Supporting Information

Stable hybrid catalyst (POM-PPPh₃/L/Ni) for reduction of toxic nitroarene compounds in water

Shima Aghajani^a, Maryam Mohammadikish^{a, b*}

^a Department of Inorganic Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran ^b Research Institute of Green Chemistry, Kharazmi University, Tehran, Iran Tel./fax: +98 2186072706. E-mail address: mohammadikish@khu.ac.ir

Experimental

Materials and Methods

Nickel (II) acetate tetrahydrate, molybdenum trioxide, phosphoric acid, nitric acid, (3bromopropyl)triphenylphosphonium bromide, diethylenetriamine, and salicylaldehyde were purchased from Sigma-Aldrich, Merck, or Fluka in analytical grade and used as received. Nitrobenzene, 1-bromo-4-nitrobenzene, 1-chloro-4-nitrobenzene, 1-fluoro-4-nitrobenzene, 1chloro-3-nitrobenzene, 1-chloro-2-nitrobenzene, 4-nitrophenol (4-NP), 3-nitrophenol, 4nitroacetophenone, 1,2-dinitrobenzene, 4-nitroanilin, 1-nitronaphthalen, 4-nitrobenzoicacid, 2nitrobenzaldehyde, 1-methoxy-4-nitrobenzene, and 4-nitroacetophenone were purchased from Sigma-Aldrich and used without further purification.

Thermogravimetric analysis (TGA) of the samples was performed using a Netzsch-TGA 209 F1 thermogravimeter heated from 25 to 700 °C at a heating rate of 10 °C.min⁻¹ under static air. Fourier transform infrared (FT-IR) spectra from solid samples were carried on a Perkin-Elmer-RXI FT-IR spectrometer, using KBr disks. Inductively coupled plasma-optical emission spectrometry (ICP-OES) results for depicting the molar ratio of Mo and Ni were obtained on a SPECTRO ARCOS

analyzer. In order to investigate the crystal structure, the Powder X-ray diffraction (XRD) analyses were used on a Rigaku D-max CIII X-ray diffractometer with Cu Kα radiation. Field emission scanning electron microscopy (FESEM) and elemental mapping analyses were executed in a high-resolution MIRA3-TSCAN microscope. X-ray photoelectron spectroscopy (XPS) was performed using a vacuum generator Thermo ESCALAB 250 XI with Mg X-ray sources. Transmission electron microscopy (TEM) images were carried out on the TEM Philips EM 208S (accelerating voltage:100 kV) instrument. The ¹H NMR spectra of products were recorded on Bruker AMX 300 MHz NMR spectrometers using CDCl₃ or DMSO-d⁶ as the solvent. The electronic absorption spectra (UV–visible) of the nitroarenes were carried out on a Perkin Elmer Lambda 25 UV-vis spectrophotometer in the wavelength range of 200-800 nm in a quartz cuvette. Gas chromatography-mass spectrometry (GC-MS) experiment was carried out with Agilent 7890A-MSD 5975 to specify the mechanism.

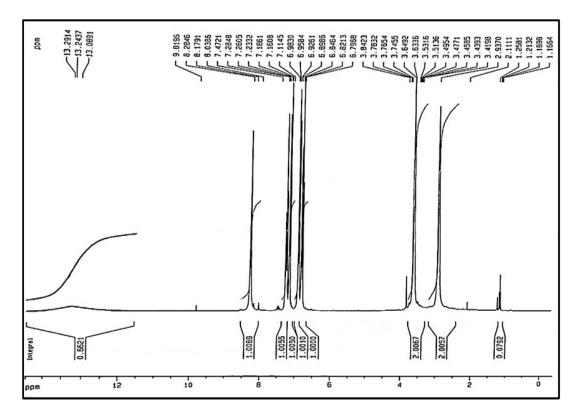


Figure S1. ¹H NMR spectrum of the prepared Schiff base.

