Electronic Supplementary Information

Dopamine-modified cobalt spinel nanoparticles as active catalysts for acidic oxygen evolution reaction

Zhengle Chen^a, Zhiqing Yang^a, Xinyuan Li^a, Longhua Li^{a,*} and Hua Lin^{b,*}

^aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R.

China

^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of

Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China

Fig. S1 Scheme of the experimental details.

Fig. S2 XRD for Co₃O₄/CP, Co₃O₄@NC/CP-0.05 5mM.

Fig. S3 SEM for Co₃O₄/CP, Co₃O₄@NC/CP-2.5mM.

Fig. S4 TEM for Co_3O_4/CP , $Co_3O_4@NC/CP$ -0.5mM and 2.5mM.

Fig. S5 C1s XPS for Co₃O₄@NC/CP-0.5mM, 1.5mM and 2.5mM.

Fig. S6 LSV for Co₃O₄/CP, Co₃O₄@NC/CP-0.05 5mM.

Fig. S7 LSV of different content of IrO₂.

Fig. S8 LSV for commercial IrO₂ (the best) and Co₃O₄@NC.

Fig. S9 Normalized LSV curves according to the Co₃O₄ ECSA

Fig. S10 Isothermal adsorption curves of $Co_3O_4@NC/CP-0.5mM$ and Co_3O_4/CP

Fig. S11 CV and C_{dl} for Co_3O_4/CP , $Co_3O_4@NC/CP-0.05$ 5mM.

Fig. S12 Tafel slop of Co₃O₄/CP, Co₃O₄@NC/CP-0.05 5mM.

Fig. S13 EIS for Co_3O_4 @NC/CP-0.5mM, 1.5mM and 2.5mM.

Fig. S14 Fitting Rs, Rct and C_S for Co₃O₄@NC/CP-0.5mM, 1.5mM and 2.5mM.

Fig. S15 In situ Raman spectra of the as-prepared catalysts during OER process

Fig. S16 The stability of in situ growth Co₃O₄@NC/CP-0.5mM and naphthol bonding Co₃O₄@NC-

0.5mM.

Fig. S17 Five optimized atomic-configurations and their intermediates.

Fig. S18 Projected density of states (PDOS) and d band center of Co adsorption site.

Table S1 Calculated Gibbs energies of O₂, H₂, H₂O and OH.

Table S2 Performance of different cobalt-based catalysts.

Table S3 Bader charges (e) of carbonaceous component (CC) and the Co_3O_4 component.

Pharmaceutical preparation

Stir at room temperature for 2h

Stir at 80 °C for 2h

Stirring is sol-like

daub

Drying tube furnace:

After calcination

Electrochemical testing

Celsius for 3h

calcination at 350 degrees

Fig. S1 Experimental details

Fig. S2 XRD of Co_3O_4/CP , $Co_3O_4@NC/CP-0.25mM$, $Co_3O_4@NC/CP-0.5mM$, $Co_3O_4@NC/CP-1.5mM$, $Co_3O_4@NC/CP-1.5mM$, $Co_3O_4@NC/CP-2.5mM$, $Co_3O_4@NC/CP-3.5mM$, and $Co_3O_4@NC/CP-5mM$. * is the carbon paper, the black signals (JCPDS#42-1467) represent the spinel type of Co_3O_4 structure and the red signals (JCPDS#48-1719) represent the CoO structure.

Fig. S3 (a) SEM of Co_3O_4 . (b) SEM of Co_3O_4 @NC-2.5mM.

Fig. S4 (a), (b), and (c) are the TEM of Co_3O_4 @NC-0.5mM, Co_3O_4 , and Co_3O_4 @NC-2.5mM, respectively.

Fig. S5 C1s XPS spectra of Co₃O₄@NC-0.5mM, 1.5 and 2.5mM.

Fig. S6 LSV at different molar ratios for Co_3O_4/CP , $Co_3O_4@NC/CP-0.1mM$, $Co_3O_4@NC/CP-0.5mM$,0.25mM, $Co_3O_4@NC/CP-0.5mM$, $Co_3O_4@NC/CP-1mM$, $Co_3O_4@NC/CP-1.5mM$, $Co_3O_4@NC/CP-2.5mM$, $Co_3O_4@NC/CP-3.5mM$,and $Co_3O_4@NC/CP-5mM$.

