) F000 Z	$\begin{array}{c} Na_9 TbW_{10}O_{36}\\ \bullet 37H_2O\left(8\right)\\ 3372.33\\ P-1\\ 12.8721\left(6\right)\\ 13.0881\left(7\right)\\ 20.8876\left(11\right)\\ 77.102\left(2\right)\\ 83.865\left(2\right)\\ 77.384\left(2\right)\\ 3341.1\left(3\right)\\ 0.1072\\ 0.0471\\ 0.1143\\ 1.1129\\ 18.366\\ 2976\\ 2\\ \end{array}$	$\begin{array}{c} Na_9 Dy W_{10} O_{36} \\ \bullet 35 H_2 O \ (\textbf{9}) \\ 3343.91 \\ P-1 \\ 12.7414 \ (5) \\ 13.0651 \ (5) \\ 20.4611 \ (9) \\ 82.874 \ (2) \\ 74.520 \ (2) \\ 88.910 \ (2) \\ 3256.8 \ (2) \\ 0.0933 \\ 0.0267 \\ 0.0585 \\ 1.021 \\ 18.899 \\ 2946 \\ 2 \end{array}$	$\begin{array}{c} Na_9HoW_{10}O_{36}\\ \bullet 35H_2O\;(10)\\ 3346.34\\ P-1\\ 12.727\;(3)\\ 13.063\;(5)\\ 20.465\;(7)\\ 82.848\;(7)\\ 74.548\;(8)\\ 88.878\;(11)\\ 3253.4\;(18)\\ 0.0898\\ 0.0326\\ 0.0764\\ 1.111\\ 18.986\\ 2948\\ 2\\ \end{array}$	$\begin{array}{c} Na_9 Er W_{10} O_{36} \\ \bullet 35 H_2 O \ (11) \\ 3364.67 \\ P-1 \\ 12.7343 \ (9) \\ 13.0518 \ (8) \\ 20.4813 \ (15) \\ 82.805 \ (3) \\ 74.496 \ (3) \\ 88.750 \ (3) \\ 3254.2 \ (4) \\ 0.0967 \\ 0.0758 \\ 0.1600 \\ 1.230 \\ 19.058 \\ 2966 \\ 2 \end{array}$	$\begin{array}{c} Na_9 TmW_{10}O_{36} \\ \bullet 35H_2O\ (12) \\ 3350.34 \\ P-1 \\ 12.8752\ (9) \\ 13.0761\ (9) \\ 20.8761\ (12) \\ 77.097\ (2) \\ 83.853\ (2) \\ 77.351\ (3) \\ 3336.5\ (4) \\ 0.0953 \\ 0.0359 \\ 0.0848 \\ 1.105 \\ 18.657 \\ 2952 \\ 2 \end{array}$	$\begin{array}{c} Na_9YbW_{10}O_{36}\\ \bullet 37H_2O~(\textbf{13})\\ 3387.25\\ P-1\\ 12.8747~(6)\\ 13.0649~(6)\\ 20.9095~(9)\\ 77.190~(2)\\ 83.860~(2)\\ 77.461~(2)\\ 3341.3~(3)\\ 0.0608\\ 0.0315\\ 0.0745\\ 1.135\\ 18.706\\ 2987\\ 2\\ \end{array}$	$\begin{array}{c} Na_9LuW_{10}O_{36}\\ \bullet 32H_2O\ (14)\\ 3356.38\\ P-1\\ 12.7347\ (7)\\ 13.0458\ (7)\\ 20.4697\ (12)\\ 82.887\ (2)\\ 74.479\ (2)\\ 88.659\ (2)\\ 3251.3\ (3)\\ 0.0895\\ 0.0360\\ 0.0807\\ 1.100\\ 19.300\\ 2956\\ 2\\ \end{array}$
Formula Mr SG a (Å) b (Å) c (Å) a (°) β (°) γ (°) V (Å ³) R _{int} R1 wR2 GooF Mu (mm ⁻¹) F000 Z Density (g/cm ³)	$\begin{array}{c} Na_9 TbW_{10}O_{36}\\ \bullet 37H_2O\left(8\right)\\ 3372.33\\ P-1\\ 12.8721\left(6\right)\\ 13.0881\left(7\right)\\ 20.8876\left(11\right)\\ 77.102\left(2\right)\\ 83.865\left(2\right)\\ 77.384\left(2\right)\\ 3341.1\left(3\right)\\ 0.1072\\ 0.0471\\ 0.1143\\ 1.1129\\ 18.366\\ 2976\\ 2\\ 3.352\end{array}$	$\begin{array}{c} Na_9 Dy W_{10} O_{36} \\ \bullet 35 H_2 O \ (\textbf{9}) \\ 3343.91 \\ P-1 \\ 12.7414 \ (5) \\ 13.0651 \ (5) \\ 20.4611 \ (9) \\ 82.874 \ (2) \\ 74.520 \ (2) \\ 88.910 \ (2) \\ 3256.8 \ (2) \\ 0.0933 \\ 0.0267 \\ 0.0585 \\ 1.021 \\ 18.899 \\ 2946 \\ 2 \\ 3.410 \end{array}$	$\begin{array}{c} Na_9HoW_{10}O_{36}\\ \bullet 35H_2O~(10)\\ 3346.34\\ P-1\\ 12.727~(3)\\ 13.063~(5)\\ 20.465~(7)\\ 82.848~(7)\\ 74.548~(8)\\ 88.878~(11)\\ 3253.4~(18)\\ 0.0898\\ 0.0326\\ 0.0764\\ 1.111\\ 18.986\\ 2948\\ 2\\ 3.416\\ \end{array}$	$\begin{array}{c} Na_9 Er W_{10} O_{36} \\ \bullet 35 H_2 O (11) \\ 3364.67 \\ P-1 \\ 12.7343 (9) \\ 13.0518 (8) \\ 20.4813 (15) \\ 82.805 (3) \\ 74.496 (3) \\ 88.750 (3) \\ 3254.2 (4) \\ 0.0967 \\ 0.0758 \\ 0.1600 \\ 1.230 \\ 19.058 \\ 2966 \\ 2 \\ 3.434 \end{array}$	$\begin{array}{c} Na_9 TmW_{10}O_{36} \\ \bullet 35H_2O\ (12) \\ 3350.34 \\ P-1 \\ 12.8752\ (9) \\ 13.0761\ (9) \\ 20.8761\ (12) \\ 77.097\ (2) \\ 83.853\ (2) \\ 77.351\ (3) \\ 3336.5\ (4) \\ 0.0953 \\ 0.0359 \\ 0.0848 \\ 1.105 \\ 18.657 \\ 2952 \\ 2 \\ 3.335 \end{array}$	$\begin{array}{c} Na_9YbW_{10}O_{36}\\ \bullet 37H_2O~(13)\\ 3387.25\\ P-1\\ 12.8747~(6)\\ 13.0649~(6)\\ 20.9095~(9)\\ 77.190~(2)\\ 83.860~(2)\\ 77.461~(2)\\ 3341.3~(3)\\ 0.0608\\ 0.0315\\ 0.0745\\ 1.135\\ 18.706\\ 2987\\ 2\\ 3.367\\ \end{array}$	$\begin{array}{c} Na_9LuW_{10}O_{36}\\ \bullet 32H_2O\ (14)\\ 3356.38\\ P-1\\ 12.7347\ (7)\\ 13.0458\ (7)\\ 20.4697\ (12)\\ 82.887\ (2)\\ 74.479\ (2)\\ 88.659\ (2)\\ 3251.3\ (3)\\ 0.0895\\ 0.0360\\ 0.0807\\ 1.100\\ 19.300\\ 2956\\ 2\\ 3.428\\ \end{array}$
Formula Mr SG a (Å) b (Å) c (Å) c (Å) a (°) β (°) γ (°) V (Å ³) R _{int} R1 wR2 GooF Mu (mm ⁻¹) F000 Z Density (g/cm ³) Temperature (K)	$\begin{array}{c} Na_9 TbW_{10}O_{36} \\ \bullet 37H_2O (\textbf{8}) \\ 3372.33 \\ P-1 \\ 12.8721 (6) \\ 13.0881 (7) \\ 20.8876 (11) \\ 77.102 (2) \\ 83.865 (2) \\ 77.384 (2) \\ 3341.1 (3) \\ 0.1072 \\ 0.0471 \\ 0.1143 \\ 1.1129 \\ 18.366 \\ 2976 \\ 2 \\ 3.352 \\ 100 (2) \end{array}$	$\begin{array}{c} Na_9 Dy W_{10} O_{36} \\ \bullet 35 H_2 O \ (\textbf{9}) \\ 3343.91 \\ P-1 \\ 12.7414 \ (5) \\ 13.0651 \ (5) \\ 20.4611 \ (9) \\ 82.874 \ (2) \\ 74.520 \ (2) \\ 88.910 \ (2) \\ 3256.8 \ (2) \\ 0.0933 \\ 0.0267 \\ 0.0585 \\ 1.021 \\ 18.899 \\ 2946 \\ 2 \\ 3.410 \\ 100 \ (2) \end{array}$	$\begin{array}{c} Na_9HoW_{10}O_{36}\\ \bullet 35H_2O~(10)\\ 3346.34\\ P-1\\ 12.727~(3)\\ 13.063~(5)\\ 20.465~(7)\\ 82.848~(7)\\ 74.548~(8)\\ 88.878~(11)\\ 3253.4~(18)\\ 0.0898\\ 0.0326\\ 0.0764\\ 1.111\\ 18.986\\ 2948\\ 2\\ 3.416\\ 100~(2)\\ \end{array}$	$\begin{array}{c} Na_9 Er W_{10} O_{36} \\ \bullet 35 H_2 O \ (11) \\ 3364.67 \\ P-1 \\ 12.7343 \ (9) \\ 13.0518 \ (8) \\ 20.4813 \ (15) \\ 82.805 \ (3) \\ 74.496 \ (3) \\ 88.750 \ (3) \\ 3254.2 \ (4) \\ 0.0967 \\ 0.0758 \\ 0.1600 \\ 1.230 \\ 19.058 \\ 2966 \\ 2 \\ 3.434 \\ 100 \ (2) \end{array}$	$\begin{array}{c} Na_9 TmW_{10}O_{36} \\ \bullet 35H_2O\ (12) \\ 3350.34 \\ P-1 \\ 12.8752\ (9) \\ 13.0761\ (9) \\ 20.8761\ (12) \\ 77.097\ (2) \\ 83.853\ (2) \\ 77.351\ (3) \\ 3336.5\ (4) \\ 0.0953 \\ 0.0359 \\ 0.0848 \\ 1.105 \\ 18.657 \\ 2952 \\ 2 \\ 3.335 \\ 100\ (2) \end{array}$	$\begin{array}{c} Na_9YbW_{10}O_{36}\\ \bullet 37H_2O~(13)\\ 3387.25\\ P-1\\ 12.8747~(6)\\ 13.0649~(6)\\ 20.9095~(9)\\ 77.190~(2)\\ 83.860~(2)\\ 77.461~(2)\\ 3341.3~(3)\\ 0.0608\\ 0.0315\\ 0.0745\\ 1.135\\ 18.706\\ 2987\\ 2\\ 3.367\\ 100~(2)\\ \end{array}$	$\begin{array}{c} Na_9LuW_{10}O_{36}\\ \bullet 32H_2O\ (14)\\ 3356.38\\ P-1\\ 12.7347\ (7)\\ 13.0458\ (7)\\ 20.4697\ (12)\\ 82.887\ (2)\\ 74.479\ (2)\\ 88.659\ (2)\\ 3251.3\ (3)\\ 0.0895\\ 0.0360\\ 0.0807\\ 1.100\\ 19.300\\ 2956\\ 2\\ 3.428\\ 100\ (2)\\ \end{array}$

Table S1. Crystallographic parameters for complexes 1-14 ($LaW_{10} - LuW_{10}$).

Figure S1. MIR spectra of sodium paratungstate ($Na_{10}H_2W_{12}O_{40}$ •XH₂O) side product formed during synthesis of LnW_{10} complexes using method from Peacock and Weakly.

Figure S2. Polyhedral representation of sodium paratungstate ($Na_{10}W_{12}O_{40} \cdot 21H_2O$), the byproduct of the LnW_{10} synthesis formed when using the protocol from Peacock and Weakley. Sodium cations and lattice water molecules have been excluded for clarity.

Formula	$Na_{10}W_{12}O_{40}\bullet 21H_2O$
Mr	3411.98
SG	P-1
a(Å)	11.772
b(Å)	12.428
c(Å)	22.015
α	86.357
β	86.659
γ	66.438
$V(Å^3)$	2944.4
Rint	0.0505
R1	0.1153
wR2	0.2852
GooF	1.182
Mu	23.525
F000	2972
Z	2
Dx (g/cm^3)	3.848

Table S2.	Crystallographic	parameters	for sodium	paratungstate.

