Electronic Supplementary Information

Magnetism and DFT Interrogation of A Doubly Carboxylato Bridged

Co(II) Derivative Anchored with A 'Scorpionate' Precursor:

Potential Electrocatalyst for Heterogeneous H₂ Evolution

Kuheli Das,^{a,g} Belete B. Beyene,^{*b,g} Chiara Maserra,^c Eugenio Garribba,^d M.S. El

Fallah,^e Antonio Frontera,^f Chen-Hsiung Hung,*g Amitabha Datta,*g,h

Figure S1. The IR spectra of complex 1.

Figure S2. Plots of frontier molecular orbitals. Isovalue 0.04 a.u.

TD-DFT calculations were computed in MeOH at the B3LYP/6-31+G* level of theory using Gaussian-16. The 40 first excited states were considered for the calculations. The results are listed below, and the plots of relevant molecular orbitals are represented in **Figure S1**. In bold the relevant states commented in the main text.

Table S1. Excitation energies and oscillator strengths:

```
Excited State 1: 7.004-A 0.5648 eV 2195.17 nm f=0.0000 <S**2>=12.012
Excited State 2: 7.004-A 0.5656 eV 2191.95 nm f=0.0001 <S**2>=12.012
Excited State 3: 7.004-A 1.0073 eV 1230.89 nm f=0.0000 <S**2>=12.013
Excited State 4: 7.004-A 1.0126 eV 1224.39 nm f=0.0001 <S**2>=12.013
Excited State 5: 7.003-A 1.1632 eV 1065.89 nm f=0.0000 <S**2>=12.012
Excited State 6: 7.003-A 1.1645 eV 1064.66 nm f=0.0001 <S**2>=12.012
Excited State 7: 7.005-A 1.5699 eV 789.74 nm f=0.0000 <S**2>=12.016
Excited State 8: 7.005-A 1.5703 eV 789.55 nm f=0.0001 <S**2>=12.016
Excited State 9: 7.004-A 1.8356 eV 675.44 nm f=0.0000 <S**2>=12.014
Excited State 10: 7.004-A 1.8451 eV 671.96 nm f=0.0002 <S**2>=12.014
Excited State 11: 7.004-A 2.1177 eV 585.46 nm f=0.0000 <S**2>=12.015
```

Excited St	tate	12:	7.004-A	2.1409 eV	579.11	nm	f=0.0033	<\$**2>=12.014
Excited St	tate	13:	7.054-A	3.6703 eV	337.81	nm	f=0.0000	<\$**2>=12.188
Excited St	tate	14:	7.053-A	3.6709 eV	337.75	nm	f=0.0001	<s**2>=12.186</s**2>
Excited St	tate	15:	7.074-A	3.7033 eV	334.80	nm	f=0.0754	<s**2>=12.259</s**2>
Excited St	tate	16:	7.073-A	3.7044 eV	334.70	nm	f=0.0001	<s**2>=12.256</s**2>
Excited St	tate	17:	7.047-A	3.7197 eV	333.32	nm	f=0.0010	<\$**2>=12.164
Excited St	tate	18:	7.045-A	3.7248 eV	332.86	nm	f=0.0000	<s**2>=12.160</s**2>
Excited St	tate	19:	7.050-A	3.8985 eV	318.03	nm	f=0.0023	<\$**2>=12.177
Excited St	tate	20:	7.047-A	3.8993 eV	317.97	nm	f=0.0000	<s**2>=12.166</s**2>
Excited St	tate	21:	7.448-A	3.9902 eV	310.72	nm	f=0.0043	<s**2>=13.617 Excited</s**2>
State 22:	7.45	52-A	3.9923	eV 310.56	nm f=0.	000	0 <s**2></s**2>	=13.634
Excited St	tate	23:	7.485-A	4.0340 eV	307.35	nm	f=0.0036	<\$**2>=13.755
Excited St	tate	24:	7.493-A	4.0346 eV	307.30	nm	f=0.0000	<\$**2>=13.788
Excited St	tate	25:	7.062-A	4.1696 eV	297.36	nm	f=0.0000	<\$**2>=12.217
Excited St	tate	26:	7.059-A	4.1706 eV	297.28	nm	f=0.0023	<s**2>=12.206</s**2>
Excited St	tate	27:	7.088-A	4.1784 eV	296.73	nm	f=0.0000	<\$**2>=12.311
Excited St	tate	28:	7.091-A	4.1866 eV	296.14	nm	f=0.0344	<\$**2>=12.320
Excited St	tate	29:	7.065-A	4.2360 eV	292.69	nm	f=0.0269	<\$**2>=12.229
Excited St	tate	30:	7.113-A	4.2384 eV	292.53	nmf	=0.0000	<\$**2>=12.398
Excited St	tate	31:	7.140-A	4.2470 eV	291.94	nm	f=0.0000	<\$**2>=12.495
Excited St	tate	32:	7.207-A	4.2671 eV	290.56	nm	f=0.0052	<\$**2>=12.735
Excited St	tate	33:	7.097-A	4.3371 eV	285.87	nm	f=0.0030	<\$**2>=12.344
Excited St	tate	34:	7.063-A	4.3472 eV	285.20	nm	f=0.0000	<\$**2>=12.220
Excited St	tate	35:	7.267-A	4.3697 eV	283.74	nm	f=0.0000	<\$**2>=12.952
Excited St	tate	36:	7.156-A	4.3904 eV	282.40	nm	f=0.0000	<\$**2>=12.551
Excited St	tate	37:	7.146-A	4.3905 eV	282.39	nm	f=0.0000	<\$**2>=12.515
Excited St	tate	38:	7.226-A	4.3926 eV	282.26	nm	f=0.0007	<s**2>=12.803</s**2>
Excited St	tate	39:	7.053-A	4.4525 eV	278.46	nm	f=0.0001	<s**2>=12.186</s**2>
Excited St	tate 4	40:	7.066-A	4.4527 eV	278.45	nm	f=0.0174	<\$**2>=12.231

Empirical formula	$C_{50}H_{78}O_4N_{10}S_2Co_2$			
Formula weight	1065.20			
Temperature	293(2)			
Wavelength (Å)	0.71073			
Crystal system	Monoclinic			
Space group	$P2_{1}/c$			
<i>a</i> , Å	10.562(4)			
b, Å	14.568(6)			
<i>c</i> , Å	17.808(7)			
β , deg	98.219(8)			
Volume, Å ³	2711.9(19)			
Ζ	2			
D _{calc} (mg m ⁻³)	1.304			
μ (Mo Kα) (mm ⁻¹)	0.740			
F(000)	1132			
Total reflections	28323			
Unique reflections (R _{int})	$4622 \ (R_{int} = 0.1010)$			
Observed reflections $[F_0>4\sigma(F_0)]$	3192			
$R_{\text{indices}} [F_o > 4\sigma(F_o)]^b R_l, w R_2$	0.0431, 0.0889			
Goodness-of-fit on F^{2a}	1.004			
Largest diff. Peak and hole, $e.Å^{-3}$	0.262, -0.281			

^aGoodness-of-fit S = $[\Sigma w(F_o^2 - F_c^2)^2 / (n-p)]1/2$, where n is the number of reflections and p the number of parameters. ^b $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, $wR_2 = [\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]]^{1/2}$