Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Journal Name

ARTICLE TYPE

ELECTRONIC SUPPLEMENTARY INFORMATION

The aromatic nature of auracycles and diauracycles based on calculated ring-current strengths^{\dagger}

Daniel Blasco*a and Dage Sundholm*b

^a Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Madre de Dios 53, 26006, Logroño, Spain; E-mail: daniel.blascos@unirioja.es

^b Department of Chemistry, Faculty of Science, University of Helsinki, P. O. Box 55 (A. I. Virtasen aukio 1), FIN-00014, Helsinki, Finland; E-mail: dage.sundholm@helsinki.fi

Strengths of current-density vortices

Table S1 The net, diatropic, and paratropic ring-current strengths (in nA T^{-1}) of auracycles 1-4 at the DFT/BHandHLYP/def2-TZVP, 1C-X2C/BHandHLYP/def2-TZVP, and 2C-X2C/ ω B97X-D/def2-TZVP levels of theory

Level of theory	Net	Diatropic	Paratropic
$[Au(C_5H_5)]$ (1)			
QR-ECP	10.51	15.63	-5.11
1C-X2C	10.43	15.58	-5.15
2C-X2C	14.32	-	-
$[Au(NC_4H_4)]$ (2)			
QR-ECP	7.41	13.06	-5.65
1C-X2C	7.24	12.25	-5.01
$[Au(C_6H_6)]^+$ (3)			
QR-ECP	3.82	11.92	-8.10
1C-X2C	7.55	14.21	-6.66
2C-X2C	3.90	-	-
$[AuCl(C_6H_6)] (3 \cdot Cl)$			
QR-ECP	4.21	12.08	-7.87
1C-X2C	4.29	12.15	-7.86
2C-X2C	4.25	-	-
$[AuCl(C_4H_4)(NH_3)]$ (4)			
QR-ECP	-4.41	6.20	-10.61
1C-X2C	-4.51	6.17	-10.68
2C-X2C	-4.59	-	-

Table S2 The gold-gold distance (in pm) and the bond-current strength (in nA T^{-1}) of diauracycles 5–17, calculated at the DFT/BHandHLYP/def2-TZVP level of theory with the GIMIC method, and at the DFT/ ω B97X-D/def2-TZVP level of theory using numerical line integration of Ampère-Maxwell's law

Molecule	Au–Au distance	Net current (GIMIC)	Net current (Ampère-Maxwell's law)
$[Au_2(NCH)_2]$ (5)	293.29	1.80	1.74
$[Au_{2}(NHCH)_{2}]$ (6)	263.97	3.98	3.92
$[Au_{2}Cl_{2}(NHCH)_{2}]$ (7)	244.83	11.11	9.73
$[Au_{2}Cl_{2}^{2}{(NH)_{2}CH}_{2}]$ (8)	250.23	10.40	9.34
$[Au_{2}^{2}\{(NH)_{2}CH^{2}\}_{2}])$ (9)	273.64	2.69	2.53
$[Au_{2}^{-}{N(NH)CH}_{2}]$ (10)	279.49	1.97	1.82
$[Au_2(N_2CH)_2]$ (11) ^{<i>a</i>}	263.30	3.65	3.48
$[Au_{2}^{1}{NH(CH)_{2}}_{2}]$ (12)	250.01	9.88	10.07
$[Au_2{NH(CH)_2}_2]$ (13)	276.53	2.50	2.23
$[Au_{2}\{S_{2}CC(CN)_{2}\}_{2}]^{2-}$ (14)	275.84	2.65	2.80
$[Au_2\{N_2(CH)_2\}_2]$ (15)	245.41	_b	10.71
$[Au_{2}{(NH)_{2}(CH)_{2}}_{2}]$ (16)	284.77	3.33	3.17
$[Au_2Cl_2\{N(NH)(CH)_2\}_2] (17)$	250.11	<u>_</u> b	10.56

^{*a*} Triplet state

^b The value is not reliable because the plane cuts undesired vortexes

Table S3 The X–Au–X angle (in $^{\circ}$) versus the ring-current strength (in nA T $^{-1}$) of molecules 1-18