Figure S3. Ball and stick representation of complex **10** (HoW₁₀) highlighting WO₆ belt and cap moieties. The WO₆ belt moiety possesses five different types of W-O bonds: W-O_{center}, W-O_{cap}, W-O_{terminal}, W-O_{lanthanide}, and W-O_{bridge} whereas the WO₆ cap moiety includes three unique types of W-O bonds: W-O_{center}, W-O_{belt}, and W-O_{terminal}.

Methodology for Acquiring Structural Distortion Parameters.

The plane angle (PA) is the angle between the two coordinating planes (red planes) as shown in **Figure S4** (**Top**). The plane distance (PD) is the difference in distance between the top coordinating plane with the metal center and the bottom coordinating plane with the metal center (**Figure S4**, **Top**). The skew angle (SA) is calculated by measuring the angle between a perpendicular plane constructed out of the metal center and two oxygen atoms that are approximately 180 ° from one another from the top coordinating plane (black planes—**Figure S4**, **Bottom**) and a perpendicular plane constructed out of the metal center and two oxygen atoms that are approximately 180 ° from one another from the bottom coordinating plane (black planes—**Figure S4**, **Bottom**). This method produces four different SAs which are then averaged and subtracted from 45 °. The absolute value of this calculation produces the final SA values. Generation of coordinating planes as well as distance and angle measurements were done using the Mercury software package.

Figure S4. Ball and stick representation of the HoO_8 moiety from the side (**Top**) and a top-down view (**Bottom**) along with calculated planes used to determine structural distortion parameters.

Figure S5. Polyhedral representations of complexes 2 (CeW_{10}) and 1 (LaW_{10}) that highlight the unusual tetrahedral coordination geometry of the Na(I) cation in 2 and the replacement of this Na(I) cation with a lattice water molecule in 1.

Figure S6. Polyhedral representations of **1** (LaW₁₀), **4** (NdW₁₀), **7** (GdW₁₀), and **10** (HoW₁₀) to illustrate cell packing in the different LnW_{10} polymorphs. Complex **1** is a representative example of polymorph 1, complex **4** is the only example of polymorph 2, complex **7** is a representative example of polymorph 3, and complex **10** is a representative example of polymorph 4.

Figure S7. Plots of SAs vs. lanthanide ionic radii separated by LnW_{10} structural polymorph.

Figure S8. Plots of PAs vs. lanthanide ionic radii separated by LnW_{10} structural polymorph.

Figure S9. Plots of PDs vs. lanthanide ionic radii separated by LnW₁₀ structural polymorph.

Figure S10. Plot of d_{Ln-Na} vs. lanthanide ionic radii depicting clear polymorph driven trends in Ln(III)-Na(I) distances.

Figure S11. (Left) Background subtracted FIR spectrum of complex 1 (LaW₁₀) fit to Gaussian functions. (**Right**) Raw FIR spectrum for complex 1 and baseline used for background subtraction.

Model	Gauss						
Equation		y=y0 + (A/(w*s	qrt(pi/2)))*exp(-	2*((x-xc)/w)^2)			
Dlat	Peak1	Peak2	Peak3	Peak4	Peak5		
PIO	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)		
0	-0.0014 \pm	-0.0014 \pm	-0.0014 \pm	-0.0014 \pm	-0.0014 \pm		
yu	8.84422E-4	8.84422E-4	8.84422E-4	8.84422E-4	8.84422E-4		
	$134.60314\pm$	$168.18858 \pm$	$184.39212 \pm$	$319.75397 \pm$	$353.85273 \pm$		
xc	0.63564	1.46285	0.60924	0.96246	0.36267		
	$29.3108 \pm$	$25.59368 \pm$	$13.24783 \pm$	$48.46464 \pm$	$27.46196 \pm$		
W	0.80281	2.79547	2.32961	1.23053	0.76501		
	$7.00134 \pm$	$4.20582 \pm$	$0.8696 \pm$	$14.97735 \pm$	$6.09223 \pm$		
A	0.28039	0.6668	0.45422	0.56918	0.50338		
Reduced Chi-Sqr	2.13E-05						
R-Square (COD)	0.99789						
Adj. R-Square			0.99766				

 Table S3. Peak fitting parameters for FIR spectrum of complex 1.

Figure S12. (Left) Background subtracted FIR spectrum of complex 2 (CeW₁₀) fit to Gaussian functions. (Right) Raw FIR spectrum for complex 2 and baseline used for background subtraction.

Model	Gauss						
Equation		y=y0 + (A/(w*sqrt(pi/2))))*exp(-2*((x-xc)/	(w)^2)		
Dlat	Peak1	Peak2	Peak3	Peak4	Peak5	Peak6	
PIO	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	
0	-0.00474 \pm	-0.00474 \pm	-0.00474 \pm	-0.00474 \pm	-0.00474 \pm	-0.00474 \pm	
yu	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	
	$116.98744 \pm$	$134.52474 \pm$	$164.95805 \pm$	$184.42907 \pm$	$311.03222\pm$	$352.22405 \pm$	
xc	1.49648	0.81322	2.04858	0.66011	0.7547	0.29375	
	$14.04169 \pm$	$21.67149 \pm$	$31.80234 \pm$	$11.42623 \pm$	$59.51296 \pm$	$30.34262 \pm$	
w	2.05722	2.5111	2.45201	1.78541	1.16467	0.7528	
	$0.90283 ~\pm$	$4.59578 \pm$	$4.49624 \pm$	$0.46714 \pm$	$19.63896 \pm$	$5.99036 \pm$	
A	0.47704	0.8435	0.46849	0.14164	0.54136	0.4028	
Reduced Chi-Sqr	1.64E-05						
R-Square (COD)	0.99838						
Adj. R-Square			0.99	817			

Table S4. Peak fitting parameters for FIR spectrum of complex 2.

Figure S13. (Left) Background subtracted FIR spectrum of complex 3 (PrW_{10}) fit to Gaussian functions. (**Right**) Raw FIR spectrum for complex 3 and baseline used for background subtraction.

Model	Gauss						
Equation		у=у0	+ (A/(w*sqrt(pi/2)))*exp(-2*((x-xc)/w)^2	2)		
Dlat	Peak1	Peak2	Peak3	Peak4	Peak5	Peak6	
PIO	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	
	-0.0051 \pm	-0.0051 \pm	-0.0051 \pm	$-0.0051 \pm$	-0.0051 \pm	$-0.0051 \pm$	
yo	0.00407	0.00407	0.00407	0.00407	0.00407	0.00407	
	$112.63727\pm$	$133.93395\pm$	$167.36581 \pm$	$183.10611 \pm$	$312.64138 \pm$	$351.44096 \pm$	
xc	0.64668	0.75763	2.80262	1.39164	0.85687	0.33357	
	$12.21461 \pm$	$27.04648 \pm$	$24.53185 \pm$	$11.72703 \pm$	$61.47865 \pm$	$27.5978 \pm$	
w	2.28844	3.55909	5.56952	5.01449	1.3651	1.27906	
	$2.01955 \pm$	$14.64679 \pm$	$6.21613 \pm$	0.88837 ± 1.0223	$56.55994 \pm$	$10.7953 \pm$	
A	0.96703	2.10448	2.02878		1.79103	1.22373	
Reduced Chi-Sqr	1.97E-04						
R-Square (COD)		0.99724					
Adj. R-Square			0.99	687			

 Table S5. Peak fitting parameters for FIR spectrum of complex 3.

Figure S14. (Left) Background subtracted FIR spectrum of complex 4 (NdW₁₀) fit to Gaussian functions. (**Right**) Raw FIR spectrum for complex 4 and baseline used for background subtraction.

Model	Gauss					
Equation		y=y0 + (A/(w*s	qrt(pi/2)))*exp(-	2*((x-xc)/w)^2)		
Dlat	Peak1	Peak2	Peak3	Peak4	Peak5	
PIO	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	
	-0.00313 \pm	-0.00313 \pm	-0.00313 \pm	-0.00313 \pm	-0.00313 \pm	
yu	4.89231E-4	4.89231E-4	4.89231E-4	4.89231E-4	4.89231E-4	
	$115.02762 \pm$	$138.16236 \pm$	$176.37358\pm$	$312.77532 \pm$	$357.98769 \pm$	
xc	0.56828	0.55437	0.80743	0.38157	0.32613	
	$14.05863 \pm$	$26.72646 \pm$	$25.77504 \pm$	$50.96735 \pm$	$29.25358 \pm$	
w	1.15648	1.97711	1.3446	0.66997	0.54115	
	$0.58904 \pm$	$2.31367 \pm$	$1.32884 \pm$	$9.03162 \pm$	$3.04304 \pm$	
А	0.11468	0.17189	0.08831	0.14064	0.11015	
Reduced Chi-Sqr	5.12E-06					
R-Square (COD)	0.99782					
Adj. R-Square			0.99759			

Table S6. Peak fitting parameters for FIR spectrum of complex 4.

Figure S15. (Left) Background subtracted FIR spectrum of complex 5 (SmW₁₀) fit to Gaussian functions. (**Right**) Raw FIR spectrum for complex 5 and baseline used for background subtraction.

Model	Gauss					
Equation		y=y0 + (A/(w*s	qrt(pi/2)))*exp(-	2*((x-xc)/w)^2)		
Dlat	Peak1	Peak2	Peak3	Peak4	Peak5	
F IOI	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	
νO	-0.00426 \pm	-0.00426 \pm	-0.00426 \pm	-0.00426 \pm	-0.00426 \pm	
yu	8.54812E-4	8.54812E-4	8.54812E-4	8.54812E-4	8.54812E-4	
	$116.22436 \pm$	$140.72246 \pm$	$177.89623 \pm$	$320.09039 \pm$	$358.09169 \pm$	
xc	1.39676	0.44826	0.95092	0.63736	0.28033	
	$15.90813 \pm$	$26.03707 \pm$	$25.36484 \pm$	$54.46696 \pm$	$28.30262 \pm$	
W	2.1656	1.55338	1.59339	0.91398	0.70443	
	$0.62254 \pm$	$4.64274 \pm$	$1.82831 \pm$	$18.27035 \pm$	$5.21411 \pm$	
А	0.19731	0.28435	0.14778	0.43004	0.34913	
Reduced Chi-Sqr	1.37E-05					
R-Square (COD)	0.99863					
Adj. R-Square			0.99849			

Table S7. Peak fitting parameters for FIR spectrum of complex 5.

Figure S16. (Left) Background subtracted FIR spectrum of complex 6 (EuW_{10}) fit to Gaussian functions. (**Right**) Raw FIR spectrum for complex 6 and baseline used for background subtraction.

Model	Gauss						
Equation		y=y0 + (A/(w*s	qrt(pi/2)))*exp(-	2*((x-xc)/w)^2)			
Dlat	Peak1	Peak2	Peak3	Peak4	Peak5		
Piot	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)		
0	-0.00371 \pm	-0.00371 \pm	$-0.00371 \pm$	-0.00371 \pm	-0.00371 \pm		
yu	6.40253E-4	6.40253E-4	6.40253E-4	6.40253E-4	6.40253E-4		
	$114.04848 \pm$	$139.17813 \pm$	$181.01946 \pm$	$317.65023 \pm$	$357.96983 \pm$		
xc	0.4117	0.32718	0.77641	0.58243	0.28352		
	$12.41008 \pm$	$31.46092 \pm$	$23.43034 \pm$	$54.36737 \pm$	$29.56028 \pm$		
W	1.27069	1.18916	1.37347	0.8599	0.57944		
	0.504 ± 0.10143	$4.75696 \pm$	$1.0918 \pm$	$13.58813 \pm$	$4.65387 \pm$		
A		0.16315	0.08244	0.29225	0.23946		
Reduced Chi-Sqr		7.91E-06					
R-Square (COD)		0.99861					
Adj. R-Square			0.99846				

 Table S8. Peak fitting parameters for FIR spectrum of complex 6.

Figure S17. (Left) Background subtracted FIR spectrum of complex 7 (GdW₁₀) fit to Gaussian functions. (**Right**) Raw FIR spectrum for complex 7 and baseline used for background subtraction.

Model	Gauss						
Equation		y=y0 + (A/(w*s	qrt(pi/2)))*exp(-	2*((x-xc)/w)^2)			
D1-4	Peak1	Peak2	Peak3	Peak4	Peak5		
PIO	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)		
0	-0.00249 \pm	-0.00249 \pm	-0.00249 \pm	-0.00249 \pm	-0.00249 \pm		
y0	5.70065E-4	5.70065E-4	5.70065E-4	5.70065E-4	5.70065E-4		
	$113.65861 \pm$	$135.7411 \pm$	$162.71632\pm$	$316.56981 \pm$	$358.5971 \pm$		
xc	0.23796	1.96707	4.31788	0.42085	0.36933		
	$9.01536 \pm$	$28.65306 \pm$	$28.80401 \pm$	$49.89736 \pm$	$25.28882 \pm$		
w	0.77988	2.58527	3.46352	0.75635	0.73178		
•	$0.52627 \pm$	$3.93905 \pm$	$1.90201 \pm$	$10.1528 \pm$	$2.42981 \pm$		
A	0.08026	0.72087	0.66725	0.17404	0.13531		
Reduced Chi-Sqr	9.77E-06						
R-Square (COD)	0.99704						
Adj. R-Square			0.99672				

 Table S9. Peak fitting parameters for FIR spectrum of complex 7.

