Supporting Information

Table of contents	Pages
X-ray crystallography (Table S1 and Figure S1)	S2
IR spectra in solid state (Figures S2–S8)	S4-S6
NMR spectra in organic solvents (Figures S9–S24)	S7-S14
Experiments in aqueous media	S15
NMR spectra in aqueous solutions (Figures S25–S27)	S17-S18
DNA fluorescent indicator displacement (FID) assay (Figure S28)	S19
References	S20

X-ray crystallography

Crystal data and collection details for **1'** and **tpm^{IBU}** are reported in Table S1. Data were recorded on a Bruker APEX II diffractometer equipped with a PHOTON2 detector using Mo–K α radiation. Data were corrected for Lorentz polarization and absorption effects (empirical absorption correction SADABS).¹ The structure was solved by direct methods and refined by full-matrix least-squares based on all data using $F^{2,2}$ Hydrogen atoms were fixed at calculated positions and refined by a riding model. All non-hydrogen atoms were refined with anisotropic displacement parameters.

	1'	tpm ^{IBU}
Formula	$C_{20}H_{20}F_{12}FeN_{12}P_2$	$C_{24}H_{28}N_6O_2$
FW	774.27	432.52
Т, К	100(2)	100(2)
λ, Å	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	P 21/ n	P 2 ₁ / <i>n</i>
<i>a</i> , Å	7.5010(6)	13.0977(7)
<i>b,</i> Å	16.7642(14)	8.4764(5)
<i>c</i> , Å	11.2100(10)	20.6292(11)
β,°	93.792(3)	94.579(2)
Cell Volume, Å ³	1406.6(2)	2283.0(2)
Z	2	4
<i>D</i> _c , g·cm⁻³	1.828	1.258
μ, mm ⁻¹	0.769	0.083
F(000)	776	920
Crystal size, mm	0.16×0.14×0.12	0.25×0.21×0.19
θ limits,°	2.189-26.999	1.981-26.999
Reflections collected	20477	32182
	3058 [<i>R_{int}</i> =	4906 [<i>R_{int}</i> =
Independent reflections	0.1443]	0.0412]
Data / restraints /parameters	3058 / 0 / 214	4906 / 0 / 292
Goodness on fit on F ²	1.130	1.103
$R_1 (I > 2\sigma(I))$	0.0638	0.0498
wR_2 (all data)	0.1434	0.1157
Largest diff. peak and hole. e Å ⁻³	0.968 /0.711	0.416 /0.257

Table S1. Crystal data and measurement details for 1' and tpm^{IBU}

Figure S1. View of the X-ray structure of $[Fe(\kappa^3-tpm)_2][PF_6]_2$, **1**'. Displacement ellipsoids are at the 50% probability level. Selected bond lengths (Å) and angles (°): Fe(1)-N(1) 1.962(3), Fe(1)-N(3) 1.962(3), Fe(1)-N(5) 1.969(3), N(1)-N(2) 1.365(5), N(3)-N(4) 1.366(5), N(5)-N(6) 1.362(5), N(2)-C(10) 1.439(5), N(4)-C(10) 1.437(5), N(6)-C(10) 1.439(6), N(1)-Fe(1)-N(3) 87.66(14), N(1)-Fe(1)-N(5) 86.95(14), N(3)-Fe(1)-N(5) 88.29(14), N(1)-Fe(1)-N(1)ⁱ 180.0, N(3)-Fe(1)-N(3)ⁱ 180.0, N(5)-Fe(5)-N(5)ⁱ 180.0, N(2)-C(10)-N(4) 109.8(3), N(2)-C(10)-N(6) 109.7(3), N(4)-C(10)-N(6) 109.7(3). Atoms labelled A(X)ⁱ have been generated by symmetry operation: -x+1, -y+1, -z+2.

IR spectra

Figure S2. Solid-state IR spectrum (650-4000 cm⁻¹) of Tpm^{OH}.

Figure S3. Solid-state IR spectrum (650-4000 cm⁻¹) of Tpm^{IBU}.

Figure S4. Solid-state IR spectrum (650-4000 cm⁻¹) of Tpm^{FLU}.

Figure S5. Solid-state IR spectrum ($650-4000 \text{ cm}^{-1}$) of 1.

Figure S6. Solid-state IR spectrum ($650-4000 \text{ cm}^{-1}$) of 2.

Figure S7. Solid-state IR spectrum (650-4000 cm⁻¹) of 3.

NMR spectra

Figure S9. ¹H NMR spectrum (401 MHz, CDCl₃) of Tpm^{IBU}.

Figure S10. ¹³C NMR spectrum (401 MHz, CDCl₃) of Tpm^{IBU}.

Figure S12. ¹³C NMR spectrum (401 MHz, CDCl₃) of Tpm^{FLU}.

Figure S13. ¹⁹F NMR spectrum (401 MHz, CDCl₃) of Tpm^{FLU}.

Figure S14. ¹H NMR spectrum (401 MHz, D₂O) of 1.

Figure S15. 13 C NMR spectrum (401 MHz, D₂O) of 1.

Figure S16. ¹H NMR spectrum (401 MHz, CD₃OD) of 2.

Figure S17. ¹³C NMR spectrum (401 MHz, CD₃OD) of 2.

Figure S18. ¹H NMR spectrum (401 MHz, DMSO-d₆) of 2.

Figure S19. ¹³C NMR spectrum (401 MHz, DMSO-d₆) of 2.

Figure S21. ¹³C NMR spectrum (101 MHz, CD₃OD) of 3.