Molecule	X–Au–X angle	Ring-current strength
$[Au(C_{\varsigma}H_{\varsigma})] (1)$	103.1	10.51
$[Au(NC_4H_4)] (2)$	107.3	7.41
$[Au(C_6\dot{H}_6)]^+$ (3)	83.0	3.82
$[\operatorname{AuCl}(C_6H_6)]$ (3·Cl)	90.8	4.21
$[AuCl(C_4H_4)(NH_3)]$ (4)	80.5	-4.41
$[Au_2(NCH)_2]$ (5)	130.9	12.43
$[Au_2(NHCH)_2]$ (6)	142.1	-2.96
$[Au_2Cl_2(NHCH)_2]$ (7)	147.0	-1.18
$[Au_2Cl_2^{-}\{(NH)_2CH\}_2]$ (8)	174.1	-3.02
$[Au_2{(NH)_2CH}_2]$ (9)	169.0	-1.88
$[Au_2{N(NH)CH}_2]$ (10)	165.3	5.78
$[Au_2(N_2CH)_2]$ (11)	170.1	11.12
$[Au_{2}{NH(CH)_{2}}_{2}]$ (12)	177.0	-1.69
$[Au_{2}{NH(CH)_{2}}]$ (13)	170.7	12.32
$[Au_{2}\{S_{2}CC(CN)_{2}\}_{2}]^{2-}$ (14)	175.9	-1.97
$[Au_{2}\{N_{2}(CH)_{2}\}_{2}]$ (15)	164.0	-22.01
$[Au_{2}{(NH)_{2}(CH)_{2}}_{2}]$ (16)	172.6	13.83
$[Au_2Cl_2{N(NH)(\bar{CH})_2}_2]$ (17)	174.4	-0.44
$[AuCl(C_4Ph_4)(phen)] (18)$	81.1	-3.33

Molecular orbitals

Fig. S1 Selected molecular orbitals of molecules 1-4. Color code: C, grey; H, white; Au, yellow; Cl, green; N, blue.

Fig. S2 Selected molecular orbitals of molecules 5, 13, and 16. Color code: C, grey; H, white; Au, yellow; N, blue.

Cartesian coordinates

[Au	(C ₅ H ₅)] (1, C ₂)	1	
Au	-0.0001014	1.8572693	-0.0007716
С	1.2354779	-0.6904050	0.1050386
С	1.5026496	0.6544633	0.1958480
С	-1.5027887	0.6543031	-0.1954919
С	-1.2354994	-0.6905425	-0.1050222
С	0.0000300	-1.3479206	-0.0000949
Н	2.1264966	-1.3197276	0.0792924
Н	2.4071462	1.0779947	-0.2468744
Н	-2.4070419	1.0779858	0.2475329
Н	-2.1264604	-1.3199478	-0.0792533
Н	0.0000915	-2.4311316	-0.0002036

$[Au{C(CH₂)CH₂CHCHCH}] (1a, C₁)$

Au	-0.0645186	1.3992796	-1.3470696
С	1.3202580	-0.8376768	-0.3848650
С	1.5276172	0.6678500	-0.4430655
С	-1.5213658	0.6348541	-0.4127580
С	-1.2072452	-0.6724204	0.1114438
С	-0.0089907	-1.3135678	0.1531598
С	2.5599777	1.3438405	0.0610909
Н	1.4538721	-1.2214062	-1.4051524
Н	-1.9762885	1.3022490	0.3308542
Н	-2.0391296	-1.1751404	0.6070324
Н	0.0123866	-2.2894126	0.6281693
Н	3.3702012	0.8020770	0.5461243
Н	2.6334058	2.4216287	0.0093147
Н	2.1266819	-1.2760703	0.2179724

$[Au{C(CH₃)CHCHCHCH}]$ (1b, C₁)

Au -0.0292876 1.8370158 -0.0503912

С	1.2203434	-0.6770134	0.0672901
С	1.5101733	0.6626584	0.1218695
С	-1.5370439	0.6402054	-0.1881881
С	-1.2574816	-0.7048745	-0.0946462
С	-0.0152563	-1.3459840	-0.0114082
С	2.7757704	1.2738617	-0.4193607
Н	2.1096361	-1.3101933	0.0642798
Н	-2.4174969	1.0641465	0.3007756
Н	-2.1423098	-1.3416330	-0.0467198
Н	-0.0028323	-2.4287187	0.0157018
Н	3.0517497	2.2083849	0.0692458
Н	3.5792523	0.5547309	-0.2263482
Н	2.7440791	1.4327901	-1.5020451

$[Au(NC_4H_4)]$ (2, C₁)