Figure S18. (Left) Background subtracted FIR spectrum of complex 8 (TbW₁₀) fit to Gaussian functions. (**Right**) Raw FIR spectrum for complex 8 and baseline used for background subtraction.

Model	Gauss						
Equation		y=y0 + (A/(w*s	qrt(pi/2)))*exp(-	2*((x-xc)/w)^2)			
Dlat	Peak1	Peak2	Peak3	Peak4	Peak5		
Pilot	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)		
0	-0.00146 \pm	-0.00146 \pm	$\textbf{-0.00146} \pm$	-0.00146 \pm	-0.00146 \pm		
yu	3.28384E-4	3.28384E-4	3.28384E-4	3.28384E-4	3.28384E-4		
	$122.30456 \pm$	$146.77592 \pm$	$180.02558 \pm$	$323.52819 \pm$	$362.39681 \pm$		
xc	1.01282	0.42215	1.21431	0.63728	0.3443		
	$14.74442 \pm$	$23.75945 \pm$	$23.78321 \pm$	$50.16757 \pm$	$30.08413 \pm$		
w	1.58728	1.65697	1.94549	0.86906	0.56683		
	$0.30054 \pm$	$1.48346 \pm$	$0.6241 \pm$	$7.00648 \pm$	$2.93772 \pm$		
A	0.06209	0.10407	0.06576	0.17108	0.15106		
Reduced Chi-Sqr	2.83E-06						
R-Square (COD)	0.99853						
Adj. R-Square			0.99837				

Table S10. Peak fitting parameters for FIR spectrum of complex 8.

Figure S19. (Left) Background subtracted FIR spectrum of complex 9 (DyW_{10}) fit to Gaussian functions. (Right) Raw FIR spectrum for complex 9 and baseline used for background subtraction.

Model			Gau	iss		
Equation		у=у0	+ (A/(w*sqrt(pi/2)))*exp(-2*((x-xc)/w)^2	2)	
D1-4	Peak1	Peak2	Peak3	Peak4	Peak5	Peak6
PIOL	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)
0	-0.00213 \pm	$-0.00213 \pm$	-0.00213 \pm	-0.00213 \pm	-0.00213 \pm	-0.00213 \pm
y0	6.46906E-4	6.46906E-4	6.46906E-4	6.46906E-4	6.46906E-4	6.46906E-4
N.O.	$121.9704 \pm$	$144.44177 \pm$	$173.75754 \pm$	$200.81162 \pm$	$320.93881 \pm$	$359.61223 \pm$
XC	1.56489	0.84121	1.32494	0.98586	1.20959	0.91668
	$15.56715 \pm$	$25.38535 \pm$	$16.60195 \pm$	$19.91491 \pm$	$46.2854 \pm$	$35.24128 \pm$
w	2.21373	3.11543	2.89743	1.9612	1.37878	0.93525
	$0.57633 \pm$	$2.83554 \pm$	$0.56137 \pm$	0.64874 ± 0.0679	$7.9902 \pm$	$4.74341 \pm$
A	0.2486	0.36035	0.15867		0.41627	0.38777
Reduced Chi-Sqr		•	7.99	E-06		•
R-Square (COD)			0.99	747		
Adj. R-Square			0.99	0713		

Table S11. Peak fitting parameters for FIR spectrum of complex 9.

Figure S20. (Left) Background subtracted FIR spectrum of complex 10 (HoW₁₀) fit to Gaussian functions. (**Right**) Raw FIR spectrum for complex 10 and baseline used for background subtraction.

Model		Gauss									
Equation		y=y0 + (A/(w*sqrt(pi/2)))*exp(-2*((x-xc)/w)^2)									
Dist	Peak1(Absorba	Peak2(Absorba	Peak3(Absorb	Peak4(Absorban	Peak5	Peak6					
PIO	nce)	nce)	ance)	ce)	(Absorbance)	(Absorbance)					
	-0.00486 \pm	-0.00486 \pm	-0.00486 \pm	-0.00486 \pm	-0.00486 \pm	-0.00486 \pm					
yu	0.00219	0.00219	0.00219	0.00219	0.00219	0.00219					
	$120.1907 \pm$	$146.09711 \pm$	$174.88177 \pm$	$200.25038 \pm$	$319.21037 \pm$	$357.17141 \pm$					
xc	1.12981	0.82763	1.10613	1.95197	1.24183	0.93971					
	$17.1425 \pm$	$28.12845 \pm$	$12.93385 \pm$	$24.27551 \pm$	$51.90942 \pm$	$32.40071 \pm$					
w	1.67873	2.6777	2.55664	4.45292	1.60047	1.43206					
	1.9829 ± 0.4969	$7.11147 \pm$	$0.75003 \pm$	$1.03766 \pm$	$23.12623 \pm$	$6.63026 \pm$					
A		0.6675	0.26413	0.20632	1.12426	0.96227					
Reduced Chi-Sqr		-	5.36	E-05							
R-Square (COD)			0.99	968							
Adj. R-Square			0.99	638							

Table S12. Peak fitting parameters for FIR spectrum of complex 10.

Figure S21. (Left) Background subtracted FIR spectrum of complex 11 (ErW_{10}) fit to Gaussian functions. (**Right**) Raw FIR spectrum for complex 11 and baseline used for background subtraction.

Model		Gauss									
Equation		y=y0 + (A/(w*s	qrt(pi/2)))*exp(-	2*((x-xc)/w)^2)							
Dlat	Peak1(Absorba	Peak2(Absorba	Peak3(Absorb	Peak4(Absorban	Peak5						
PIO	nce)	nce)	ance)	ce)	(Absorbance)						
	-0.00143 \pm	-0.00143 \pm	-0.00143 \pm	-0.00143 \pm	-0.00143 \pm						
y0	3.85681E-4	3.85681E-4	3.85681E-4	3.85681E-4	3.85681E-4						
	$119.92196 \pm$	$145.31788 \pm$	$174.70373 \pm$	$323.68575 \pm$	$362.05903 \pm$						
xc	1.0649	0.57166	1.66646	0.61227	0.37225						
	$16.81096 \pm$	$24.44798 \pm$	$14.06775 \pm$	$51.34786 \pm$	$30.38759 \pm$						
w	1.46261	1.67994	3.01482	0.79733	0.65606						
	$0.58104 \pm$	$1.9242 \pm$	$0.15817 \pm$	$10.95733 \pm$	$3.60895 \pm$						
А	0.1003	0.12777	0.04691	0.2471	0.2225						
Reduced Chi-Sqr			4.92E-06								
R-Square (COD)			0.99885								
Adj. R-Square			0.99873								

 Table S13. Peak fitting parameters for FIR spectrum of complex 11.

Figure S22. (Left) Background subtracted FIR spectrum of complex 12 (TmW_{10}) fit to Gaussian functions. (Right) Raw FIR spectrum for complex 12 and baseline used for background subtraction.

Model		Gauss								
Equation		y=y0 + (A/(w*s	qrt(pi/2)))*exp(-	2*((x-xc)/w)^2)						
Dlat	Peak1	Peak2	Peak3	Peak4	Peak5					
PIO	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)					
0	$\textbf{-7.00596E-4} \pm$	-7.00596E-4 \pm	-7.00596E-4 \pm	$-7.00596E-4 \pm$	-7.00596E-4 \pm					
yu	4.83621E-4	4.83621E-4	4.83621E-4	4.83621E-4	4.83621E-4					
	$122.87894 \pm$	$144.56468 \pm$	$171.55142 \pm$	$323.08478 \pm$	$364.01294 \pm$					
XC	1.14593	0.68456	1.19836	0.46932	0.31328					
	$17.27628 \pm$	$19.71013 \pm$	8.94121 ±	$57.63121 \pm$	$27.7819 \pm$					
w	1.41865	1.07762	2.48318	0.70642	0.85496					
	$0.95152 \pm$	$2.05338 \pm$	$0.09353 \pm$	$15.98602 \pm$	$2.82232 \pm$					
А	0.13912	0.14397	0.02657	0.25211	0.20598					
Reduced Chi-Sqr			7.92E-06							
R-Square (COD)			0.99879							
Adj. R-Square			0.99866							

Table S14. Peak fitting parameters for FIR spectrum of complex 12.

Figure S23. (Left) Background subtracted FIR spectrum of complex 13 (YbW₁₀) fit to Gaussian functions. (**Right**) Raw FIR spectrum for complex 13 and baseline used for background subtraction.

Model		Gauss								
Equation		y=y0 + (A/(w*s	qrt(pi/2)))*exp(-	2*((x-xc)/w)^2)						
Dlat	Peak1	Peak2	Peak3	Peak4	Peak5					
Pilot	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)					
	-0.00134 \pm	-0.00134 \pm	-0.00134 \pm	-0.00134 \pm	-0.00134 \pm					
yu	3.49829E-4	3.49829E-4	3.49829E-4	3.49829E-4	3.49829E-4					
	$122.9998 \pm$	$147.31932 \pm$	$172.65704 \pm$	$328.40213 \pm$	$363.94635 \pm$					
xc	0.40101	0.29823	1.21181	0.63809	0.29856					
	$9.63044 \pm$	$21.90544 \pm$	$13.95031 \pm$	$50.77549 \pm$	$27.03132 \pm$					
W	0.82639	0.99567	2.08204	0.84054	0.73279					
	$0.28605 \pm$	$1.76656 \pm$	$0.23795 \pm$	$10.28396 \pm$	$2.90389 \pm$					
А	0.03117	0.06742	0.04904	0.24083	0.21352					
Reduced Chi-Sqr			5.19E-06							
R-Square (COD)			0.99866							
Adj. R-Square			0.99851							

Table S15. Peak fitting parameters for FIR spectrum of complex 13.

Figure S24. (Left) Background subtracted FIR spectrum of complex 14 (LuW_{10}) fit to Gaussian functions. (**Right**) Raw FIR spectrum for complex 14 and baseline used for background subtraction.

Model		Gauss								
Equation		y=y0 + (A/(w*s	qrt(pi/2)))*exp(-	2*((x-xc)/w)^2)						
Dlat	Peak1	Peak2	Peak3	Peak4	Peak5					
PIO	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)	(Absorbance)					
	-0.00155 \pm	$-0.00155 \pm$	$-0.00155 \pm$	-0.00155 \pm	$-0.00155 \pm$					
yu	0.0011	0.0011	0.0011	0.0011	0.0011					
	$116.3922 \pm$	$140.09621 \pm$	$153.39291 \pm$	$323.06292 \pm$	$360.0016 \pm$					
xc	0.48106	0.57959	0.94903	0.58978	0.42479					
	$11.3516\pm$	$30.03854 \pm$	$6.13594 \pm$	$58.64299 \pm$	$25.68943 \pm$					
w	1.30668	0.90127	2.29172	0.84353	1.64303					
	$0.80194 \pm$	$7.01015 \pm$	$0.14074 \pm$	$30.18441 \pm$	$3.17751 \pm$					
А	0.15786	0.20642	0.06626	0.59716	0.46578					
Reduced Chi-Sqr			3.87E-05							
R-Square (COD)			0.99816							
Adj. R-Square			0.99796							

Table S16. Peak fitting parameters for FIR spectrum of complex 14.

Complex name	Observed peaks rounded to the first decimal (cm ⁻¹)
1 (LaW ₁₀)	134.6, 168.2, 184.4, 319.8, 353.9
2 (CeW ₁₀)	117.0, 134.5, 165.0, 184.4, 311.0, 352.2
3 (PrW ₁₀)	112.6, 133.9, 167.4, 183.1, 312.6, 351.4
4 (NdW ₁₀)	115.0, 138.2, 176.4, 312.8, 358.0
5 (SmW ₁₀)	116.2, 140.7, 177.9, 320.1, 358.1
6 (EuW ₁₀)	114.0, 139.2, 181.0, 317.7, 358.0
7 (GdW ₁₀)	113.7, 135.7, 162.7, 316.6, 358.6
8 (TbW ₁₀)	122.3, 146.8, 190.0, 323.5, 362.4
9 (DyW ₁₀)	122.0, 144.4, 173.8, 200.8, 320.9, 359.6
10 (HoW ₁₀)	120.2, 146.1, 174.9, 200.3, 319.2, 357.2
11 (ErW ₁₀)	119.9, 145.3, 174.7, 323.7, 362.1
12 (TmW ₁₀)	122.9, 144.6, 171.6, 323.1, 364.0
13 (YbW ₁₀)	123.0, 147.3, 172.7, 328.4, 363.9
14 (LuW ₁₀)	116.4, 140.1, 153.4, 323.1, 360.0

 Table S17. Observed peaks in the FIR spectra for complexes 1- 14.