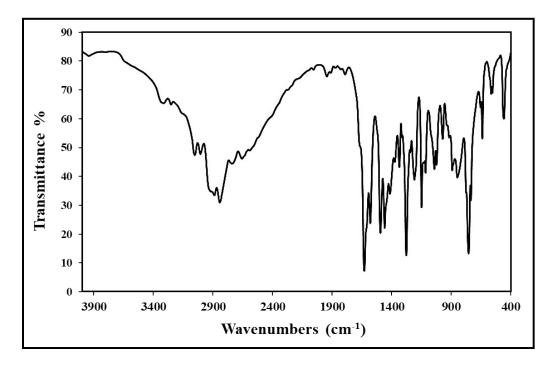


Figure S2. FT-IR spectrum of the prepared Schiff base.

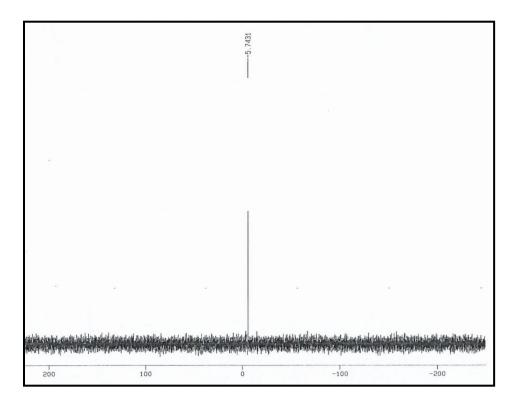


Figure S3. ³¹P NMR spectrum of the POM.

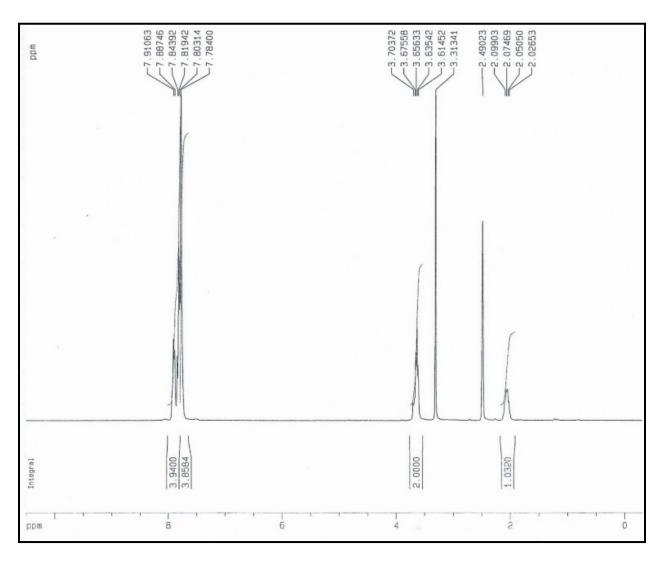


Figure S4. ¹H NMR spectrum of the prepared POM-PPPh₃.

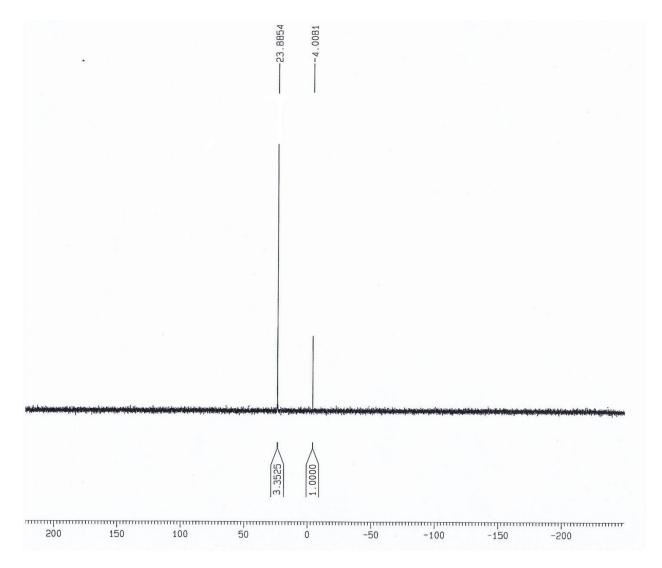


Figure S5. ³¹P NMR spectrum of the prepared POM-PPPh₃.