Au	0.0411865	1.7669461	-0.0989312
N	1.5409905	0.6108481	0.2079510
С	1.2392903	-0.6560887	0.1516919
С	-1.5355906	0.6640695	-0.1239063
С	-1.2541817	-0.6846814	-0.0896480
С	-0.0141078	-1.3186098	0.0495395
Н	2.1242330	-1.2957218	0.0639608
Н	-2.4497302	1.0982898	0.2757801
Н	-2.1223941	-1.3425867	-0.1551008
Н	0.0231579	-2.3981187	-0.0344627

$[Au{C(CH₂)CH₂CHCHN}] (2a, C₁)$

Au	-0.0068279	1.3867605	-1.3329175
N	-1.4251772	0.6095385	-0.3793602
С	1.3234367	-0.8913875	-0.4124888
С	1.5382228	0.5871498	-0.4254595
С	-1.1439727	-0.6138044	0.1092349
С	0.0271659	-1.3155641	0.2229971
С	2.5029031	1.3524834	0.0764963
Н	1.3946224	-1.2415211	-1.4553096
Н	-2.0449853	-1.0674198	0.5331778
Н	-0.0092152	-2.2929466	0.6845118
Н	3.3529188	0.8686654	0.5506006
Н	2.4865763	2.4326785	0.0367255
Н	2.1674828	-1.3307973	0.1331888

$[Au{C(CH_3)CHCHCHN}] (2b, C_1)$

Au	-0.0822094	1.7426002	0.0681587
Ν	-1.5843932	0.5882154	-0.2037751
С	1.2302781	-0.6698691	0.0626008
С	1.5304559	0.6763748	0.0593857
С	-1.2709617	-0.6790150	-0.1467017
С	-0.0083818	-1.3193434	-0.0531130
С	2.8090004	1.2813225	-0.4392195
Н	2.0987813	-1.3259921	0.1460805
Н	-2.1490764	-1.3264980	-0.0510748
Н	-0.0298652	-2.3962079	0.0651776
Н	3.0746073	2.2078359	0.0667959
Н	3.6103567	0.5573833	-0.2572499
Н	2.7782009	1.4644237	-1.5177858

$[Au(C_6H_6)]^+$ (3, C_s)

Au	0.8068578	2.0331328	1.9379091
С	0.1279888	-0.5619408	0.0597389
С	1.4850971	-0.5618634	0.0593101
С	2.3193226	0.6143349	-0.0688189
С	-0.7063051	0.6142342	-0.0684929
С	2.1129371	1.8181139	0.4762236
С	-0.5000130	1.8179438	0.4767165
Н	-0.3767348	-1.5214473	0.0219350
Н	1.9899158	-1.5213249	0.0213837
Н	3.2222408	0.5271485	-0.6757146
Н	-1.6093189	0.5268859	-0.6752245
Н	2.6731631	2.7364240	0.3302923
Н	-1.0601380	2.7363371	0.3309678

$[Au{C(CH_2)CH_2CHCHCHCH}]^+$ (3a, C₁)

Au	0.5594610	2.4873993	1.3330477
С	0.2101298	-0.5469910	0.2987221
С	1.5392360	-0.3699478	0.1791013
С	2.1810960	0.8255682	-0.4752008
С	-0.7854256	0.4233533	-0.1321141
С	2.2546392	2.0115717	0.4117996
С	-0.7681912	1.7395449	0.0887720
С	3.2301217	2.8369544	0.7728300
Н	-0.1619540	-1.4911682	0.6831231
Н	2.1982909	-1.1575381	0.5280225
Н	1.6297668	1.1036696	-1.3806738
Н	-1.6601999	0.0605262	-0.6773431
Н	-1.4246056	2.5167567	-0.2930400
Н	3.2097809	0.5933874	-0.7706135
Н	4.2349154	2.6201769	0.4110264
Н	3.1112499	3.7106778	1.4044807

$[Au{C(CH_3)CHCHCHCHCH}]^+$ (3b, C₁)

Au	0.8006407	2.0043155	1.9132780
С	0.1196058	-0.5618548	0.0479187
С	1.4744447	-0.5344014	0.0490207
С	2.3110017	0.6431587	-0.0856460
С	-0.7405049	0.5986936	-0.0662142
С	2.1620391	1.8545656	0.4651973
С	-0.5596461	1.7927397	0.5044252
С	2.9389327	3.1123474	0.2866914
Н	-0.3664391	-1.5312157	0.0188122
Н	1.9919249	-1.4879346	0.0202311
Н	3.2010667	0.5403282	-0.7103842
Н	-1.6439457	0.5026427	-0.6711532
Н	-1.1412261	2.7023448	0.3917894
Н	3.4119359	3.4490706	1.2104255
Н	3.7250808	2.9082548	-0.4469344
Н	2.3101838	3.9166181	-0.0984507