Figure S25. Raman spectra of two different crystals of **3** (CeW₁₀) that demonstrate fluctuations in peak intensities seen within spectra of different crystals of the same species. This fluctuation is especially pronounced for the peak centered around 888 cm⁻¹ which has been assigned as the v(Ln-O-W) mode. Intensity changes are generally indicative of Raman mode polarizability; however, there are not literature examples that suggest this mode is polarizable.¹

Figure S26. (Left) Background subtracted Raman spectrum of complex 1 (LaW_{10}) fit to Lorentzian functions. (**Right**) Raw Raman spectrum for complex 1.

Model	Lorentz										
Equation				y = y0 + (2*)	A/pi)*(w/(4*(x-	sc)^2 + w^2))					
Plot	Peak1	Peak2	Peak3	Peak4	Peak5	Peak6	Peak7	Peak8	Peak9		
riot	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)		
y0	$\textbf{-4.44097} \pm 0$	-4.44097 ± 0	$\textbf{-4.44097} \pm 0$	$\textbf{-4.44097} \pm 0$	-4.44097 ± 0	-4.44097 ± 0	-4.44097 ± 0	$\textbf{-4.44097} \pm 0$	$\textbf{-4.44097} \pm 0$		
	$139.15724 \pm$	$158.91662 \pm$	$177.1049 \pm$	196.42286±	$214.13305\pm$	$231.46774 \pm$	320.64152 ±	$359.3776 \pm$	$409.05642 \pm$		
xc	0.90544	2.81645	2.90142	2.17249	1.60011	3.31386	0.7151	0.37556	5.43423		
w	$8.60228 \pm$	22.2198 ±	$25.34188 \pm$	$26.46136 \pm$	$26.06282 \pm$	$28.46782 \pm$	$6.64635 \pm$	$16.97664 \pm$	36.21366±		
w	3.67073	10.32624	19.65025	14.98734	11.53014	5.6696	2.09214	1.32747	11.68757		
	$527.58229 \pm$	$2255.72602 \pm$	$3256.78141 \pm$	$6107.99196 \pm$	$7608.7661 \pm$	$4510.52803 \pm$	$406.14257 \pm$	$3264.46689 \pm$	$2488.03969 \pm$		
A	247.45669	2015.93803	4789.08222	7068.68423	6882.84616	2976.28977	93.09556	229.17489	1290.98208		
Plat	Peak10	Peak11	Peak12	Peak13	Peak14	Peak15	Peak16	Peak17	Peak18		
riot	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)		
y0	-4.44097 ± 0	-4.44097 ± 0	-4.44097 ± 0	-4.44097 ± 0	-4.44097 ± 0	-4.44097 ± 0	-4.44097 ± 0	$\textbf{-4.44097}\pm0$	-4.44097 ± 0		
¥0	$428.4111 \pm$	$486.15513 \pm$	$540.01788 \pm$	$577.22867 \pm$	$806.94212 \pm$	$837.74219 \pm$	$883.72142 \pm$	$930.68305\pm$	$952.48018 \pm$		
AC.	0.8661	1.9471	1.07145	1.84535	1.78146	0.59947	0.1339	0.15613	0.023		
	$19.41697 \pm$	$24.13489 \pm$	$39.66517 \pm$	$23.16324 \pm$	$22.18385 \pm$	$16.93034 \pm$	$13.45162 \pm$	$24.2968 \pm$	$9.94097 \pm$		
w	3.4323	6.98988	4.3096	6.63377	5.70891	2.04008	0.42118	0.52192	0.08308		
	$3107.72645 \pm$	$1087.94847 \pm$	$5388.10773 \pm$	$1192.41035 \pm$	$1054.46895 \pm$	$2017.28714 \pm$	$6003.48827 \pm$	15817.25927	$23311.11321 \pm$		
A	966.70883	284.95744	573.04775	370.76612	224.33489	206.16161	144.06866	± 297.76528	188.10954		
Reduced					167 07257						
Chi-Sqr					107.97557						
R-Square					0.00450						
(COD)					0.79439						
Adj. R-					0.99424						
Square					0.79424						

Table S18. Peak fitting parameters for Raman spectrum of complex 1.

Figure S27. (Left) Background subtracted Raman spectrum of complex 2 (CeW_{10}) fit to Lorentzian functions. (**Right**) Raw Raman spectrum for complex 2.

Model	Lorentz										
Equation			y = y0 + (2*	A/pi)*(w/(4*(x-)	sc)^2 + w^2))						
DI (Peak1	Peak2	Peak3	Peak4	Peak5	Peak6	Peak7				
Plot	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)				
0	$-8.55346 \pm$	$-8.55346 \pm$									
yu	0.6172	0.6172	0.6172	0.6172	0.6172	0.6172	0.6172				
110	$128.72767 \pm$	$161.347 \pm$	$179.60768 \pm$	$209.56164 \pm$	$359.19543 \pm$	$425.13805 \pm$	$476.52888 \pm$				
XC.	2.16135	3.76867	1.40311	0.36787	1.05638	2.61231	3.53264				
	$5.43205 \pm$	$29.71914 \pm$	$14.00117 \pm$	$35.79716 \pm$	$28.24098 \pm$	$44.54835 \pm$	$12.65236 \pm$				
w	7.14445	10.10783	6.15885	1.12508	3.49421	9.91003	11.42054				
	$71.22089 \pm$	$1262.34581 \pm$	$644.77781 \pm$	$9711.06075 \pm$	$1752.05296 \pm$	$1467.27418\pm$	$151.39527 \pm$				
A	77.45904	529.52242	387.32842	291.85097	181.09798	269.11653	110.77511				
Plat	Peak8	Peak9	Peak10	Peak11	Peak12	Peak13	Peak14				
Plot	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)				
0	$-8.55346 \pm$	$-8.55346 \pm$									
yu	0.6172	0.6172	0.6172	0.6172	0.6172	0.6172	0.6172				
¥C.	$542.55195 \pm$	$581.78554 \pm$	$810.49072 \pm$	$837.12121 \pm$	$884.57275 \pm$	$943.77607 \pm$	$967.55739 \pm$				
AL.	0.86989	1.99147	1.71269	1.09978	0.25193	0.26422	0.08724				
11/	34.00285 ± 0	16.32541 ± 0	18.82615 ± 0	12.7444 ± 0	$8.08721 \pm$	$28.04757 \pm$	$13.53983 \pm$				
vv	54.09285 ± 0	10.32341 ± 0	18.82015 ± 0	12.7444±0	0.74639	0.81359	0.3172				
	$2806.57498 \pm$	$392.8631 \pm$	$560.56509 \pm$	$479.72222 \pm$	$1034.93814\pm$	$9174.91526 \pm$	$7327.26229 \pm$				
л	111.64957	74.21776	77.927	62.71792	70.65604	257.73164	179.07014				
Reduced				83 1653							
Chi-Sqr				05.1055							
R-Square				0.97781							
(COD)				0.57781							
Adj. R-				0.97682							
Square				0.97082							

 Table S19. Peak fitting parameters for Raman spectrum of complex 2.

Figure S28. (Left) Background subtracted Raman spectrum of complex 3 (PrW_{10}) fit to Lorentzian functions. (**Right**) Raw Raman spectrum for complex 3.

Model	Lorentz									
Equation	$y = y0 + (2*A/pi)*(w/(4*(x-xc)^2 + w^2))$									
Plat	Peak1	Peak2	Peak3	Peak4	Peak5	Peak6	Peak7	Peak8	Peak9	
1101	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	
v0	-6.13315±	$-6.13315 \pm$	$-6.13315 \pm$	$-6.13315 \pm$	$-6.13315 \pm$	$-6.13315 \pm$	$-6.13315 \pm$	-6.13315±	$-6.13315 \pm$	
	0.30949	0.30949	0.30949	0.30949	0.30949	0.30949	0.30949	0.30949	0.30949	
xc	$132.65658 \pm$	$160.57111 \pm$	$183.02827 \pm$	$201.06143 \pm$	$219.54585 \pm$	$315.31067 \pm$	$359.33723 \pm$	$421.64325 \pm$	$478.51372\pm$	
	0.5081	1.31367	1.54241	0.96284	0.74281	0.55977	0.25536	0.38188	0.92153	
w	$7.19654 \pm$	$18.59429 \pm$	$25.88199 \pm$	$24.25583 \pm$	26.7591 ±	$8.43506 \pm$	$21.63972 \pm$	$29.20224 \pm$	$10.84667 \pm$	
w	1.59907	4.948	6.55112	6.41885	1.44909	1.66657	0.81648	1.24331	2.78179	
٨	$207.7142 \pm$	$575.75034 \pm$	$1996.3406 \pm$	$2387.02292 \pm$	$3863.13013 \pm $	$233.48396 \pm$	$2121.10266 \pm$	$2221.18544 \pm$	$204.11032 \pm$	
л	36.40934	233.09212	912.45055	1142.85807	522.73052	34.21467	61.85019	73.8408	39.26909	
Plat	Peak10	Peak11	Peak12	Peak13	Peak14	Peak15	Peak16	Peak17	Peak18	
TIOU	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	
0	$-6.13315 \pm$	$-6.13315 \pm$	$-6.13315 \pm$	$-6.13315 \pm$	$-6.13315 \pm$	$-6.13315 \pm$	$-6.13315 \pm$	$-6.13315 \pm$	$-6.13315 \pm$	
yo	0.30949	0.30949	0.30949	0.30949	0.30949	0.30949	0.30949	0.30949	0.30949	
¥C.	$543.15903 \pm$	$576.27918 \pm$	$798.42671 \pm$	$839.38277 \pm$	$885.0843 \pm$	$937.87606 \pm$	$951.08579 \pm$	$959.20744 \pm$	$924.53192 \pm$	
AL.	1.08326	4.13816	1.82479	0.90287	0.04099	0.2367	0.12143	0.14161	0.40584	
	$28.47215 \pm$	65 54114 ± 0	10.19912 ± 0	$10.12777 \pm$	$11.07876 \pm$	$14.9474 \pm$	$9.94549 \pm$	$11.18136 \pm$	$15.31284\pm$	
w	4.03939	05.54114 ± 0	19.10012±0	2.69725	0.1255	1.3701	0.59544	0.29712	1.08122	
٨	$1009.49661 \pm$	$1430.81422 \pm$	$236.69367 \pm$	$181.66716 \pm$	$4578.59697 \pm$	$2535.40016 \pm$	$2967.1853 \pm$	$3664.28302 \pm$	$1689.50647 \pm$	
л	183.97148	180.54781	35.0556	35.94961	39.29689	316.45758	270.01727	181.71676	196.73666	
Reduced					16 50820					
Chi-Sqr					10.59829					
R-Square					0.00403					
(COD)					0.77405					
Adj. R-					0.99366					
Square					0.77500					

Table S20. Peak fitting parameters for Raman spectrum of complex 3.

Figure S29. (Left) Background subtracted Raman spectrum of complex 4 (NdW₁₀) fit to Lorentzian functions. (**Right**) Raw Raman spectrum for complex 4.

Model	Lorentz										
Equation			y = y0 + (2*)	A/pi)*(w/(4*(x-	sc)^2 + w^2))						
DI (Peak1	Peak2	Peak3	Peak4	Peak5	Peak6	Peak7				
Plot	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)				
0	$-0.91247 \pm$	$-0.91247 \pm$	$-0.91247 \pm$	$-0.91247 \pm$	$-0.91247 \pm$	$-0.91247 \pm$	$-0.91247 \pm$				
yu	0.042	0.042	0.042	0.042	0.042	0.042	0.042				
NO	$158.22159 \pm$	$182.32357 \pm$	$209.91086 \pm$	$357.77593 \pm$	$424.98358 \pm$	$477.83019 \pm$	$551.8646 \pm$				
AL.	0.13764	0.06481	0.23978	0.27189	0.63326	0.62728	0.4143				
	$15.19911 \pm$	$23.87127 \pm$	49.24361±	$36.7959 \pm$	$34.24839 \pm$	$15.95868 \pm$	$52.90546 \pm$				
w	0.4665	0.32844	0.5203	0.96932	2.10125	2.00263	1.46803				
٨	$195.32326 \pm$	$1068.1673 \pm$	$1541.83531 \pm$	$353.51301 \pm$	$176.72614 \pm$	$42.45262 \pm$	$475.32889 \pm$				
A	6.67199	20.69703	24.83975	8.33341	9.98382	4.66086	12.30822				
Plot	Peak8	Peak9	Peak10	Peak11	Peak12	Peak13					
	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)					
0	$-0.91247 \pm$	$-0.91247 \pm$	$-0.91247 \pm$	$-0.91247 \pm$	$-0.91247 \pm$	$-0.91247 \pm$					
yo	0.042	0.042	0.042	0.042	0.042	0.042					
ve	$719.91293 \pm$	$808.83191 \pm$	$836.79723 \pm$	$886.34283 \pm$	$943.88869 \pm$	$965.20651 \pm$					
AL	0.17402	0.75853	0.25663	0.04137	0.07773	0.04992					
	$13.17334\pm$	$24.72573 \pm$	$17.60192 \pm$	$14.75484 \pm$	$33.06819 \pm$	$17.00212 \pm$					
**	0.55452	2.76829	0.86959	0.12728	0.19211	0.1828					
٨	$96.82962 \pm$	$75.84663 \pm$	$119.85697 \pm$	$507.24263 \pm$	$2066.36838 \pm$	$735.85251 \pm$					
Л	3.32828	8.00664	5.88933	3.69056	15.45656	11.04901					
Reduced				0 12505							
Chi-Sqr				0.12505							
R-Square				0.00002							
(COD)				0.99902							
Adj. R-				0 99899							
Square				0.59099							

Table S21. Peak fitting parameters for Raman spectrum of complex 4.

