A sandwiched Co₄-added Polyoxometalate for Efficient Visible-

light-driven Hydrogen Evolution

Zhen-Wen Wang, Chong-An Chen and Guo-Yu Yang*

MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China

Address correspondence to Guo-Yu Yang, ygy@bit.edu.cn

Content

1. Eperimental section

2. Supporting Figures

Figure S1 (a) Asymmetric unit of **1**; (b) Schematic diagram of $\{Co_4\}$ existing in **1** and the distance between Co-Co; (c) Polyhedral view of anion clusters $\{Co_4GeW_9\}$.

Figure S2 The stacking diagram of 1 along the a-axis direction.

Figure S3 Synthesized and simulated PXRD pattern of 1.

Figure S4 The FT-IR of 1.

Figure S5 Thermogravimetric analysis curve of 1.

Figure S6 Transient photocurrent responses (I-t curves) of ITO conductive glass and ITO conductive glass loaded with compound **1**.

Figure S7 Photocatalytic H₂ evolution with different concentrations of TEOA (5–25 mM) after 10 hours of reaction. Conditions: white light (400–800 nm, 10W), $[Ir(ppy)_2(dtbbpy)][PF_6]$ (0.2 mM), catalyst of **1** (3 mg), 3 mL of CH₃CN/DMF (1/3), and H₂O (2 M) deaerated with Ar/CH₄ (4/1).

Figure S8 The powder X-ray diffraction patterns for 1 before and after reaction.

Figure S9 The FTIR spectra for 1 before and after reaction.

Figure S10 The PXRD patterns after three times recycle of catalyst 1.

Figure S11 The FT-IR spectra after three times recycle of catalyst 1.

Figure S12 Proposed mechanism for visible-light-driven H_2 evolution catalyzed by 1 with oxidative and reductive quenching mechanism.

1. Eperimental section

FT-IR spectra were measured by using a Nicolet iS10 FT-IR spectrometer in the range of 400–4000 cm⁻¹ with KBr pallets. Powder X-ray diffraction (PXRD) patterns were recorded on a Bruker D8 Advance XRD diffractometer with Cu K α radiation (λ = 1.54056 Å). Thermogravimetric analyses were conducted in under N₂ flowing on a Mettler-Toledo TGA/DSC 1000 with the heating rate of 10 °C min⁻¹ from 25 to 1000 °C. UV-Vis absorption spectra were obtain using a SP-1901 UV-Vis spectrophotometer. H₂ was analysed using a gas chromatograph (GC9790 II) with a TCD and a 5 Å molecular sieve column (3 m × 3 mm) with Ar as the carrier gas. Electrochemical measurements (transient photocurrent response, Mott–Schottky spots) were using an electrochemical workstation CHI 670E. A three-electrode system was employed in a cell with an Ag/AgCl as the reference electrode, a carbon rod as the counter electrode, and the indium tin oxide (ITO) coated glass as the working electrode. The electrolyte solution is Na₂SO₄ (0.5 M). The area of working electrodes was set constant at 1.0 × 1.0 cm². Photocatalytic reactions were carried out by Beijing Perfectlight Multi-channel photochemical reaction system PCX-50C equipped with white light source (electric power: 10 W). ICP-OES test was test on Agilent 725-ES. Field emission scanning electron microscopies (FE-SEM) were performed on a Ultra Plus model Zeiss microscope operating at an accelerating voltage of 10.0 kV.

2. Supporting Figures

Figure S1 (a) Asymmetric unit of **1**; (b) Schematic diagram of {Co₄} existing in **1** and the distance between Co-Co; (c) Polyhedral view of anion clusters {Co₄GeW₃}.

Figure S2 The stacking diagram of 1 along the a-axis direction.

Figure S3 Synthesized and simulated PXRD pattern of 1.

Figure S4 The FT-IR of 1.

Figure S5 Thermogravimetric analysis curve of 1.

Figure S6 Transient photocurrent responses (I-t curves) of ITO conductive glass and ITO conductive glass loaded with compound 1.

Figure S7 Photocatalytic H₂ evolution with different concentrations of TEOA (5–25 mM) after 10 hours of reaction. Conditions: white light (400–800 nm, 10W), [Ir(ppy)₂(dtbbpy)][PF₆] (0.2 mM), catalyst of **1** (3 mg), 3 mL of CH₃CN/DMF (1/3), and H₂O (2 M) deaerated with Ar/CH₄ (4/1).

Figure S8 The powder X-ray diffraction patterns for 1 before and after reaction.

Figure S9 The FTIR spectra for 1 before and after reaction.

Figure S10 The PXRD patterns after three times recycle of catalyst 1.

Figure S11 The FT-IR spectra after three times recycle of catalyst 1.

Figure S13 Proposed mechanism for visible-light-driven H₂ evolution catalyzed by 1 with oxidative and reductive quenching mechanism.