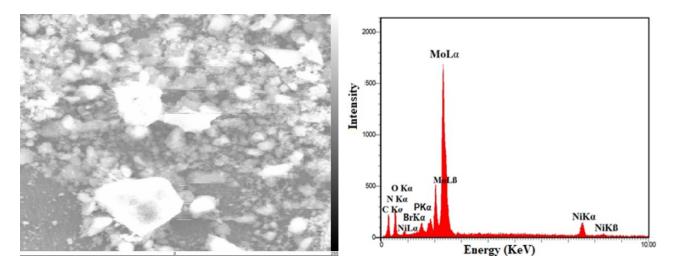
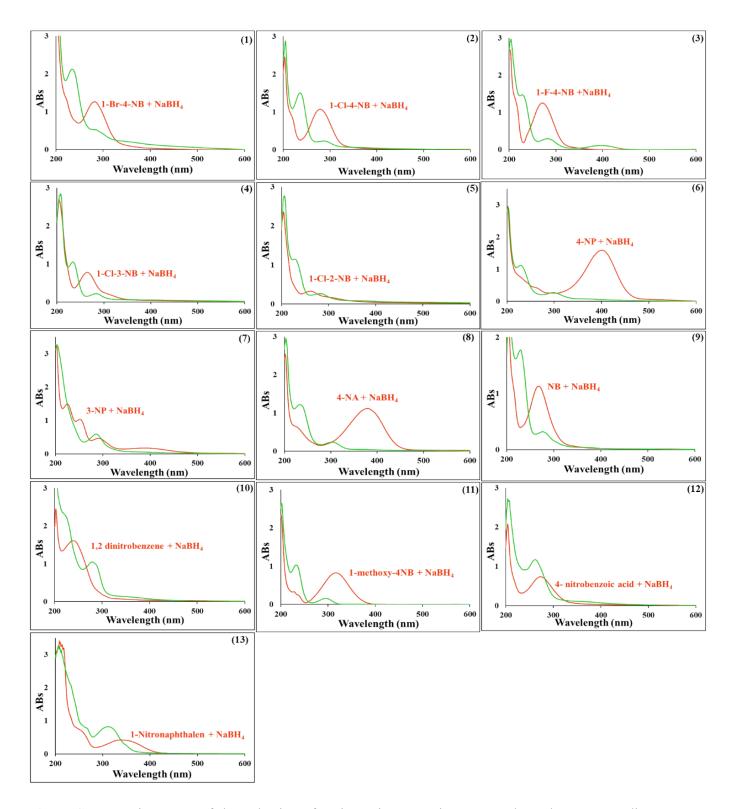



Figure S6. EDX spectrum of POM-PPPh₃/L/Ni nanocatalyst.

Figure S7. UV-Vis spectra of the reduction of various nitroaromatic compounds to the corresponding aminoarenes in the presence of $POM-PPPh_3/L/Ni$ nanocatalyst (Orange lines: before the addition of catalyst, Green lines: at the end of the reaction).

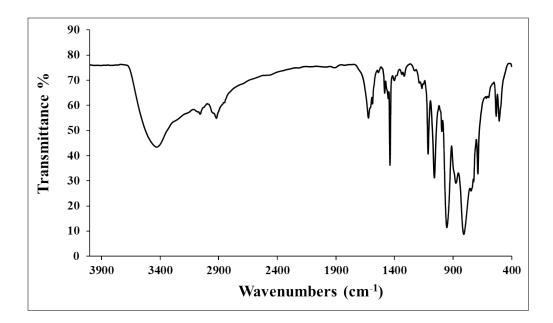


Figure S8. FT-IR spectrum of POM-PPPh₃/L/Ni nanocatalyst after the recyclability test.