Fig. S8 Comparison of LSV for commercial IrO2 (the best) and Co3O4@NC

Fig. S9 LSV curves were normalized according to the Co₃O₄ ECSA

Fig. S10 Isothermal adsorption curves of Co₃O₄@NC/CP-0.5mM and Co₃O₄/CP

Fig. S11 Cyclic voltammograms (CV) and double-layer capacitor (C_{dl}) for Co_3O_4/CP , $Co_3O_4@NC/CP-0.1mM$, $Co_3O_4@NC/CP-0.25mM$, $Co_3O_4@NC/CP-0.5mM$, $Co_3O_4@NC/CP-1mM$, $Co_3O_4@NC/CP-1.5mM$, $Co_3O_4@NC/CP-2.5mM$, $Co_3O_4@NC/CP-3.5mM$, and $Co_3O_4@NC/CP-5mM$.

Fig. S12 Tafel slop of Co₃O₄/CP, Co₃O₄@NC/CP-0.05 5mM.

Fig. S13 Electrochemical impedance spectroscopy (EIS) for Co₃O₄/CP, Co₃O₄@NC/CP-0.5 and Co₃O₄@NC/CP-2.5mM.

Fig. S14 Fitted parameters from the above EIS: (a) Series resistance, Rs, (b) Charge transfer resistance, Rct and (c) Surface capacitance, C_S.

Fig. S15 Time-dependent in situ Raman spectra of as-prepared catalysts during OER process by an applied voltage (10mA cm⁻² constant current, step size 30s. (a), (b) in situ Raman spectra of Co_3O_4/CP . (c), (d) in situ Raman spectra of $Co_3O_4@NC/CP-0.5mM$. peak a is $[CoO_6]$ octahedra: ~690 cm⁻¹; peak b is SO_4^{2-} : ~1000 cm⁻¹; and peak c is OH: ~3500 cm⁻¹; $[CoO_4]$ tetrahedra: ~196 cm⁻¹

¹; Co(OH)₂: ~290 cm⁻¹; Co-O bending and Co-O stretching in CoOOH: ~480 cm⁻¹ and ~520 cm⁻¹, respectively.

Fig. S16 The stability of in situ growth $Co_3O_4@NC/CP-0.5mM$ and naphthol bonding $Co_3O_4@NC-0.5mM$.

Fig. S17 Optimized configurations of intermediates for (a) pure $Co_3O_4(110)$, (b) Oxidized N, (c) Graphitic N, (d) Pyrrolic N and (e) Pyridinic N carbonaceous components covered Co_3O_4 . Orange: reactive cobalt site; blue: cobalt; lightgreen: oxygen of Co_3O_4 ; red: oxygen of intermediates; dodgerblue: oxygen of NO group; brown: carbon; pink: hydrogen; and lightblue: nitrogen.

Fig. S18 Projected density of states (PDOS) of the active Co (orange site in Fig. S13) for (a) pure $Co_3O_4(110)$, (b) Oxidized N, (c) Graphitic N, (d) Pyrrolic N and (e) Pyridinic N carbonaceous components covered Co_3O_4 . The d_band of spin-up and spin-down are marked by turquoise and green vertical line, respectively. We defined the difference of d_band (Δd_band) between these two spin channels as: half of d_band(down) minus d_band(up).

Table S1 Calculated Gibbs energies of O₂, H₂, H₂O and OH. where G_{O2} are evaluated as $G_{O2} = 2 *$

 $(G_{H2O} - G_{H2}) + 4.92$

	Е	TS	ZPE	G	G-reference ^a
O ₂	/	/	/	-9.705	-9.717
H ₂	-6.771	0.316	0.279	-6.808	-6.807
H ₂ O	-14.213	0.483	0.575	-14.121	-14.126

a. from ref¹

Table S2 Performance parameters for different electrocatalysts for OER in strong acidic

 electrolytes.

Catalysts	j (mA cm ⁻²)	η (mV)	Electrolyte	
Co ₃ O ₄ @C/CP ²	10	370	0.5 M H ₂ SO ₄	
Co ₃ O ₄ @C/GPO ³	10	356	1 M H ₂ SO ₄	
Co_3O_4/GC^4	10	470	0.5 M H ₂ SO ₄	
Co ₃ O ₄ /FTO ⁵	10	570	0.5 M H ₂ SO ₄	
Fe- Co ₃ O ₄ @C/FTO ⁶	10	396	0.5 M H ₂ SO ₄	
[Co-Fe-Pb]Ox ⁷	10	560±10	0.5 M H ₂ SO ₄	
$Co_{0.05}Fe_{0.95}Oy^8$	10	650	0.5 M H ₂ SO ₄	
Co ₂ TiO4 ⁹	10	513	0.5 M H ₂ SO ₄	
Ag-Co/FTO ¹⁰	10	370	0.5 M H ₂ SO ₄	
Fe ₂ O ₃ ¹¹	10	650	0.5 M H ₂ SO ₄	
LaMn@NCo-ZIF ¹²	10	353	0.1MHClO ₄	
Co ₃ O ₄ /CP (This work)	10	365	1 M H ₂ SO ₄	
Co ₃ O ₄ @NC/CP (This work)	10	330	1M H ₂ SO ₄	

