Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Electronic supplementary information

(ESI)

New cyanido-bridged iron(II) spin crossover coordination polymers with unusual ladder-like topology: an alternative to Hofmann clathrates

Diana Visinescu,¹ Sergiu Shova,² Sergii I.Shylin,³ Ghenadie Novitchi,^{4*} Delia-Laura Popescu⁵ and Maria-Gabriela Alexandru^{6,*}

 ¹"Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, Bucharest 060021, Romania.
²Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Vodă 41-A, RO-700487 Iasi, Romania
³Department of Chemistry – Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
⁴Lebaratzian National dae Charges Marcu (timore Interest (INCM)), University, Aleea EMEL CNRC 20042

⁴Laboratoire National des Champs Magnétiques Intenses (LNCMI), Univ. Grenoble Alpes, EMFL, CNRS 38042 Grenoble, France. E-mail: ghenadie.novitchi@lncmi.cnrs.fr

⁵Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Bucharest, Dumbrava Rosie 23, 020464, Bucharest, Romania

⁶Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania. E-mail: maria.alexandru@up.ro

Fig. S1. FTIR spectrum of 1

Fig. S2. FTIR spectrum of 2

Fig. S5. Overlayed UV-Vis spectra of 1 and 2

Fig. S6. Overlayed UV-Vis spectra of 3 and 4

Fig. S7. Experimental and calculated powder X-ray diffractograms at room temperature for 1.

Fig. S8. Experimental and calculated powder X-ray diffractograms at room temperature for 2.

Fig. S9. Experimental and calculated powder X-ray diffractograms at room temperature for 3 and 4.

	1 (180 K)	1 (100 K)	2 (120 K)
M1-C19	1.994(3)	1.992(5)	1.989(2)
M1-C20	1.995(3)	1.988(6)	1.994(2)
M1-C21	1.990(3)	2.002(5)	1.987(2)
M1-C22	1.990(3)	1.983(5)	1.984(2)
Fe1-N1	2.249(3)	2.166(4)	2.249(2)
Fe1-N2	2.129(3)	2.181(5)	2.2438(19)
Fe1-N3	2.246(3)	2.043(4)	2.2438(19)
Fe1-N7	2.090(3)	2.048(5)	2.101(2)
Fe1-N8 ^{a*}	2.111(3)	2.101(5)	
Fe1-N9 ^{a**}			2.091(2)
Fe1-N9 ^{b*}	2.180(3)	2.048(5)	
Fe1-N10 ^{b**}			2.1772(19)
C19-N7-Fe1	175.9(3)	174.5(5)	174.10(18)
C20-N8-Fe1 ^{*,**}	173.7(2)	173.5(4)	τ, γ
C22-N10-Fe1 ^{c**}			172.74(18)
C21-N9-Fe1 ^{b*,**}	173.4(2)	175.2(4)	175.6(2)
N7-C19-M1	176.8(3)	177.7(5)	177.3(2)
N8-C20-M1	177.6(3)	176.9(5)	177.1(2)
N9-C21-M1	178.0(3)	178.1(4)	176.9(2)
N10-C22-M1	176.9(3)	176.4(4)	178.1(2)
N9 ^b -Fe1-N8 ^{a*,**}	174.55(10)	175.2(4)	
N1-Fe1-N2	72.62(9)	149.41(18)	145.65(7)
N3-Fe1-N1	145.60(9)	74.95(16)	72.63(7)
N3-Fe1-N2	72.99(9)	74.45(16)	73.03(7)
N7-Fe1-N9 ^{b*,**}	86.97(9)	88.13(17)	89.38(8)
N7-Fe1-N10 ^{a**}			174.24(7)
N8ª-Fe1-N2	100.79(9)	89.85(16)	
N10 ^a -Fe1-N2			86.54(7)
N9 ^b -Fe1-N1 [*]	89.65(9)	93.99(16)	
N10 ^a -Fe1-N1 ^{**}			89.81(7)
C19-M1-C21	90.72(11)	90.6(2)	90.19(9)
C20-M1-C19	90.41(11)	90.8(2)	90.88(9)
C22-M1-C21	87.91(11)	91.2(2)	90.73(9)
C20-M1-C22	90.91(11)	87.4(2)	88.17(9)

Table S1. Bond lengths (Å) and angles (°) of the iron(II) and M(II) coordination environments in compounds **1** and **2**, respectively; M = Pd(1) and Pt(2).