Figure S30. (Left) Background subtracted Raman spectrum of complex **5** (SmW₁₀) fit to Lorentzian functions. (**Right**) Raw Raman spectrum for complex **5**.

Model	Lorentz										
Equation			y = 2	y0+(2*A/pi)*(v	$v/(4*(x-xc)^2 + v)$	v^2))					
D1-+	Peak1	Peak2	Peak3	Peak4	Peak5	Peak6	Peak7	Peak8			
FIOT	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)			
vO	$-13.79663 \pm$	-13.79663 ±	-13.79663 ±	-13.79663 ±	$-13.79663 \pm$	-13.79663 ±	-13.79663 ±	$-13.79663 \pm$			
yū	0.76681	0.76681	0.76681	0.76681	0.76681	0.76681	0.76681	0.76681			
¥0	$134.00419 \pm$	$174.25849 \pm$	$207.90455 \pm$	$223.62324 \pm$	$320.02186 \pm$	$360.44298 \pm$	$425.59196 \pm$	$481.52103 \pm$			
AL.	0.49918	1.70217	1.30403	1.09715	0.7642	0.42154	0.69825	1.341			
	$5.72887 \pm$	$45.76764 \pm$	$28.02555 \pm$	$22.73975 \pm$	$9.49252 \pm$	$23.83083 \pm$	$32.1992 \pm$	$12.55676 \pm$			
w	1.67707	4.5009	4.42401	2.67608	2.32467	1.39163	2.33333	4.0963			
	$383.05717 \pm$	$6941.65437 \pm$	$7868.66869 \pm$	$5266.44999 \pm$	$526.41124 \pm$	$3858.58163 \pm$	$3647.86028 \pm$	$449.97155 \pm$			
л	94.07888	1040.21171	2328.63241	1591.79972	97.47249	176.02167	207.98227	111.26042			
Plot	Peak9	Peak10	Peak11	Peak12	Peak13	Peak14	Peak15				
Plot	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)				
0	$-13.79663 \pm$	-13.79663 ±	-13.79663 ±	-13.79663 ±	$-13.79663 \pm$	-13.79663 ±	-13.79663 ±				
yu	0.76681	0.76681	0.76681	0.76681	0.76681	0.76681	0.76681				
100	$544.2887 \pm$	$579.45719 \pm$	$804.05604 \pm$	$838.51521 \pm$	$887.58566 \pm$	$932.54182 \pm$	$953.32337 \pm$				
AC.	0.91513	2.95947	1.58428	0.60545	0.09511	0.39862	0.11197				
w	31.08048 ± 0	4452225 ± 0	20.72059 ± 0	11.72595 ± 0	$10.11706 \pm$	$24.47152 \pm$	$20.82246 \pm$				
w	51.98048±0	44.52225 ± 0	20.72039 ± 0	11.72595±0	0.29396	1.15604	0.33509				
	$3194.81318 \pm$	$1754.23858 \pm$	$789.20564 \pm$	$871.56642 \pm$	$4427.03706 \pm$	$7364.16196 \pm$	$18463.3915 \pm$				
л	167.13228	192.98359	94.13166	67.54177	99.05513	434.1419	395.14759				
Reduced				100 \$	20477						
Chi-Sqr				109.0	01 //						
R-Square				0.05	016						
(COD)				0.96	,,,10						
Adj. R-				0.98	863						
Square				0.90							

Table S22. Peak fitting parameters for Raman spectrum of complex 5.

Figure S31. (Left) Background subtracted Raman spectrum of complex 6 (EuW_{10}) fit to Lorentzian functions. (**Right**) Raw Raman spectrum for complex 6.

Model	Lorentz										
Equation	$y = y0 + (2^*A/pi)^*(w/(4^*(x \cdot x \cdot x)^2 + w^2))$										
Plot	Peak1	Peak2	Peak3	Peak4	Peak5	Peak6	Peak7	Peak8	Peak9	Peak10	
	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	
y0	$-2.52683 \pm$	$-2.52683 \pm$	$-2.52683 \pm$	$-2.52683 \pm$	$-2.52683 \pm$	$-2.52683 \pm$	$-2.52683 \pm$	$-2.52683 \pm$	$-2.52683 \pm$	$-2.52683 \pm$	
	0.14072	0.14072	0.14072	0.14072	0.14072	0.14072	0.14072	0.14072	0.14072	0.14072	
xc	$136.61183 \pm$	162.31996 ±	$177.51798 \pm$	$195.86656 \pm$	$209.11304 \pm$	223.3791 ±	$260.84929 \pm$	$321.12088 \pm$	$357.63562 \pm$	$425.79264 \pm$	
	0.73754	0.84784	1.22385	1.3314	1.05015	0.92806	1.14289	0.47215	0.2526	0.28609	
w	$6.65705 \pm$	$17.40553 \pm$	$23.19336 \pm$	$20.41627 \pm$	$19.82037 \pm$	$24.40104 \pm$	$5.53803 \pm$	$8.15313 \pm$	$22.7188 \pm$	$25.22724 \pm$	
	2.39836	2.816	8.53615	7.08987	6.83001	1.49028	3.54357	1.4342	0.81487	0.88991	
А	$59.29344 \pm$	$636.2522 \pm$	$826.53119 \pm$	$973.80657 \pm$	$1052.37696 \pm$	$1805.88285 \pm$	$28.44883 \pm$	$122.53544 \pm$	$1078.64992 \pm$	$1093.95059\pm$	
	17.63172	221.91115	514.5439	694.24993	736.93689	338.30652	14.11466	16.28791	29.65796	29.79114	
Plat	Peak11	Peak12	Peak13	Peak14	Peak15	Peak16	Peak17	Peak18	Peak19	Peak20	
riot	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	
0	$-2.52683 \pm$	$-2.52683 \pm$	$-2.52683 \pm$	$-2.52683 \pm$	$-2.52683 \pm$	$-2.52683 \pm$	$-2.52683 \pm$	$-2.52683 \pm$	$-2.52683 \pm$	$-2.52683 \pm$	
y0	0.14072	0.14072	0.14072	0.14072	0.14072	0.14072	0.14072	0.14072	0.14072	0.14072	
xc	$545.43993 \pm$	582.73841 ±	$796.72954 \pm$	$839.34071 \pm$	$889.30137 \pm$	$920.90189 \pm$	$930.64708 \pm$	$948.42238 \pm$	$965.86079 \pm$	$975.62603 \pm$	
	0.63987	1.30487	2.33203	0.49237	0.04237	0.21728	0.34947	0.01944	0.10423	0.14437	
w	$38.02573 \pm$	$23,23008 \pm 0$	2737242 ± 0	$11.68462 \pm$	$10.68922 \pm$	9.99667±	$14.10453 \pm$	$9.61491 \pm$	$7.40089 \pm$	$4.93255 \pm$	
	2.15506	25.25778 ± 0	27.37242±0	1.49179	0.12942	0.69475	1.1652	0.07637	0.38068	0.47973	
А	$1034.5242 \pm$	$228.61892 \pm$	$149.07574 \pm$	$192.32128 \pm$	$1951.57874 \pm$	$674.40618 \pm$	$933.46296 \pm$	$4156.04801 \pm$	$504.553 \pm$	$188.79426\pm$	
	50.67772	24.40241	20.19175	18.41828	17.89472	77.81334	105.47454	33.401	22.24967	15.85178	
Reduced	2 50770										
Chi-Sqr	۲۱۱۵ د.د										
R-Square	0.99665										
(COD)	0.27003										
Adj. R-	0.99642										
Square	0.7042										

 Table S23. Peak fitting parameters for Raman spectrum of complex 6.

Figure S32. (Left) Background subtracted Raman spectrum of complex 7 (GdW₁₀) fit to Lorentzian functions. (**Right**) Raw Raman spectrum for complex 7.

Model	Lorentz										
Equation	$y = y0 + (2*A/pi)*(w/(4*(x-xc)^2 + w^2))$										
Plot	Peak1	Peak2	Peak3	Peak4	Peak5	Peak6	Peak7	Peak8			
	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)			
y0	$-12.62297 \pm$	$-12.62297 \pm$	$-12.62297 \pm$	$-12.62297 \pm$	$-12.62297 \pm$	$-12.62297 \pm$	$-12.62297 \pm$	$-12.62297 \pm$			
	0.86491	0.86491	0.86491	0.86491	0.86491	0.86491	0.86491	0.86491			
xc	$130.45262 \pm$	156.26011 ±	$192.30316 \pm$	$215.90714 \pm$	$315.3342\pm$	$360.49808 \pm$	$423.10466 \pm$	$478.04667 \pm$			
	0.88895	1.0588	1.26284	1.05595	1.31249	0.43674	0.64309	1.59749			
w	$7.88471 \pm$	$10.07125 \pm$	$36.39697 \pm$	$33.84296 \pm$	$8.93426 \pm$	$20.71288 \pm$	$29.79798 \pm$	$12.05742 \pm$			
	2.71149	3.92622	3.50848	2.35806	3.909	1.38839	2.11351	4.99748			
А	$355.88525 \pm$	$442.85319 \pm$	$8586.33284 \pm$	$8322.08126 \pm$	$285.36207 \pm$	$3047.88769 \pm$	$3581.7536 \pm$	$364.35498 \pm$			
	93.60914	163.21948	1419.36031	1257.5369	92.64009	157.8477	198.548	117.08066			
Plot	Peak9	Peak10	Peak11	Peak12	Peak13	Peak14	Peak15	Peak16			
FIOT	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)			
vO	$-12.62297 \pm$	$-12.62297 \pm$	$-12.62297 \pm$	$-12.62297 \pm$	$-12.62297 \pm$	$-12.62297 \pm$	$-12.62297 \pm$	$-12.62297 \pm$			
yo	0.86491	0.86491	0.86491	0.86491	0.86491	0.86491	0.86491	0.86491			
NO.	$543.47435 \pm$	$587.92677 \pm$	$804.77165 \pm$	$839.18297 \pm$	$883.30679 \pm$	$940.16952 \pm$	$951.91484 \pm$	$961.7652 \pm$			
AL	1.66882	4.40144	2.20429	1.25963	0.0976	0.49338	0.3877	0.22629			
w	$42.94573 \pm$	4634330 ± 0	15.78434 ± 0	$13.37497 \pm$	$11.06548 \pm$	$24.61605 \pm$	$13.41294 \pm$	$9.07133 \pm$			
	5.85775	40.34339 ± 0	15.78454±0	3.8811	0.29888	0.6441	2.56009	0.74558			
А	$3039.71476 \pm$	$1318.00234 \pm$	$386.92806 \pm$	$521.86639 \pm$	$5041.44633 \pm$	$15520.63048 \pm$	$3993.26545 \pm$	$3087.43205 \pm$			
	403.26916	258.619	83.44296	114.14627	103.43263	1060.18016	1248.21143	423.12238			
Reduced	114 72790										
Chi-Sqr	114.72288										
R-Square	0.08642										
(COD)	0.20042										
Adj. R-	0.98568										
Square	02020										

 Table S24. Peak fitting parameters for Raman spectrum of complex 7.

Figure S33. (Left) Background subtracted Raman spectrum of complex 8 (TbW₁₀) fit to Lorentzian functions. (**Right**) Raw Raman spectrum for complex 8.