	С	O(C) ^a	Ν	Н	sum(CC)	Co	$O(Co_3O_4)^b$	sum(Co ₃ O ₄)
Co ₃ O ₄	/	/	/	/	/	-52.858	52.793	-0.0655 °
OxN	-0.720	0.589	0.584	-0.748	-0.295	-52.497	52.725	0.228
PydN	-1.040	/	1.203	-0.619	-0.456	-52.525	52.914	0.389
GrN	-1.012	/	1.193	-0.847	-0.666	-52.432	53.031	0.599
PyrN	-0.604	/	1.133	-1.082	-0.553	-52.508	52.993	0.485

Table S3 Bader charges (*e*) of carbonaceous component (CC) and the Co_3O_4 component. The positive value means electrons gained; and the negative one means losing electrons.

a. Oxygen of carbonaceous component; b. oxygen of Co_3O_4 component; c. not equal to 0 because the symmetric model is nonstoichiometric and arises from the error of calculations. However, the relative charges are more meaningful.

References

- 1 Y. Zhou and N. López, ACS Catal., 2020, 10, 6254–6261.
- 2 X. Yang, H. Li, A.-Y. Lu, S. Min, Z. Idriss, M. N. Hedhili, K.-W. Huang, H. Idriss and L.-J. Li, *Nano Energy*, 2016, 25, 42–50.
- 3 J. Yu, F. A. Garcés-Pineda, J. González-Cobos, M. Peña-Díaz, C. Rogero, S. Giménez, M. C. Spadaro, J. Arbiol, S. Barja and J. R. Galán-Mascarós, *Nat Commun*, 2022, **13**, 4341.
- 4 K.-L. Yan, J.-F. Qin, J.-H. Lin, B. Dong, J.-Q. Chi, Z.-Z. Liu, F.-N. Dai, Y.-M. Chai and C.-G. Liu, *J. Mater. Chem. A*, 2018, **6**, 5678–5686.
- 5 J. S. Mondschein, J. F. Callejas, C. G. Read, J. Y. C. Chen, C. F. Holder, C. K. Badding and R. E. Schaak, *Chem. Mater.*, 2017, 29, 950–957.
- 6 D. Senthil Raja, P.-Y. Cheng, C.-C. Cheng, S.-Q. Chang, C.-L. Huang and S.-Y. Lu, *Applied Catalysis B: Environmental*, 2022, **303**, 120899.
- 7 D. Simondson, M. Chatti, S. A. Bonke, M. F. Tesch, R. Golnak, J. Xiao, D. A. Hoogeveen, P. Cherepanov, J. L. Gardiner, A. Tricoli, D. R. MacFarlane and A. N. Simonov, *Angewandte Chemie International Edition*, 8.
- 8 M. R. Cerón, M. Izquierdo, N. Alegret, J. A. Valdez, A. Rodríguez-Fortea, M. M. Olmstead, A. L. Balch, J. M. Poblet and L. Echegoyen, *Chem. Commun.*, 2016, **52**, 64–67.
- 9 S. Anantharaj, K. Karthick and S. Kundu, Inorg. Chem., 2019, 58, 8570-8576.
- 10K.-L. Yan, J.-Q. Chi, J.-Y. Xie, B. Dong, Z.-Z. Liu, W.-K. Gao, J.-H. Lin, Y.-M. Chai and C.-G. Liu, *Renewable Energy*, 2018, **119**, 54–61.
- 11 W. L. Kwong, C. C. Lee, A. Shchukarev, E. Björn and J. Messinger, *Journal of Catalysis*, 2018, 365, 29–35.
- 12L. Chong, G. Gao, J. Wen, H. Li, H. Xu, Z. Green, J. D. Sugar, A. J. Kropf, W. Xu, X.-M. Lin, H. Xu, L.-W. Wang and D.-J. Liu, *Science*, 2023, **380**, 609–616.