$[AuCl(C_6H_6)] (3 \cdot Cl, C_{2v})$

Au	-2.1789005	-0.0024586	0.0000000
Cl	-4.4533235	0.0102502	0.0000000
С	1.6361342	0.6801353	0.000000

С	1.6372373	-0.6801399	0.000000
С	0.5283420	-1.5758749	0.000000
С	-0.8079606	-1.3902396	0.000000
С	-0.8102811	1.3877101	0.000000
С	0.5258146	1.5740870	0.000000
Н	2.6094311	1.1595364	0.000000
Н	2.6113794	-1.1578497	0.000000
Н	0.7993256	-2.6318482	0.000000
H	-1.4442405	-2.2792426	0.000000
Н	-1.4481031	2.2754137	0.000000
Н	0.7951451	2.6305208	0.000000

$[AuCl(C_4H_4)(NH_3)]$ (4, C₁)

Au	0.7514889	-0.1296517	0.000000
Cl	2.8347516	-1.1818154	0.000000
Ν	1.8575824	1.7268759	0.000000
С	-0.3166223	-1.8033443	0.000000
С	-1.0864067	0.6611395	0.000000
С	-1.6519007	-1.6294849	0.000000
С	-2.0885498	-0.2416859	0.000000
Н	-2.3423574	-2.4681449	0.000000
Н	-3.1366550	0.0447118	0.000000
Н	-1.2460666	1.7367147	0.000000
Н	0.2148080	-2.7480383	0.000000
Н	1.6873619	2.2985660	-0.8229709
Н	1.6873619	2.2985660	0.8229709
Н	2.8352038	1.4355914	0.000000

$[AuCl{C(CH₂)CH₂CHCH}(NH₃)] (4a, C₁)$

Au	0.1116933	0.2037598	0.0041018
Cl	2.0255484	-1.1361524	-0.2345721
N	1.5394538	1.8342991	0.0554431
С	-1.2694523	-1.2272584	0.0053414
С	-1.5148860	1.3292660	0.1606482
С	-2.6584196	-0.7323058	-0.3410720
С	-2.6933512	0.7262007	-0.0469844
С	-0.9886522	-2.4765098	0.3781108
Н	-3.4141145	-1.2952065	0.2189549
Н	-3.6334032	1.2729319	-0.0195626
Н	-1.4279636	2.3922116	0.3776566
Н	1.4935570	2.4189373	-0.7746508
Н	1.4663254	2.4343503	0.8721546
Н	2.4431883	1.3608381	0.0673448
Н	0.0142560	-2.7993145	0.6201261
Н	-1.7924466	-3.2079427	0.4275173
Н	-2.8608337	-0.9042482	-1.4062803

$[AuCl{C(CH₃)CHCHCH}(NH₃)] (4b, C₁)$

Au	0.0884225	0.1238193	0.0000057
Cl	2.2378612	-0.8191499	0.0004489
Ν	1.1497375	2.0166599	0.000085
С	-0.9850462	-1.5730457	-0.0000898
С	-1.7431537	0.9201933	0.0000243
С	-2.3189591	-1.3632656	-0.0001059
С	-2.7473763	0.0224236	0.0000026

С	-0.3010849	-2.8930727	-0.0000940
Н	-3.0151501	-2.1987693	-0.0003198
Н	-3.7949024	0.3116905	0.0003636
Н	-1.8882159	1.9976362	0.0000263
Н	0.9637828	2.5829249	-0.8232921
Н	0.9637630	2.5829450	0.8232904
Н	2.1335712	1.7467385	0.0000206
Н	-1.0524659	-3.6886802	-0.0001435
Н	0.3420487	-3.0084217	-0.8746326
Н	0.3419862	-3.0084686	0.8744868

$[Au_2(NCH)_2]$ (5, C_{2h})

Au	1.2227506	-0.8095578	0.000000
Au	-1.2227506	0.8095578	0.000000
N	-0.4749027	-1.9292450	0.000000
N	0.4749027	1.9292450	0.000000
С	1.4872849	1.1929810	0.000000
С	-1.4872849	-1.1929810	0.000000
Н	2.5010730	1.5982531	0.000000
Н	-2.5010730	-1.5982531	0.000000