Model	Lorentz									
Equation	$y = y0 + (2*A/pi)*(w/(4*(x-xc)^2 + w^2))$									
Plot	Peak1	Peak2	Peak3	Peak4	Peak5	Peak6	Peak7	Peak8	Peak9	
	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	
y0	$\textbf{-0.94331} \pm 0$	$\textbf{-0.94331} \pm 0$	$\textbf{-0.94331} \pm 0$	$\textbf{-0.94331} \pm 0$	$\textbf{-0.94331} \pm 0$	$\textbf{-0.94331} \pm 0$	-0.94331 ± 0	-0.94331 ± 0	$\textbf{-0.94331} \pm 0$	
хс	$134.36866\pm$	$163.86361 \pm$	$182.88278\pm$	212.61083 ±	$326.5303 \pm$	$361.00161 \pm$	$431.31034 \pm$	$484.55942 \pm$	$550.81478 \pm$	
	0.85004	1.80798	0.736	0.51382	0.99399	0.45447	0.59557	2.62685	1.74414	
w	$4.88353 \pm$	$18.84902 \pm$	$22.7707 \pm$	$36.38905 \pm$	9.21112 ±	$21.09244 \pm$	$23.3402 \pm$	$5.65293 \pm$	$34.52318 \pm$	
	2.57163	5.64137	3.53204	1.26325	3.03028	1.43682	1.79274	7.65649	5.27793	
٨	$39.26389 \pm$	$258.26664 \pm$	$883.11427 \pm$	$2537.60648 \pm$	$85.96864 \pm$	659.8311±	$572.66574 \pm$	$15.32858 \pm$	$505.36019 \pm$	
A	15.54266	112.04602	182.2413	113.91388	21.33573	33.33057	31.92864	15.07313	77.60135	
Plat	Peak10	Peak11	Peak12	Peak13	Peak14	Peak15	Peak16	Peak17		
Plot	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)		
y0	$\textbf{-0.94331} \pm 0$	$\textbf{-0.94331} \pm 0$	-0.94331 ± 0	$\textbf{-0.94331} \pm 0$	$\textbf{-0.94331} \pm 0$	$\textbf{-0.94331} \pm 0$	-0.94331 ± 0	$\textbf{-0.94331} \pm 0$		
¥0	$582.97816 \pm$	$721.44674 \pm$	$806.43705\pm$	$836.82412 \pm$	$888.53059 \pm$	$927.30868 \pm$	$943.34038 \pm$	$965.72414 \pm$		
xc	3.26201	0.70735	4.22005	1.49766	0.07102	0.44799	0.12077	0.0905		
w	$22.58543 \pm$	4.70112 ±	$7.54766 \pm$	$5.76545 \pm$	$11.45973 \pm$	$12.53741 \pm$	$15.96491 \pm$	$10.49092 \pm$		
	11.19487	2.00436	12.07794	4.29342	0.20905	1.51151	0.48443	0.30388		
	$120.7757 \pm$	$42.22655 \pm$	$14.3005\pm$	$26.82281 \pm$	$1582.40483 \pm$	$382.20437 \pm$	$2177.88523 \pm$	$1145.45459 \pm$		
A	64.34171	12.73218	16.24657	14.21857	20.85967	51.76799	68.42718	29.19604		
Reduced					5 40776					
Chi-Sqr					5.40770					
R-Square					0.98372					
(COD)					019 05 12					
Adj. R-	0.98275									
Square										

Table S25. Peak fitting parameters for Raman spectrum of complex 8.

Figure S34. (Left) Background subtracted Raman spectrum of complex 9 (DyW_{10}) fit to Lorentzian functions. (**Right**) Raw Raman spectrum for complex 9.

Model	Lorentz									
Equation	$y = y0 + (2*A/pi)*(w/(4*(x-xc)^{2} + w^{2}))$									
Plot	Peak1	Peak2	Peak3	Peak4	Peak5	Peak6	Peak7			
	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)			
y0	$-3.8213 \pm$	-3.8213 ±	$-3.8213 \pm$	-3.8213 ±	-3.8213 ±	$-3.8213 \pm$	-3.8213 ±			
	0.20131	0.20131	0.20131	0.20131	0.20131	0.20131	0.20131			
xc	$159.44421 \pm$	$183.1203 \pm$	$204.02762 \pm$	$222.55568 \pm$	$326.62788 \pm$	$360.03715 \pm$	$430.72425 \pm$			
	2.14938	1.13396	0.89636	1.60906	0.82848	0.33334	0.35187			
	$28.03719 \pm$	$22.26128 \pm$	$28.55785 \pm$	29.20812 ±	$14.4475 \pm$	$18.00083 \pm$	$24.81114 \pm$			
w	5.22539	5.50615	5.95515	3.189	2.62756	1.07171	1.0726			
٨	$650.51273 \pm$	$1102.08441 \pm$	$2909.63597 \pm$	$2111.20196 \pm$	$293.61803 \pm$	$1020.29745 \pm$	$1511.32926 \pm$			
л	175.55093	479.02076	1064.29383	669.6457	41.68224	47.05772	49.55328			
Dist	Peak8	Peak9	Peak10	Peak11	Peak12	Peak13				
FIOT	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)				
0	$-3.8213 \pm$	-3.8213 ±	-3.8213 ±	-3.8213 ±	-3.8213 ±	-3.8213 ±				
yu	0.20131	0.20131	0.20131	0.20131	0.20131	0.20131				
¥C.	$550.11207 \pm$	$584.53307 \pm$	$888.41791 \pm$	$925.49493 \pm$	$942.89256 \pm$	$964.64988 \pm$				
AL.	1.48106	2.71951	0.04462	0.4012	0.07214	0.05791				
	38.73845 ± 0	0 42 10164 ± 0	$12.66885 \pm$	$18.09119 \pm$	$15.64452 \pm$	$7.21588 \pm$				
w	38.73843 ± 0	43.10104±0	0.14024	1.27504	0.2728	0.1894				
٨	$910.02582 \pm$	$601.78193 \pm$	$4218.93562 \pm$	$1269.93896 \pm$	$5164.85575 \pm$	$1400.17142 \pm$				
л	65.02037	67.64933	36.38183	103.07191	102.15237	30.3482				
Reduced				10.08503						
Chi-Sqr				10.98505						
R-Square				0.99299						
(COD)				0.77277						
Adj. R-				0.99268						
Square										

Table S26. Peak fitting parameters for Raman spectrum of complex 9.

Figure S35. (Left) Background subtracted Raman spectrum of complex 10 (HoW₁₀) fit to Lorentzian functions. (**Right**) Raw Raman spectrum for complex 10.

Model	Lorentz										
Equation		$y = y0 + (2*A/pi)*(w/(4*(x-xc)^2 + w^2))$									
Plot	Peak1 (Intensity)	Peak2 (Intensity)	Peak3 (Intensity)	Peak4 (Intensity)	Peak5 (Intensity)	Peak6 (Intensity)					
y0	-5.15579± 0.31037	-5.15579 ± 0.31037	-5.15579 ± 0.31037	-5.15579±0.31037	-5.15579± 0.31037	-5.15579± 0.31037					
xc	136.50065 ± 1.48541	171.17673 ± 0.9212	213.57506 ± 0.25333	325.60043 ± 0.58834	359.89863 ± 0.34907	428.36284 ± 0.45074					
w	2.41564± 5.91118	35.58838± 3.27865	36.34657± 0.82169	10.97035 ± 1.834	20.41994 ± 1.13341	25.8764 ± 1.40946					
А	10.55151 ± 16.9029	1382.94991 ± 127.76801	5270.99351 ± 123.53303	283.05813 ± 36.584	1227.26424 ± 52.75593	1322.92483 ± 55.68471					
Plot	Peak7 (Intensity)	Peak8 (Intensity)	Peak9 (Intensity)	Peak10 (Intensity)	Peak11 (Intensity)	Peak12 (Intensity)					
y0	-5.15579± 0.31037	-5.15579 ± 0.31037	-5.15579 ± 0.31037	-5.15579± 0.31037	-5.15579± 0.31037	-5.15579± 0.31037					
xc	554.48895 ± 1.27341	834.40936± 1.10812	887.82357± 0.10066	935.85083 ± 0.46362	952.20406± 0.03912	965.3809 ± 0.15269					
w	78.30547 ± 4.66433	21.08813 ± 3.47656	12.21955± 0.32111	29.53394 ± 1.06407	11.85647 ± 0.18906	4.47384± 0.51427					
А	2456.27221 ± 134.04934	379.87744 ± 49.01913	$\frac{1850.42543 \pm}{38.59096}$	3729.45239± 176.79462	5935.3627± 123.7291	274.56501 ± 27.34255					
Reduced Chi-Sqr	12.03751										
R-Square (COD)			0.99	9358							
Adj. R- Square		0.9933									

 Table S27. Peak fitting parameters for Raman spectrum of complex 10.

Figure S36. (Left) Background subtracted Raman spectrum of complex 11 (ErW_{10}) fit to Lorentzian functions. (Right) Raw Raman spectrum for complex 11.

Model	Lorentz										
Equation	$y = y0 + (2*A/pi)*(w/(4*(x-xc)^2 + w^2))$										
Dint	Peakl	Peak2	Peak3	Peak4	Peak5	Peak6	Peak7	Peak8	Peak9		
TIOU	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)		
v0	-2.57295 ±	-2.57295±	$-2.57295 \pm$	-2.57295±	$-2.57295 \pm$	-2.57295±	-2.57295±	-2.57295±	-2.57295 ±		
yu	0.16242	0.16242	0.16242	0.16242	0.16242	0.16242	0.16242	0.16242	0.16242		
100	$142.34617 \pm$	$163.95516 \pm$	177.6406 ±	201.12081 ±	$220.66066 \pm$	$238.70978 \pm$	$261.67537 \pm$	327.95741 ±	$356.98812 \pm$		
AL.	0.39463	0.64392	1.14645	0.47555	0.20774	0.43627	0.60601	0.30933	0.34629		
	$5.67228 \pm$	$15.68309 \pm$	24.98159 ±	22.5443 ±	17.28984 ±	12.34456±	11.22567 ±	$10.63907 \pm$	21.27942 ±		
w	1.32403	2.49927	4.73377	2.80578	1.03846	1.68776	1.94589	0.99556	1.14121		
٨	$114.82462 \pm$	$823.49636 \pm$	$1551.4863 \pm$	1597.0937±	$1996.4662 \pm$	421.86429 ±	211.60668 ±	373.40241 ±	$976.81488 \pm$		
A	22.96463	274.76954	484.89149	295.10426	161.68754	63.51898	29.48396	28.15245	41.2265		
Plat	Peak10	Peakl1	Peak12	Peak13	Peak14	Peak15	Peak16	Peak17			
TIOT	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)			
v0	-2.57295 ±	-2.57295±	$-2.57295 \pm$	-2.57295±	$-2.57295 \pm$	-2.57295±	-2.57295±	-2.57295±			
yu	0.16242	0.16242	0.16242	0.16242	0.16242	0.16242	0.16242	0.16242			
100	$426.24457 \pm$	$544.02418 \pm$	$581.38374 \pm$	842.39011 ±	$893.88167 \pm$	921.19791 ±	$931.01681 \pm$	$948.66463 \pm$			
AL.	0.21912	0.68629	1.52594	0.42801	0.05015	0.13122	0.20005	0.01099			
	21.49291 ±	33.0597±	30.53211 ±	$13.45215 \pm$	$11.70831 \pm$	$10.73949 \pm$	9.63341 ±	7.95211 ±			
w	0.66808	2.19893	4.99974	1.28347	0.15776	0.39355	0.69689	0.03544			
٨	$1472.18248 \pm$	$1176.76634 \pm$	455.27207 ±	$358.41829 \pm$	$2518.83077 \pm$	$1442.99705 \pm$	742.47665 ±	6518.7246±			
А	34.70302	78.69389	76.2062	25.60835	26.13016	65.12958	65.06589	23.51159			
Reduced					6 20764						
Chi-Sqr	0.20/64										
R-Square	0.00277										
(COD)					0.99737						
Adj. R-					0.00742						
Square					0.99742						

Table S28. Peak fitting parameters for Raman spectrum of complex 11.

Figure S37. (Left) Background subtracted Raman spectrum of complex 12 (TmW_{10}) fit to Lorentzian functions. (Right) Raw Raman spectrum for complex 12.

Model	Lorentz									
Equation	$y = y0 + (2*A/pi)*(w/(4*(x-xc)^2 + w^2))$									
Plot	Peakl	Peak2	Peak3	Peak4	Peak5	Peak6	Peak7			
	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)			
y0	-3.32657±	-3.32657 ±	-3.32657 ±	-3.32657±	$-3.32657 \pm$	$-3.32657 \pm$	-3.32657±			
	0.28031	0.28031	0.28031	0.28031	0.28031	0.28031	0.28031			
xc	$155.53057 \pm$	179.2298 ±	213.28231 ±	244.53931 ±	326.90104 ±	357.12303 ±	428.82853 ±			
	1.05966	1.39368	0.87187	2.03363	1.9559	0.89931	0.82127			
	19.34995 ±	31.59093 ±	41.01969 ±	23.43297 ±	$12.20829 \pm$	$22.46785 \pm$	$28.96437 \pm$			
w	3.93527	8.41462	5.16222	8.48999	6.4301	3.03268	2.63865			
4	544.2663 ±	$1126.71866 \pm$	$2873.31266 \pm$	$346.98584 \pm$	92.61116±	522.77159±	$788.4039 \pm$			
л	168.28691	433.92799	498.46763	188.45811	40.34892	57.03721	56.64486			
Plat	Peak8	Peak9	Peak10	Peak11	Peak12	Peak13	Peak14			
1101	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)			
0	-3.32657±	-3.32657 ±	-3.32657 ±	-3.32657±	$-3.32657 \pm$	$-3.32657 \pm$	-3.32657±			
yo	0.28031	0.28031	0.28031	0.28031	0.28031	0.28031	0.28031			
NC.	$543.63258 \pm$	587.13701 ±	836.72544±	$888.05465 \pm$	$923.4078 \pm$	941.54361 ±	963.44761 ±			
AL.	2.0473	2.52912	0.8463	0.17854	0.45452	0.08245	0.08072			
w	$73.50244 \pm$	13.46822 ±	24.60006 ±	13.57051 ±	$24.85823 \pm$	$15.4876 \pm$	$7.6697 \pm$			
**	6.89525	9.7723	2.71977	0.6161	1.40848	0.32658	0.26408			
4	$1788.50777 \pm$	80.77858 ±	$581.13261 \pm$	$1165.85891 \pm$	$2328.73638 \pm$	$4530.05136 \pm$	$1071.75593 \pm$			
л	166.12602	57.23207	51.1563	46.28604	162.61203	126.80038	30.48672			
Reduced				6 22488						
Chi-Sqr				0.22400						
R-Square				0.99315						
(COD)				0.79315						
Adj. R-				0.99259						
Square				5.77237						

Table S29. Peak fitting parameters for Raman spectrum of complex 12.

