Defect effects on the electronic, valley, and magnetic properties of twodimensional ferrovalley material VSi₂N₄

Ming-Yang Liu1*, Gaung-Qiang Li, Yao He², and Kai Xiong³

¹Department of Physics and Electronic Science, Chuxiong Normal University, Chuxiong 675000, P.

R. China

²Department of Physics, Yunnan University, Kunming 650091, P. R. China

³Materials Genome Institute, School of Materials and Energy, Yunnan University, Kunming 650091,

P. R. China

*Corresponding author: Ming-Yang Liu (E-mail: <u>18788549890@163.com);</u> Yao He (E-mail: yhe@ynu.edu.cn)

FIG. S1 (a) Lattice structure of VSi_2N_4 , in which the gray, blue, and red balls denote N, Si, and V atoms, respectively. (b) Orbital projected band structure of the pristine VSi_2N_4 . The Fermi level is set at the zero energy.

FIG. S2 The crystal structures of the defective VSi_2N_4 after AIMD. The gray, blue, and red balls denote N, Si, and V atoms, respectively.

FIG. S3 The spin-polarized density of states of the doped and defected VSi_2N_4 with $3 \times 3 \times 1$ supercell. The red and green lines denote the spin-up and spin-down channels, respectively, and the Fermi level is set at zero energy.

FIG. S4 The spin-polarized density of states of the doped and defected VSi_2N_4 with $5 \times 5 \times 1$ supercell. The red and green lines denote the spin-up and spin-down channels, respectively, and the Fermi level is set at zero energy.

FIG. S5 Optimized structures of the defective VSi_2N_4 bilayers with AB-stacking. The gray, blue, and red balls denote N, Si, and V atoms, respectively. The defects have been marked by the pink circle.

TABLE SI. Using GGA+U method, the calculated magnetic quantities of the defective VSi₂N₄ using $3\times3\times1$ supercell: total magnetic moment M_{total} , magnetic moment per V atom $M_{\text{total/V}}$, average magnetic moment of V surrounding defect (for the defective systems, M_{V} is calculated from the average of the neighboring V atoms) M_{V} , magnetic anisotropy energy E_{MAE} , and magnetic energy per V atom E_{M} .

	$M_{\rm total}(\mu_{\rm B})$	$M_{\rm total/V}(\mu_{\rm B}/{ m V})$	$M_{ m V}(\mu_{ m B})$	$E_{\rm MAE}(\mu eV/V)$	$E_{\rm M}({\rm meV/V})$
VSi ₂ N ₄	9.00	1.00	1.06	-33.3	282.5
C(N _{in})	8.00	0.89	0.81	-15.6	242.1
C(N _{out})	9.15	1.02	1.01	-9.7	250.2
O(N _{in})	9.99	1.11	1.14	-56.1	226.5
O(N _{out})	9.42	1.05	1.10	-41.5	218.5
Mv-N _{in}	10.00	1.11	1.25	-19.5	206.8
mv-N _{out}	8.03	0.89	0.67	-20.1	222.5
mv-Si	7.85	0.87	0.59	-1.3	171.3
mv-V	6.45	0.81	0.58	10.4	91.7

TABLE SII. Using GGA+U method, the calculated magnetic quantities of the defective VSi₂N₄ using $5\times5\times1$ supercell: total magnetic moment M_{total} , magnetic moment per V atom $M_{\text{total/V}}$, average magnetic moment of V surrounding defect (for the defective systems, M_{V} is calculated from the average of the neighboring V atoms) M_{V} , magnetic anisotropy energy E_{MAE} , and magnetic energy per V atom E_{M} .

	$M_{\rm total}(\mu_{\rm B})$	$M_{\rm total/V}(\mu_{\rm B}/{ m V})$	$M_{ m V}(\mu_{ m B})$	$E_{\rm MAE}(\mu eV/V)$	$E_{\rm M}({\rm meV/V})$
VSi ₂ N ₄	25.00	1.00	1.06	-33.2	282.6
C(N _{in})	24.00	0.96	0.79	-28.9	267.8
C(N _{out})	25.09	1.00	1.04	-13.3	270.6
O(N _{in})	26.00	1.04	1.20	-34.1	259.8
O(N _{out})	26.00	1.04	1.12	-36.2	264.9
MV(N _{in})	26.00	1.04	1.14	-36.2	262.7
MV(N _{out})	26.00	1.04	1.12	-27.8	249.7
MV(Si)	23.11	0.92	0.72	-2.3	233.8
MV(V)	22.02	0.92	0.63	-3.3	203.6