$[Au_2(NHCH)_2] (6, C_{2h})$

Au	1.3191879	-0.0414348	0.000000
Au	-1.3191879	0.0414348	0.000000
Ν	0.5045285	-2.0016669	0.000000
Ν	-0.5045285	2.0016669	0.000000
С	0.7983281	1.8615270	0.000000
С	-0.7983281	-1.8615270	0.000000
Н	0.8436025	-2.9654145	0.000000
Н	-0.8436025	2.9654145	0.000000
Н	1.3897740	2.7818285	0.000000
Н	-1.3897740	-2.7818285	0.000000

$[Au_2Cl_2(NHCH)_2] (7, C_{2h})$

Cl	3.5332908	-0.0813945	0.000000
Cl	-3.5332908	0.0813945	0.000000
Au	1.2236795	-0.0332743	0.000000
С	0.7150121	1.8860448	0.000000
Ν	0.5560745	-2.0665738	0.000000
Н	0.9364989	-3.0157638	0.000000
С	-0.7150121	-1.8860448	0.000000
Au	-1.2236795	0.0332743	0.000000
Ν	-0.5560745	2.0665738	0.000000
Н	-0.9364989	3.0157638	0.000000
Н	1.4307143	2.7115742	0.000000
Н	-1.4307143	-2.7115742	0.000000

$[\mathrm{Au_2Cl_2}\{\mathrm{(NH)_2CH}\}_2]$ (8, $\mathrm{D_{2h}})$

Au	0.000000	1.2511642	0.000000
Au	0.000000	-1.2511642	0.000000
N	1.9726546	1.1494745	0.000000
N	1.9726546	-1.1494745	0.000000
Ν	-1.9726546	-1.1494745	0.000000
Ν	-1.9726546	1.1494745	0.0000000

С	2.6091858	0.000000	0.000000
С	-2.6091858	0.000000	0.000000
H	2.5265043	1.9964463	0.000000
H	-2.5265043	-1.9964463	0.000000
Н	3.6993122	0.000000	0.000000
H	2.5265043	-1.9964463	0.000000
Н	-3.6993122	0.000000	0.000000
Н	-2.5265043	1.9964463	0.000000
Cl	0.000000	3.5786994	0.000000
Cl	0.000000	-3.5786994	0.000000

$[Au_2{(NH)_2CH}_2]$ (9, D_{2h})

Au	0.000000	1.3682168	0.000000
Au	0.000000	-1.3682168	0.000000
Ν	1.9778999	1.1769801	0.000000
Ν	1.9778999	-1.1769801	0.000000
Ν	-1.9778999	-1.1769801	0.000000
Ν	-1.9778999	1.1769801	0.000000
С	2.5779802	0.000000	0.000000
С	-2.5779802	0.000000	0.000000
Н	2.6307934	1.9484291	0.000000
Н	-2.6307934	-1.9484291	0.000000
Н	3.6691110	0.000000	0.000000
Н	2.6307934	-1.9484291	0.000000
Н	-3.6691110	0.000000	0.000000
Н	-2.6307934	1.9484291	0.000000

$\textbf{Au}_{2}{\left\{\textbf{N(NH)CH}\right\}}_{2}\text{ (10, C}_{i}\text{)}$

Au	-0.1616504	1.3863730	-0.0690891
Au	0.1616504	-1.3863730	0.0690891
N	2.0411209	-1.0984410	-0.2259407
N	-1.7852903	-1.2911037	0.0546014
N	1.7852903	1.2911037	-0.0546014
N	-2.0411209	1.0984410	0.2259407
С	2.4795453	0.1277010	-0.0395884
С	-2.4795453	-0.1277010	0.0395884
H	2.3971626	2.0976182	0.0826760
Η	-2.3971626	-2.0976182	-0.0826760
H	3.5580808	0.2443859	0.1176886
Н	-3.5580808	-0.2443859	-0.1176886

$[Au_2(N_2CH)_2]$ (11, D_{2h})

Triplet state optimized at the DFT/ ω B97X-D/def2-TZVP level of theory. MP2 calculation is not possible because the HF SCF calculation does not converge.