*(a) = 1-x, 1-y, 1-z; (b) = 2-x, -y, 1-z; **(a)= 1+x, y,-1+z; (b) = 1-x,1-y,1-z; (c) = -1+x,1+y,1+z

	3	4
Fe1-N1	2.009(5)	1.996(4)
Fe1-N2	1.864(5)	1.869(4)
Fe1-N3	2.001(5)	1.983(4)
Fe1-N7	1.992(5)	1.999(4)
Fe1-N8	1.862(5)	1.862(4)
Fe1-N9	2.014(5)	1.999(4)
M1-C37	- (-)	2.006(5)
M1-C38	2.009(10)	2.000(8)
M1-C39	2.013(9)	1.994(5)
M2-C40	2 026(8)	2 004(5)
M2-C41	2 016(10)	
	2.010(10)	
N1-Fe1-N2	80 0(2)	79 56(15)
N1-Fe1-N3	158 9(2)	158 87(15)
N1-Fe1-N7	93 1(2)	92 26(15)
N1-Fe-N8	96 3(2)	98 90(15)
	0.3(2) 02 4(2)	94 46(15)
N2-Fo1-N3	70 1(2)	70 61(15)
N2-Fe1-N7	101 6(2)	95.01(15)
	101.0(2)	175 10(15)
	08 0(2)	105 21(15)
	90.9(2)	105.51(15)
	88.3(2) 104 C(2)	93.21(14)
	104.6(2)	102.14(15)
	93.0(2)	87.03(15)
	79.9(2)	80.01(15)
N7-Fe1-N9	159.4(2)	159.00(15)
N8-Fe1-N9	79.8(2)	/9.31(15)
M1-C37-N13	-	177.0(4)
M1-C38-N14	-	176.1(9)
M1-C38-N13	177.1(9)	-
M1-C39-N14	178.3(8)	-
C37-M1-C37a**	-	180.0(2)
C37-M1-C38a	-	88.1(3)
C38-M1-C38a*	180.0(4)	180.0
C37-M1-C38	-	91.9(3)
C38-M1-C39	89.2(3)	-
C39-M2-C39b**	-	180.0
C39-M2-C40	-	91.41(19)
C39b-M2-C40**	-	88.59(19)
C39b-M2-C40b	-	91.41(19)
C39-M2-C40b**	-	88.59(19)
M2-C39-N15	-	178.8(5)
M2-C40-N16	-	179.2(4)
M2-C40-N15	176.2(7)	-
M2-C41-N16	178(3)	-
M2-C41a-N16a*	172(5)	-
C40-M2-C41	87.8(10)	-
C40-M2-C41b*	92.2(10)	-
C40b-M2-C40*,**	180.0	180.0

Table S2. Bond lengths (Å) and angles (°) of the iron(II) and M(II) coordination environments in compounds **3** and **4**, respectively; M = Pd (**3**) and Pt (**4**).

*(a) = 2-x, 1-y, 1-z; (b) = 2-x, 2-y, 2-z; **(a) = 2-x,1-y,1-z; (b) = -x, -y, -z

CN = 6 ^{<i>a</i>}	1 (180 K)	1 (100 K)	2	3	4
HP-6	33.461	33.243	33.365	33.225	32.904
PPY-6	22.369	23.118	22.244	22.321	21.912
OC-6	2.636	2.177	2.658	2.423	2.484
TPR-6	11.367	11.768	11.206	11.129	10.886
JPPY-6	26.578	27.331	26.455	26.467	25.992

Table S3. Summary of the SHAPE analysis for the six-coordinated [Fe^{II}N₆] fragments in 1-4

^{*a*} PPY-6, *C*₅, Pentagonal pyramid; OC-6, *O*_{*h*} Octahedron; TPR-6, *D*₃, Trigonal prism; JPPY-5, *C*₅, Johnson pentagonal pyramid (J2)

Table S4. Selected intermolecular contacts for 1.

D-H…A	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
O1W-H1WA…N6 ^x	0.87	2.03	2.856(4)	159
O1W-H1WB…O2W	0.87	1.93	2.779(4)	164
O2W-H2WA…O1W ^z	0.87	1.89	2.748(4)	171
O2W-H2WB…N10 ^b	0.87	2.31	3.140(4)	160

(x) = 1-x, 2-y, 2-z;(z) = -x, 2-y, 2-z;(b) = -x, 2-y, 1-z

Table S5. Selected intermolecular contacts for 2.

D-H…A	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
O2W-H1WA…N6	0.87	2.04	2.859(3)	157
O1W-H1WB…O2W	0.87	1.93	2.782(3)	165
O2W-H2WA…O1W ¹	0.87	1.89	2.750(3)	172
O2W-H2WB····N8 ²	0.87	2.30	3.126(3)	158

 $(1)=-x,\,-1{-}y,\,-z;(2)=-1{-}x,\,-1{-}y,\,1{-}z$

Fig. S10. Packing diagram of **1** showing the 3-D supramolecular network through H-bonds [symmetry coded: (b) = -*x*, 2-*y*, 1-*z*; (v) = *x*, *y*, 1+*z*; (w) = -1+*x*, *y*, *z*; (x) = 1-*x*, 2-*y*, 2-*z*; (y) = -*x*, 2-*y*, 2-z].