Figure S38. (Left) Background subtracted Raman spectrum of complex 13 (YbW₁₀) fit to Lorentzian functions. (**Right**) Raw Raman spectrum for complex 13.

Model	Lorentz									
Equation	$y = y0 + (2^*A/pi)^*(w/(4^*(x\cdot xc)^2 + w^2))$									
Plot	Peak1 (Intensity)	Peak2 (Intensity)	Peak3 (Intensity)	Peak4 (Intensity)	Peak5 (Intensity)	Peak6 (Intensity)	Peak7 (Intensity)	Peak8 (Intensity)	Peak9 (Intensity)	Peak10 (Intensity)
y0	${-}1.57594 \pm 0$	$-1.57594 \pm 0 \\$	$\textbf{-1.57594}\pm0$	$-1.57594 \pm 0 \\$	$\textbf{-1.57594}\pm0$	$-1.57594 \pm 0 \\$	$-1.57594 \pm 0 \\$	$\textbf{-1.57594}\pm0$	${-}1.57594 \pm 0$	$\textbf{-1.57594}\pm0$
xc	142.06612± 0.45755	165.1466± 0.7484	177.58063 ± 0.97463	203.83679± 0.52617	$\begin{array}{c} 219.87538 \pm \\ 0.13602 \end{array}$	241.62165± 0.29625	262.80605 ± 0.4375	$\begin{array}{c} 330.98736 \pm \\ 0.71067 \end{array}$	353.29041 ± 0.84347	394.64074± 1.36194
w	5.44794 ± 1.52575	18.28082± 1.80867	18.16372 ± 2.87665	15.09187 ± 2.2679	14.04623 ± 0.54651	12.16892 ± 1.15315	$\begin{array}{c} 13.40715 \pm \\ 1.41081 \end{array}$	10.35215 ± 2.47853	21.88668 ± 2.96962	13.44784 ± 4.5724
А	126.90263 ± 29.76482	1564.60582± 301.32906	1168.77217 ± 326.02538	744.73837 ± 129.3076	2521.17813 ± 110.45707	724.10415± 63.12785	546.88467 ± 47.74276	222.4029 ± 49.28459	650.39004± 75.60801	165.30121 ± 45.38872
Plot	Peak11 (Intensity)	Peak12 (Intensity)	Peak13 (Intensity)	Peak14 (Intensity)	Peak15 (Intensity)	Peak16 (Intensity)	Peak17 (Intensity)	Peak18 (Intensity)	Peak19 (Intensity)	
y0	-1.57594 ± 0	-1.57594 ± 0	-1.57594 ± 0	-1.57594 ± 0	-1.57594 ± 0	-1.57594 ± 0	-1.57594 ± 0	-1.57594 ± 0	-1.57594 ± 0	
xc	427.09809± 0.3614	545.71885± 0.56393	583.48875± 1.69091	789.81053 ± 1.6419	843.343 ± 0.49196	894.88349± 0.18168	920.71926± 0.21137	931.00772± 0.14268	948.58158± 0.00997	
w	18.73297 ± 1.13582	32.26173 ± 1.80386	17.94324 ± 5.66779	20.29093 ± 4.83127	14.71944± 1.46234	9.98882 ± 0.55476	9.66076± 0.67968	9.77226± 0.50813	7.49652 ± 0.03174	
А	1024.37714± 47.25217	1618.84248 ± 74.49974	206.69985 ± 56.87218	238.40736 ± 40.78158	488.91766 ± 35.22682	742.67209± 30.63028	892.6115± 71.35549	1333.44753 ± 76.39619	8935.75016± 30.18851	
Reduced Chi-Sqr	11.58636									
R-Square (COD)	0.99746									
Adj. R- Square					0.99	729				

Table S30. Peak fitting parameters for Raman spectrum of complex 13.

Figure S39. (Left) Background subtracted Raman spectrum of complex 14 (LuW_{10}) fit to Lorentzian functions. (Right) Raw Raman spectrum for complex 14.

Model	Lorentz										
Equation	$y = y0 + (2*A/pi)*(w/(4*(x-xc)^2 + w^2))$										
Plot	Peak1	Peak2	Peak3	Peak4	Peak5	Peak6	Peak7	Peak8	Peak9		
	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)		
0	-1.5271 ±	-1.5271 ±	-1.5271 ±	-1.5271 ±	-1.5271 ±	-1.5271 ±	-1.5271±	-1.5271 ±	-1.5271 ±		
yu	0.10874	0.10874	0.10874	0.10874	0.10874	0.10874	0.10874	0.10874	0.10874		
NC.	$143.53553 \pm$	$161.9763 \pm$	179.02571±	$202.58103 \pm$	$219.96742 \pm$	$242.95444 \pm$	$330.53956 \pm$	$357.69378 \pm$	$427.44238 \pm$		
AL.	0.6021	1.01224	0.84521	0.89919	0.55658	0.77109	0.39705	0.35548	0.27839		
11/	$6.5617 \pm$	$15.46924 \pm$	$27.83429 \pm$	$21.44611 \pm$	$22.52026 \pm$	$20.46131 \pm$	$13.04824 \pm$	$18.83612\pm$	$23.83136 \pm$		
w	2.08449	4.64417	4.37326	4.85814	2.48354	2.4236	1.30329	1.17766	0.85881		
Δ	$45.24377 \pm$	$170.45183 \pm$	$816.30862 \pm$	$469.22536 \pm$	$874.78223 \pm$	$314.98535 \pm$	$190.16536 \pm$	$378.72798 \pm$	$637.47057 \pm$		
л	12.927	86.66066	187.48321	178.87641	152.19054	52.67001	15.75302	19.26669	17.66765		
Plot	Peak10	Peak11	Peak12	Peak13	Peak14	Peak15	Peak16	Peak17			
1101	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)	(Intensity)			
v0	-1.5271 ±	-1.5271 ±	$-1.5271 \pm$	-1.5271 ±	$-1.5271 \pm$	$-1.5271 \pm$	$-1.5271 \pm$	-1.5271 ±			
y0	0.10874	0.10874	0.10874	0.10874	0.10874	0.10874	0.10874	0.10874			
ve	$540.79735 \pm$	$574.53346 \pm$	$841.38369 \pm$	$893.42023 \pm$	$922.15657 \pm$	$936.04982 \pm$	$948.45836 \pm$	$965.07238 \pm$			
лL	1.15483	6.73794	0.61531	0.06636	0.28663	0.35765	0.04044	0.06625			
w	$31.57012 \pm$	$72.81944 \pm$	$12.24784 \pm$	$13.48841 \pm$	$14.96935 \pm$	$17.58372 \pm$	$9.77441 \pm$	$4.87237 \pm$			
w	5.27392	11.43938	1.86149	0.21752	0.90919	2.26592	0.17318	0.21228			
Δ	$361.43949 \pm$	$501.88078 \pm$	$101.83494 \pm$	$1131.50174 \pm$	$677.30642 \pm$	$708.15771 \pm$	$1752.08256 \pm$	$237.10942 \pm$			
	99.87321	141.96962	11.73204	14.99203	71.61584	125.69339	49.17821	8.40695			
Reduced					1 37166						
Chi-Sqr					1.57100						
R-Square					0 99461						
(COD)					0.77401						
Adj. R-					0 99428						
Square					0.59420						

Table S31. Peak fitting parameters for Raman spectrum of complex 14.

Complex name	Observed peaks rounded to the first decimal (cm ⁻¹)					
1 (LaW ₁₀)	139.2, 158.9, 177.1, 196.4, 214.1, 231.5, 320.6, 359.4, 409.1, 428.4, 486.2, 540, 577.2, 806. 9, 837.7, 930.7, 952.5					
2 (CeW ₁₀)	128.7, 161.3, 179.6, 209.5, 359.2, 425.1, 476.5, 542.5, 581.8, 810.5, 837.1, 884.6, 943.8, 967.6					
3 (PrW ₁₀)	132.7, 160.6, 183, 201, 219.5, 315.3, 359.3, 421.6, 478.5, 543.2, 576.3, 798.4, 839.8, 885.1, 924.6,937.9, 951.1, 959.2					
4 (NdW ₁₀)	158.2, 182.3, 209.9, 357.8, 425.0, 477.8, 551.8, 719.9, 808.8, 836.8, 886.3, 943.9, 965.2					
5 (SmW ₁₀)	134.0, 174.3, 207.9, 223.6, 320.0, 360.4, 425.6, 481.5, 544.3, 579.5, 804.1, 838.5, 887.6, 932.5, 953.3					
6 (EuW ₁₀)	136.6, 162.3, 177.5, 195.9, 209.1, 223.4, 260.8, 321.1, 357.6, 425.8, 545.4, 587.7, 796.7, 839.4, 889.3, 921.0, 930.6, 948.4, 965.9, 976.6					
7 (GdW ₁₀)	130.5, 156.3, 192.3, 215.9, 315.3, 360.5, 423.1, 478.0, 543.5, 587.9, 804.8, 839.2, 883.3, 940.2, 951.9, 961.8					
8 (TbW ₁₀)	134.4, 163.9, 182.9, 212.6, 326.5, 361.0, 432.3, 484.6, 550.8, 583.0, 721.4, 806.4, 836.8, 888.5, 927.3, 943.3, 965.7					
9 (DyW ₁₀)	159.4, 183.1, 204.0, 222.6, 326.6, 360.0, 430.7, 550.1, 584.5, 888.4, 925.5, 942.5, 942.9, 964.6					
10 (HoW10)	136.5, 171.2, 213.6, 325.6, 359.9, 428.4, 554.5, 834.4, 997.9, 935.9, 952.2, 965.4					
11 (ErW ₁₀)	142.3, 164.0, 177.6, 201.1, 220.7, 238.7, 261.7, 328.0, 357.0, 426.2, 544.0, 581.4, 842.4, 893.9, 921.2, 931.0, 948.7					
12 (TmW ₁₀)	155.5, 179.2, 213.3, 244.5, 326.9, 357.1, 428.8, 543.6, 587.1, 836.7, 888.1, 923.4, 941.5, 963.4					
13 (YbW ₁₀)	142.1, 165.1, 177.6, 203.8, 219.9, 241.6, 262.8, 331.0, 353.3, 394.6, 427.1, 545.7, 583.5, 789.8, 843.3, 894.9, 920.7, 931.0, 948.6					
14 (LuW ₁₀)	143.5, 162.0, 179.0, 202.6, 220.0, 243.0, 330.5, 357.7, 427.4, 540.8, 574.5, 841.4, 893.4, 922.2, 936.0, 948.5, 965.1					

 Table S32. Observed peaks in the Raman spectra of complexes 1-14.

Figure S40. (Left) MIR spectrum of complex 11 (ErW_{10}) in red trace overlayed on MIR spectrum of sodium paratungstate ($Na_{10}H_2W_{12}O_{40}\bullet XH_2O$) in black trace. Peaks highlighted with green lines are from NaNO₃ ($v_{as}(NO_3)$ at 1357 cm⁻¹ and $v(NO_3)$ at 968 cm⁻¹), while peaks highlighted by blue lines are characteristic of complex 11. (**Right**) Peak fitting conducted on background subtracted MIR spectra of complex 11 with a spectral window of $1200 - 400 \text{ cm}^{-1}$.

Model	Lorentz										
Equation	$y = y0 + (2*A/pi)*(w/(4*(x-xc)^2 + w^2))$										
Plot	Peak1(Absorbance)	Peak2(Absorbance)	Peak3(Absorbance)	Peak4(Absorbance)	Peak5(Absorbance)						
y0	$\textbf{-0.01217} \pm 0.00117$	$\textbf{-0.01217} \pm 0.00117$	$\textbf{-0.01217} \pm 0.00117$	$\textbf{-0.01217} \pm 0.00117$	$\textbf{-0.01217} \pm 0.00117$						
xc	409.49463 ± 1.83663	434.14856 ± 1.18035	484.42164 ± 1.50333	535.2119 ± 1.7141	581.73622 ± 1.5098						
w	6.90019 ± 5.52321	6.48957 ± 3.49072	34.16717 ± 5.58469	50.66594 ± 8.1525	17.36906 ± 5.67881						
Α	0.20138 ± 0.11698	0.28889 ± 0.11714	3.39713 ± 0.60988	5.98339 ± 0.9645	1.03615 ± 0.33195						
Plot	Peak6(Absorbance)	Peak7(Absorbance)	Peak8(Absorbance)	Peak9(Absorbance)	Peak10(Absorbance)						
y0	$\textbf{-0.01217} \pm 0.00117$	$\textbf{-0.01217} \pm 0.00117$	$\textbf{-0.01217} \pm 0.00117$	$\textbf{-0.01217} \pm 0.00117$	$\textbf{-0.01217} \pm 0.00117$						
xc	697.07477 ± 0.92848	783.26797 ± 1.24826	829.85105 ± 0.34842	920.72996 ± 0.24127	968.94064 ± 0.56284						
W	99.42783 ± 3.24602	54.01111 ± 5.91018	26.09676 ± 1.30755	21.81061 ± 0.74384	3.25548 ± 2.55137						
Α	35.05256 ± 1.22548	9.42117 ± 1.15994	9.12435 ± 0.50266	8.63811 ± 0.22588	0.19416 ± 0.07955						
Reduced Chi-Sqr			1.38E-04								
R-Square (COD)	0.97829										
Adj. R-Square			0.9766								

Table S33. Peak fitting parameters for MIR spectrum of complex 11.