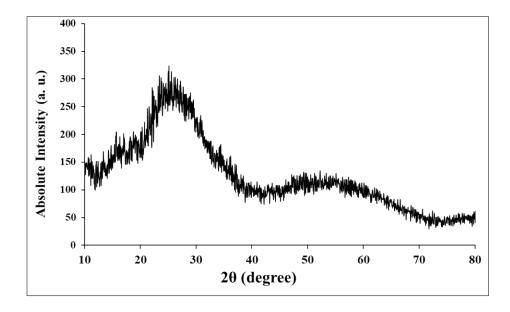


Figure S9. XRD pattern of POM-PPPh₃/L/Ni nanocatalyst after the recyclability test.

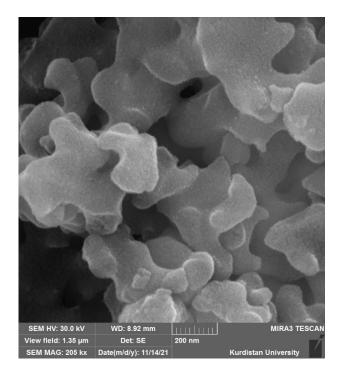
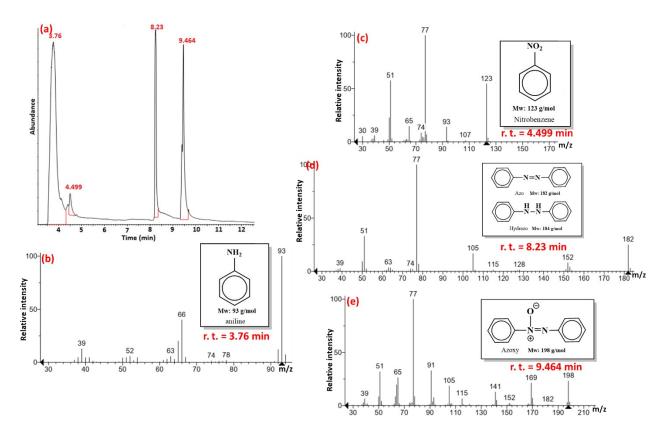



Figure S10. FESEM image of POM-PPPh₃/L/Ni nanocatalyst after the recyclability test.

Figure S11. (a) GC and (b), (c), (d), and (e) the mass spectra of the products of NB reduction after 5 min in the presence of POM-PPPh₃/L/Ni nanocatalyst.

Bonds	Frequency (cm ⁻¹)
M-O _{b/c} -M as	780
M-O _{b/c} -M as	870
M=O _{stret}	960
P-O stret	1065
M-O _{b/c} -M as	787
M-O _{b/c} -M as	875
	M-O _{b/c} -M _{as} M-O _{b/c} -M _{as} M=O _{stret} P-O _{stret} M-O _{b/c} -M _{as}

Table S1. FT-IR data of the POM, POM-PPPh₃, POM-PPPh₃/L, and POM-PPPh₃/L/Ni.

	M=O _{stret}	957
	P-O _{stret}	1070
	C-H _{OOP}	650-1000
	P-CH ₂	1438
	С=С	1400-1600
	C-H aliphatic	2895
	C-H aromatic	3050
POM-PPPh ₃ /L	M-O _{b/c} -M as	778
	M-O _{b/c} -M as	875
	M=O _{stret}	950
	P-O _{stret}	1080
	С-Н ООР	650-1000
	P-CH ₂	1440
	С=С	1400-1600
	C=N	1629
	C-H aliphatic	2902
	C-H aromatic	3050
POM-PPPh ₃ /L/Ni	M-O _{b/c} -M as	780
	M-O _{b/c} -M as	880
	M=O _{stret}	950
	P-O _{stret}	1073
	С-Н ООР	650-1000
	P-CH ₂	1440

 C=C	1400-1600
C=N	1621
C-H aliphatic	2898
C-H aromatic	3046

Table S2. XPS data of the Mo 3d at POM-PPPh₃/L/Ni nanocatalyst.

Elements	Binding Energy (eV)
Mo 3d _{5/2}	232.4, 232.6
Mo 3d _{3/2}	235.6, 235.8