Fig.S11. Left. Asymmetric unit of **2**. Right. Fragment of the double chain **2**. (a) = 1-x, 1-y, -z; (b) = -1+x, 1+y, z.

Fig. S12. Left: H-Bonds established in **2**. Right: Detail of crystal packing from the 3-D supramolecular network based on hydrogen bonding pattern in **2**. Symmetry code: (c) = -1-x, 1-y, 1-z.

Fig. S13. π - π stacking interactions in **2** (the centroid-centroid distance of ca. 3.64 Å).

D-H…A	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
O2W-H2WA····N6 ^h	0.85	2.57	2.947(9)	108
O2W-H2WA…O4W ^g	0.85	2.57	2.935(19)	107
O2W-H2WB…N15	0.85	2.11	2.901(9)	154
O3W-H3WA…O3W ^d	0.85	2.45	2.890(19)	113
O3W-H3WA…O4W ^d	0.85	2.26	2.78(2)	120
O3W-H3WB…N16	0.85	2.52	2.797(19)	100
O1W-H1WA…O2W	0.85	2.12	2.944(9)	162
O1W-H1W…BN13 ^h	0.85	2.13	2.933(11)	157

Table S6. Selected intermolecular contacts for 3

(d) = 1-x, 1-y, 2-z; (g) = 1-x, 2-y, 2-z; (h) = x, 1+y, z.

Fig. S14. Detail of crystal packing from the 3-D supramolecular network based on hydrogen bonding pattern in **3**. Symmetry codes: (b) = 2-x, 1-y, 1-z; (c) = x, -1+y, z; (d) = 1-x, 1-y, 2-z; (e) = 1+x, y, z; (f) = 2-x, 1-y, 2-z; (g) = 1-x, 2-y, 2-z; (h) = x, 1+y, z.

D-H…A	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
O2W-H2WA…O1W ¹	0.87	1.96	2.778(12)	156
O5W-H5WA…N15 ³	0.87	2.11	2.940(6)	159
O5W-H5WB····O4W	0.85	2.06	2.901(5)	170
O1W-H1WA…O2W ¹	0.85	2.44	2.778(12)	105
O1W-H1WB…N14	0.88	2.23	2.859(12)	128
O4W-H4WA…N12 ⁴	0.87	2.12	2.919(6)	152
O4W-H4WB···N13 ⁵	0.87	2.04	2.889(6)	164

Table S7. Selected intermolecular contacts for 4

(1) = 1-x, -y, 1-z; (2) = 1-x, 1-y, 1-z; (3) = 1-x, 1-y, -z; (4) = x, 1+y, z; (5) = 2-x, 1-y, 1-z.

Fig. S15. Left: structure of **4**; Right: excerpt from the 3-D supramolecular network based on hydrogen bonding pattern in **4**. Symmetry codes: (a) = 1-x, -y, 1-z; (b) = 1-x, 1-y, 1-z; (c) = x, 1+y, z; (d) = 2-x, 1-y, 1-z; (e) = 1-x, 1-y, -z.

Fig. S16. Details of the crystal packing in **3** showing the offset and edge to face π - π stacking interactions established between peripheral pyridine and triazine rings of neighboring tptz ligands. Symmetry codes: (i) = 1-*x*, 1-*y*, 1-*z*; (j) = 1-*x*, 2-*y*, 1-*z*; (k) = -*x*, 2-*y*, 1-*z*.

Fig. S17. Temperature dependence of magnetic susceptibility χT as a function of temperature (*T*) for compound **1**. The solid line represents the theoretical simulated value according to the Slichter-Drickamer model^{52, 67} for the upper portion of the data of magnetic susceptibility with parameter indicated below: left, $\Delta H = 5.3$ kJ/mol, $\Delta S = 48.62$ J/mol $\gamma = 1.2$ kJ/mol, χT (HS) = 3.6 cm³·mol⁻¹·K, χT (LS) = 2.35 cm³·mol⁻¹·K; right, $\Delta H = 5.3$ kJ/mol, $\Delta S = 48.62$ J/mol, $\gamma = 0$, 0.2, 2.4 kJ/mol, χT (HS) = 3.6 cm³·mol⁻¹·K, χT (LS) = 2.35 cm³·mol⁻¹·K.