Au	0.000000	-0.000000	1.3164918
Au	0.000000	-0.000000	-1.3164918
Ν	1.9216174	0.0765404	1.1501187
Ν	1.9216174	0.0765404	-1.1501187
Ν	-1.9216174	-0.0765404	-1.1501187
N	-1.9216174	-0.0765404	1.1501187
С	2.5717588	0.1024889	0.000000
С	-2.5717588	-0.1024889	0.000000
Н	3.6627176	0.1462106	0.000000
н	-3.6627176	-0.1462106	0.000000

$[Au_2{NH(CH)_2)}_2]$ (12, C_{2h})

	2		
Au	-1.1984824	-0.3554047	0.000000
Au	1.1984824	0.3554047	0.000000
Ν	-2.0047820	1.5284697	0.000000
Ν	2.0047820	-1.5284697	0.000000
С	-0.9992464	2.4320909	0.000000
С	0.3236234	2.1356759	0.000000
С	0.9992464	-2.4320909	0.000000
С	-0.3236234	-2.1356759	0.000000
Н	-2.9393033	1.9055472	0.000000
Н	2.9393033	-1.9055472	0.000000
Н	-1.2615234	3.4939029	0.000000
Н	1.1399188	2.8611103	0.000000
Н	1.2615234	-3.4939029	0.000000
Н	-1.1399188	-2.8611103	0.000000

$[\mathrm{Au}_2\{\mathrm{NH(CH)}_2\}_2] \text{ (13, } \mathrm{D}_{2\mathrm{h}})$

Au	0.000000	1.3826533	0.000000
Au	0.000000	-1.3826533	0.000000
N	2.5380601	0.0000000	0.000000
N	-2.5380601	0.0000000	0.000000
С	1.9448275	1.2248770	0.000000
С	1.9448275	-1.2248770	0.000000
С	-1.9448275	-1.2248770	0.000000
С	-1.9448275	1.2248770	0.000000
Н	2.7049637	2.0092267	0.000000
Н	-2.7049637	-2.0092267	0.000000
Н	3.5586533	0.0000000	0.000000
Н	2.7049637	-2.0092267	0.000000
Н	-3.5586533	0.000000	0.000000
Н	-2.7049637	2.0092267	0.000000

$[\mathrm{Au}_2\{\mathrm{S_2CC(CN)}_2\}_2]^{2-} \text{ (14, } \mathrm{D_2)}$

Au	0.000000	-1.3792085	0.000000
Au	0.000000	1.3792085	0.000000
Ν	0.5842055	2.0721886	-5.8038917
Ν	0.5842055	-2.0721886	5.8038917
Ν	-0.5842055	2.0721886	5.8038917
Ν	-0.5842055	-2.0721886	-5.8038917
С	0.000000	0.000000	2.9531095
С	0.000000	0.000000	-2.9531095
С	0.000000	0.000000	4.3561182
С	0.000000	0.000000	-4.3561182
С	0.3240825	1.1524293	-5.1153733
С	0.3240825	-1.1524293	5.1153733
С	-0.3240825	1.1524293	5.1153733
С	-0.3240825	-1.1524293	-5.1153733
S	0.5304743	-1.4605275	2.1985358
S	-0.5304743	1.4605275	2.1985358
S	0.5304743	1.4605275	-2.1985358
S	-0.5304743	-1,4605275	-2.1985358

$[\mathrm{Au}_2\{\mathrm{N_2(CH)}_2\}_2] \text{ (15, } \mathrm{D}_2)$

Au	0.000000	1.2270582	0.000000
Au	0.000000	-1.2270582	0.0000000

Ν	-0.3574908	1.4989398	1.8993482
N	0.3574908	-1.4989398	1.8993482
N	-0.3574908	-1.4989398	-1.8993482
N	0.3574908	1.4989398	-1.8993482
С	-0.2058925	0.7099454	2.8982111
С	0.2058925	-0.7099454	2.8982111
С	-0.2058925	-0.7099454	-2.8982111
С	0.2058925	0.7099454	-2.8982111
H	-0.3963290	1.1346388	3.8955095
H	0.3963290	-1.1346388	3.8955095
H	-0.3963290	-1.1346388	-3.8955095
Н	0.3963290	1.1346388	-3.8955095

$[{\rm Au}_2\{{\rm (NH)}_2{\rm (CH)}_2\}_2]~{\rm (16,~D_{2h})}$

Au	0.000000	1.4238396	0.000000
Au	0.000000	-1.4238396	0.000000
N	0.000000	1.5489889	1.9267781
N	0.000000	-1.5489889	1.9267781
N	0.000000	-1.5489889	-1.9267781
N	0.000000	1.5489889	-1.9267781
С	0.000000	0.6926740	2.9655493
С	0.000000	-0.6926740	2.9655493
С	0.000000	-0.6926740	-2.9655493
С	0.000000	0.6926740	-2.9655493
Н	0.000000	1.1491246	3.9532168
Н	0.000000	-1.1491246	3.9532168
Н	0.000000	-1.1491246	-3.9532168
Н	0.000000	1.1491246	-3.9532168
Н	0.000000	2.5090655	2.2622705
Н	0.000000	-2.5090655	2.2622705
Н	0.000000	-2.5090655	-2.2622705
Н	0.000000	2.5090655	-2.2622705