Figure S41. Plots of FIR $v(WO_5)_2$ frequencies vs. SAs for LnW_{10} polymorphs. The $v(WO_5)_2$ frequencies were obtained from the fitted FIR spectra of complexes **1-14**. Error bars represent uncertainties of the peak center obtained from the fitting regime.

Figure S42. Plots of FIR $v(WO_5)_2$ frequencies vs. PAs for LnW_{10} polymorphs. The $v(WO_5)_2$ frequencies were obtained from the fitted FIR spectra of complexes **1-14**. Error bars represent uncertainties of the peak center obtained from the fitting regime.

Figure S43. Plots of FIR $v(WO_5)_2$ frequencies vs. PDs for LnW_{10} polymorphs. The $v(WO_5)_2$ frequencies were obtained from the fitted FIR spectra of complexes **1-14**. Error bars represent uncertainties of the peak center obtained from the fitting regime.

Figure S44. Plots of FIR $\rho(\text{LnO}_8)$ frequencies vs. SAs for LnW_{10} polymorphs. The $\rho(\text{LnO}_8)$ frequencies were obtained from the fitted FIR spectra of complexes **1-14**. Error bars represent uncertainties of the peak center obtained from the fitting regime.

Figure S45. Plots of FIR $\rho(\text{LnO}_8)$ frequencies vs. PAs for LnW₁₀ polymorphs. The $\rho(\text{LnO}_8)$ frequencies were obtained from the fitted FIR spectra of complexes **1-14**. Error bars represent uncertainties of the peak center obtained from the fitting regime.

Figure S46. Plots of FIR $\rho(\text{LnO}_8)$ frequencies vs. PDs for LnW₁₀ polymorphs. The $\rho(\text{LnO}_8)$ frequencies were obtained from the fitted FIR spectra of complexes **1-14**. Error bars represent uncertainties of the peak center obtained from the fitting regime.

Figure S47. Plots of FIR $\nu/\rho(LnO_8)$ frequencies vs. SAs for LnW_{10} polymorphs. The $\nu/\rho(LnO_8)$ frequencies were obtained from the fitted FIR spectra of complexes **1-14**. Error bars represent uncertainties of the peak center obtained from the fitting regime.

Figure S48. Plots of FIR $\nu/\rho(LnO_8)$ frequencies vs. PAs for LnW_{10} polymorphs. The $\nu/\rho(LnO_8)$ frequencies were obtained from the fitted FIR spectra of complexes **1-14**. Error bars represent uncertainties of the peak center obtained from the fitting regime.

Figure S49. Plots of FIR $\nu/\rho(\text{LnO}_8)$ frequencies vs. PDs for LnW₁₀ polymorphs. The $\nu/\rho(\text{LnO}_8)$ frequencies were obtained from the fitted FIR spectra of complexes 1-14. Error bars represent uncertainties of the peak center obtained from the fitting regime.

Figure S50. Plots of Raman δ (W-O-W/W=O/Ln-O-W) frequencies vs. SAs for LnW₁₀ polymorphs. The δ (W-O-W/W=O/Ln-O-W) frequencies were obtained from the fitted Raman spectra of complexes **1-14**. Error bars represent uncertainties of the peak center obtained from the fitting regime.

Figure S51. Plots of Raman δ (W-O-W/W=O/Ln-O-W) frequencies vs. PAs for LnW₁₀ polymorphs. The δ (W-O-W/W=O/Ln-O-W) frequencies were obtained from the fitted Raman spectra of complexes **1-14**. Error bars represent uncertainties of the peak center obtained from the fitting regime.

Figure S52. Plots of Raman δ (W-O-W/W=O/Ln-O-W) frequencies vs. PDs for LnW₁₀ polymorphs. The δ (W-O-W/W=O/Ln-O-W) frequencies were obtained from the fitted Raman spectra of complexes **1-14**. Error bars represent uncertainties of the peak center obtained from the fitting regime.

Figure S53. Plots of Raman v(Ln-O-W) frequencies vs. SAs for LnW_{10} polymorphs. The v(Ln-O-W) frequencies were obtained from the fitted Raman spectra of complexes **1-14**. Error bars represent uncertainties of the peak center obtained from the fitting regime.

Figure S54. Plots of Raman v(Ln-O-W) frequencies vs. PAs for LnW_{10} polymorphs. The v(Ln-O-W) frequencies were obtained from the fitted Raman spectra of complexes **1-14**. Error bars represent uncertainties of the peak center obtained from the fitting regime.

Figure S55. Plots of Raman v(Ln-O-W) frequencies vs. PDs for LnW_{10} polymorphs. The v(Ln-O-W) frequencies were obtained from the fitted Raman spectra of complexes **1-14**. Error bars represent uncertainties of the peak center obtained from the fitting regime.

Partial Least Squares (PLS) Analysis. PLS is a mix of both principal component and multiple regression analysis and is often used to identify factors that contribute to covariances between the independent and dependent variables.² Partial Least Square analysis was conducted with the OriginPro2023b software package³ using the singular value decomposition (SVD) method in which:

 $X = n \bullet m$

 $Y = n \bullet r$

Where X is the matrix size for the independent variables and Y is the matrix size for the dependent variables and *n*, *m*, and *r* are the number of observations, number of independent variables, and number of dependent variables, respectively. The mean from each column in matrix X and Y are subtracted to produce X_0 and Y_0 . In SVD, the weight (*w*) of the independent variables is extracted by normalizing the first left singular vector of $X_0^T Y_0$ which then is used to calculate:

 $t = X_0 w$ $p = X_0^T t$ $q = Y_0^T t$ $u = Y_0 q$

where t, p, q, and u are the x scores, y scores, x loadings, and y loadings which can also be expressed by matrices, T, P, Q, and U. These parameters are then refined against the residual matrices, \mathbf{k} , until they converge, and \mathbf{k} factors can be synthesized to construct the model.

The leave-one-out cross-validation (CV) method tests the performance of a model and is often used to prevent overfitting of a model by producing multiple models with one of the independent variables left out and looking into which combination of independent variables give the best model to predict the dependent variables.² In Origin2023b, this is done by finding the minimum root mean PRESS (predicted residual sum of squares) which can be found by using the following equation:

$$PRESS = \sum_{i=1}^{n} \sum_{j=1}^{r} (Y_{ij} - \hat{Y}_{ij})^{2}$$

$$Root Mean PRESS = \sqrt{\frac{PRESS}{(n-1)r}}$$

 Y_{ij} represents the predicted value of Y based on the leave-one-out cross-validation test. Prediction of dependent variables can then be done by calculating the coefficients of the fitted model which can be obtained from the following equation:

$$C = W(P^T W)^{-1} Q^T$$

where C and W are coefficient and weight matrices, respectively. The predicted dependent variables value can then be calculated by:

$$\hat{Y}_0 = CX_0$$

From PLS analysis, a variety of figures are generated; however, only the root mean PRESS plot, Y-variance accountability plot, variable influence on projection (VIP) plot, and diagnostic plots are presented here. The root mean PRESS plot shows the results of the CV test with the optimal number of factors having the lowest root mean PRESS value. The Y-variance accountability plots show how each factor accounts for the

variance in the dependent (Y) variable. In Origin2023b the variance explained for Y variables is calculated using the following equation:

$$\frac{\sum_{j=1}^{k} Q_{lj}^2}{\sum_{i=1}^{n} Y_{0il}^2}$$

The VIP plots show the significance of each independent variable related to the dependent variable with a VIP value above 0.8 indicating statistical significance. Four diagnostic plots are generated by the PLS analysis which include: the actual versus predicted dependent variable value plots that show the quality of the model generated based on the independent variables inputted, the residual versus observed and predicted dependent variable plots that provide information regarding the distribution of the dependent variable dataset where a normal distribution exhibits random scattering of the data around the fitted line with a constant bandwidth, and the normal percentile plot which also provides information about data distribution with a normal distribution of data represented by the residual against percentiles forming a linear line.

Figure S56. (Top) Root mean PRESS and (**Bottom**) Y-variance accountability plots for SAs, PAs, PDs, and ionic radii as independent variables with the $v(WO_5)_2$ frequencies as the dependent variable. The $v(WO_5)_2$ frequencies were obtained from the fitted FIR spectra of complexes 1-14.

Figure S57. (Top) VIP plot and (Bottom) diagnostic plots for SAs, PAs, PDs, and ionic radii as independent variables with $v(WO_5)_2$ frequencies as the dependent variable. The $v(WO_5)_2$ frequencies were obtained from the fitted FIR spectra of complexes 1-14.

Figure S58. (Top) Root mean PRESS and (**Bottom**) Y-variance accountability plots for PAs and ionic radii as the independent variables and $v(WO_5)_2$ frequencies as the dependent variable. The $v(WO_5)_2$ frequencies were obtained from the fitted FIR spectra of complexes **1-14**.

Figure S59. (Top) VIP plot and (Bottom) diagnostic plots for PAs and ionic radii as independent variables with $v(WO_5)_2$ frequencies as the dependent variable. The $v(WO_5)_2$ frequencies were obtained from the fitted FIR spectra of complexes 1-14.

Figure S60. (Top) Root mean PRESS and (Bottom) Y-variance accountability plots for SAs, PAs, PDs, and ionic radii as independent variables with $\rho(\text{LnO}_8)$ frequencies as the dependent variable. The $\rho(\text{LnO}_8)$ frequencies were obtained from the fitted FIR spectra of complexes 1-14.

Figure S61. (Top) VIP plot and (Bottom) diagnostic plots for SAs, PAs, PDs, and ionic radii as independent variables and $\rho(\text{LnO}_8)$ frequencies as the dependent variable. The $\rho(\text{LnO}_8)$ frequencies were obtained from the fitted FIR spectra of complexes 1-14.

Figure S62. (Top) Root mean PRESS and (Bottom) Y-variance accountability plots for SAs, PAs, PDs, and ionic radii as independent variables with $\nu/\rho(LnO_8)$ frequencies as the dependent variable. The $\nu/\rho(LnO_8)$ frequencies were obtained from the fitted FIR spectra of complexes 1-14.

Figure S63. (Top) VIP plot and (Bottom) diagnostic plots for SAs, PAs, PDs, and ionic radii as independent variables and $\nu/\rho(\text{LnO}_8)$ frequencies as the dependent variable. The $\nu/\rho(\text{LnO}_8)$ frequencies were obtained from the fitted FIR spectra of complexes 1-14.

Figure S64. (Top) Root mean PRESS and (**Bottom**) Y-variance accountability plots for SAs, PAs, PDs, and ionic radii as independent variables with v(Ln-O-W) frequencies as the dependent variable. The v(Ln-O-W) frequencies were obtained from the fitted Raman spectra of complexes **1-14**.

Figure S65. (Top) VIP plot and (**Bottom**) diagnostic plots for SAs, PAs, PDs, and ionic radii as independent variables and v(Ln-O-W) frequencies as the dependent variable. The v(Ln-O-W) frequencies were obtained from the fitted Raman spectra of complexes 1-14.

Figure S66. (Top) Root mean PRESS for SAs, PAs, PDs, and ionic radii as independent variables and the δ (W-O-W/ W=O/ Ln-O-W) Raman frequencies as the dependent variable. Full PLS analysis was not conducted due to the CV finding zero factors from the independent variables that had statistically significant effects on δ (W-O-W/ W=O/ Ln-O-W) Raman frequencies.
References

- 1. L. Kazanskii, A. Golubev, I. Baburina, E. Torchenkova and V. Spitsyn, *Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1978, **27**, 1956-1960.
- 2. P. Geladi and B. R. Kowalski, *Anal. Chim. Acta*, 1986, **185**, 1-17.
- 3. OriginPro, Version 2023b, Origin Lab Corporation, Northampton, MA, USA.
- 4. A. E. Gelfand, D. K. Dey and H. Chang, *Model Determination Using Predictive Distributions with Implementation via Sampling-Based Methods*, Technical Report No. 462, U.S. Office of Naval Research, 1992.