$[\mathrm{Au}_{2}\mathrm{Cl}_{2}\{\mathrm{NH(CH)}_{2}\mathrm{N}\}_{2}] \text{ (17, C}_{2})$

Au	-1.1911662	0.3807502	0.1836974
Au	1.1911662	-0.3807502	0.1836974
Ν	-1.7315717	-1.4325545	-0.5546320
N	1.7315717	1.4325545	-0.5546320
N	0.7681201	-2.0702191	1.0496890
Ν	-0.7681201	2.0702191	1.0496890
С	-1.2761425	-2.6012704	-0.2873178
С	-0.1909459	-2.8319938	0.6856968
С	1.2761425	2.6012704	-0.2873178
С	0.1909459	2.8319938	0.6856968
Н	-1.7617467	-3.4735673	-0.7267246
Н	-0.2530367	-3.8090594	1.1805729
Н	1.7617467	3.4735673	-0.7267246
Н	0.2530367	3.8090594	1.1805729
Н	-2.5392127	-1.3988647	-1.1809345
Н	2.5392127	1.3988647	-1.1809345
Cl	-3.3753166	1.0646821	-0.3543787
Cl	3.3753166	-1.0646821	-0.3543787

$[AuCl(C_4Ph_4)(py)]$ (18, C₁)

Au -0.9680932 1.6185	0.7245894
----------------------	-----------

N	-2.1503140	1.4950931	2.4894787
С	-0.3838922	-0.3073541	0.8110477
С	0.3516216	-0.7239971	-0.2571971
С	0.6364135	0.3165952	-1.2427729
С	0.1289379	1.5522239	-0.9570363
С	-0.8144538	-1.1380598	1.9304604
С	-0.4389530	-0.8187328	3.2449044
С	-0.9022233	-1.5711318	4.3192944
С	-1.7519600	-2.6570009	4.0986225
С	-2.1189104	-2.9946579	2.7955715
С	-1.6542645	-2.2424221	1.7195448
С	0.8067605	-2.1141545	-0.4146501
С	0.5590519	-2.8042273	-1.6096894
С	0.9629412	-4.1281890	-1.7559730
С	1.6311575	-4.7771309	-0.7178506
С	1.8911725	-4.0944063	0.4701326
C	1,4819361	-2.7724644	0.6213674
c	1 4686503	0 0631494	-2 4309036
C	1 0288483	0 4395677	-3 7063235
C	1 8241367	0 2068888	-4 8244535
c	3 0699785	-0 4043479	-4 6841532
C	3 5148020	-0 7842701	-3 4182779
c c	2 7180080	0 5583600	2 2003301
C C	2.7100000	0.0000000	1 7360059
C C	1 7303660	3 16/6687	1 003/120
C C	2 0444968	J. 1040007	2 7105/38
c	1 0047111	4.2556145	2.7100430
C C	0 2010210	4.9495109	-3.3010372
c c	-0.3019619	4.5525021	-3.1915559
C a	-0.0112805	3.4697293	-2.3/55450
C	-1.8490200	2.2416982	3.5623303
C a	-2.5074583	2.0692637	4.7729160
C a	-3.5169229	1.11///52	4.8093437
C	-3.8450960	0.3752520	3.7394319
C	-3.1370406	0.5875843	2.5656419
Н 	0.2227180	0.0266470	3.4114/0/
н	-0.5983064	-1.3146723	5.3287965
н	-2.1153218	-3.2425962	4.9358567
Н	-2.7674353	-3.8459528	2.6177925
Н	-1.9385029	-2.4979598	0.7028539
Н	0.0444723	-2.2979148	-2.4203273
Н	0.7601931	-4.6527035	-2.6833251
Н	1.9512941	-5.8062494	-0.8358067
Н	2.4184130	-4.5905068	1.2777443
Н	1.6900065	-2.2358051	1.5415402
Н	0.0599460	0.9171215	-3.8110152
Н	1.4712664	0.5026940	-5.8063781
Н	3.6896645	-0.5840829	-5.5554854
Н	4.4832075	-1.2586293	-3.3020948
Н	3.0661362	-0.8544249	-1.3147039
Н	2.5275523	2.6118879	-1.4018838
Н	3.0769311	4.5645816	-2.8328807
Н	1.2612830	5.7987173	-3.9923837
Н	-1.0982577	5.0950373	-3.6889696
Н	-1.6416780	3.1633174	-2.2363409
Н	-1.0746480	2.9858559	3.4213575
Н	-2.2288783	2.6818148	5.6213273

-4.0435267	0.9635674	5.8037868
-3.3415686	0.0226161	1.6646621
-4.6340926	-0.3658997	3.7588087
-1.5807429	3.8752666	0.6576498
	-4.0435267 -3.3415686 -4.6340926 -1.5807429	-4.0435267 0.9635674 -3.3415686 0.0226161 -4.6340926 -0.3658997 -1.5807429 3.8752666

Magnetically induced current-density pathways

The MIC density strength is represented with a black $(1 \cdot 10^{-6} \text{ nA } \text{T}^{-1})$ – red – orange – yellow – white $(1 \cdot 10^{-1} \text{ nA } \text{T}^{-1})$ color scale.

Fig. S3 The 3D streamline plot of the MIC density pathways of molecule $[Au(C_5H_5)]$ (1). Color code: C, grey; H, white; Au, yellow.

Fig. S4 The 3D streamline plot of the MIC density pathways of molecule $[Au(NC_4H_4)]$ (2). Color code: C, grey; H, white; Au, yellow; N, blue.

Fig. S5 The 3D streamline plot of the MIC density pathways of molecule $[Au(C_6H_6)]^+$ (3). Color code: C, grey; H, white; Au, yellow.

Fig. S6 The 3D streamline plot of the MIC density pathways of molecule $[AuCl(C_6H_6)]$ (3·Cl). Color code: C, grey; H, white; Au, yellow; Cl, green.

Fig. S7 The 3D streamline plot of the MIC density pathways of molecule $[AuCl(C_4H_4)(NH_3)]$ (4). Color code: C, grey; H, white; Au, yellow; Cl, green; N, blue.

Fig. S8 The 3D streamline plot of the MIC density pathways of molecule [Au₂(NCH)₂] (5). Color code: C, grey; H, white; Au, yellow; N, blue.

Fig. S9 The 3D streamline plot of the MIC density pathways of molecule $[Au_2(NHCH)_2]$ (6). Color code: C, grey; H, white; Au, yellow; N, blue.

Fig. S10 The 3D streamline plot of the MIC density pathways of molecule $[Au_2Cl_2(NHCH)_2]$ (7). Color code: C, grey; H, white; Au, yellow; Cl, green; N, blue.

Fig. S11 The 3D streamline plot of the MIC density pathways of molecule $[Au_2Cl_2\{(NH)_2CH\}_2]$ (8). Color code: C, grey; H, white; Au, yellow; Cl, green; N, blue.

Fig. S12 The 3D streamline plot of the MIC density pathways of molecule $[Au_2{(NH)_2CH}_2]$ (9). Color code: C, grey; H, white; Au, yellow; N, blue.

Fig. S13 The 3D streamline plot of the MIC density pathways of molecule [Au₂(NHNCH)₂] (10). Color code: C, grey; H, white; Au, yellow; N, blue.

Fig. S14 The 3D streamline plot of the MIC density pathways of molecule $[Au_2(N_2CH)_2]$ (11). Color code: C, grey; H, white; Au, yellow; N, blue.

Fig. S15 The 3D streamline plot of the MIC density pathways of molecule $[Au_2{(CH)_2NH}_2]$ (12). Color code: C, grey; H, white; Au, yellow; N, blue.

Fig. S16 The 3D streamline plot of the MIC density pathways of molecule $[Au_2{(CH)_2NH}_2]$ (13). Color code: C, grey; H, white; Au, yellow; N, blue.

Fig. S17 The 3D streamline plot of the MIC density pathways of molecule $[Au_2\{S_2CC(CN)_2\}_2]^{2-}$ (14). Color code: C, grey; H, white; Au, dark yellow; N, blue; S, light yellow.

Fig. S18 The 3D streamline plot of the MIC density pathways of molecule $[Au_2{N_2(CH)_2}_2]$ (15). Color code: C, grey; H, white; Au, yellow; N, blue.

Fig. S19 The 3D streamline plot of the MIC density pathways of molecule $[Au_2\{(NH_2)(CH_2)\}_2]$ (16). Color code: C, grey; H, white; Au, yellow; N, blue.

Fig. S20 The 3D streamline plot of the MIC density pathways of molecule $[Au_2Cl_2\{(NH_2)(CH_2)\}_2]$ (17). Color code: C, grey; H, white; Au, yellow; Cl, green; N, blue.