Experiments in aqueous media

a) Solubility in water. A suspension of the selected iron complex (3-5 mg) in a D₂O solution (0.7 mL) containing Me₂SO₂ as internal standard ($3.36 \cdot 10^{-3}$ M) was vigorously stirred at 21 °C for 2 h. The resulting saturated solution was filtered over celite, transferred into an NMR tube and analysed by ¹H NMR spectroscopy (delay time = 3 s; number of scans = 20). The concentration (solubility) was calculated by the relative integral of the starting complex with respect to Me₂SO₂ (δ /ppm = 3.14). Results are compiled in Table 1.

b) Octanol/water partition coefficients (Log P_{ow}). Partition coefficients (P_{ow} ; IUPAC: K_D partition constant³), defined as $P_{ow} = c_{org}/c_{aq}$, where c_{org} and c_{aq} are molar concentrations of the selected compound in the organic and aqueous phase, respectively, were determined by the shake-flask method and UV-Vis measurements.^{4,5} Deionized water and 1-octanol were vigorously stirred for 24 h, to enable saturation of both phases, then separated by centrifugation. A stock solution of complex 2 (ca. 2 mg) was prepared by first adding DMSO, (50 µL, to help solubilization), followed by octanolsaturated water (2.5 mL). The solution was diluted with octanol-saturated water (ca. 1:3 v/v ratio, c_{Ru} $\approx 10^{-4}$ M, so that $1.5 \le A \le 2.0$ at λ_{max}) and its UV-Vis spectrum was recorded (A^{0}_{aq}). An aliquot of the solution ($V_{aq} = 1.2 \text{ mL}$) was transferred into a test tube and water-saturated octanol ($V_{org} = V_{aq} =$ 1.2 mL) was added. The mixture was vigorously stirred for 20 min at 21 °C then centrifuged (5000 rpm, 5 min). The UV-Vis spectrum of the aqueous phase was recorded (Af_{aq}) and the partition coefficient was calculated as $P_{ow} = (A_{aq}^0 - A_{aq}^f)/A_{aq}^f$ where A_{aq}^0 and A_{aq}^f are the absorbance in the aqueous phase before and after partition with the organic phase, respectively.^{4c} Unfortunately, the same method did not allow the Log P_{ow} of 1 to be determined. Although this compound is substantially inert in octanol-saturated water at room temperature, as no relevant changes were observed in the UV-Vis spectrum over 2 h, the same technique indicated fast, extensive degradation upon addition of water-saturated octanol. The absence of precipitate in the mixture suggests that 1, rather than undergoing repartition between the two phases, undergoes degradation in the presence of a large volume of octanol.

An inverse procedure was adopted for **3** and **4**, starting from a solution of the compound in watersaturated octanol. The partition coefficient was calculated as $P_{ow} = A_{org}^{f}/(A_{org}^{0} - A_{org}^{f})$ where A_{org}^{0} and A_{org}^{f} are the absorbance in the organic phase before and after partition with the aqueous phase, respectively. The wavelength of the maximum absorption of each compound (280 - 380 nm range) was used for UV-Vis quantitation. The procedure was repeated three times for each sample (from the same stock solution); results are given as mean \pm standard deviation (Table 1). Naphthoquinone was used as a reference compound (Log $P_{ow} = 1.8 \pm 0.2$; literature: 1.71).⁶

c) Stability in D₂O and DMSO-d₆/D₂O. Samples of 1 and 2 prepared according to the description in a) above were used in this experiment, whereas 3 and 4 were analysed in CD₃OD/D₂O solutions. The selected iron complex (2 mg) was dissolved in CD₃OD/D₂O 1:1 v/v solution (0.75 mL) containing Me₂SO₂ as standard.⁷ The resulting solution was stirred at 21 °C for 5 min, filtered over celite, transferred into an NMR tube, analysed by ¹H NMR (delay time = 3 s; number of scans = 20) and then maintained at 37 °C for 48 h. After cooling to room temperature, NMR spectra were again recorded. The percentage of remaining starting complex was calculated from the signal integrations with respect to Me₂SO₂ (c = $3.3 \cdot 10^{-3}$ mol·L⁻¹; δ /ppm = 3.14 in D₂O; δ /ppm = 3.05 in CD₃OD -d₆/D₂O 1:1 v/v).

d) Stability in cell culture medium. Powdered DMEM cell culture medium (1000 mg/L glucose and L-glutamine, without sodium bicarbonate and phenol red; D2902 - Merck) was dissolved in D₂O (10 mg/mL), according to the manufacturer's instructions. The solution of deuterated cell culture medium ("DMEM-d") was treated with Me₂SO₂ ($6.6 \cdot 10^{-3}$ M) and NaH₂PO₄ / Na₂HPO₄ (0.15 M, pD = 7.5),⁸ then stored at 4 °C under N₂. The same procedure reported for c) above was followed for the preparation and analysis of the samples, using DMEM-d for **1** and **2**, and CD₃OD/DMEM-d 1:1 v/v for **3** and **4**. The percentage of starting complex was calculated by signal integration with respect to the reference Me₂SO₂ ($\delta/\text{ppm} = 3.14$ in DMEM-d; $\delta/\text{ppm} = 3.07$ in CD₃OD/DMEM-d 1:1 v/v).

NMR spectra in aqueous solutions

Figure S26. ¹H NMR spectrum (401 MHz, CD₃OD/D₂O 1:1 v/v) of 3.

Figure S27. ¹H NMR spectrum (401 MHz, CD₃OD/D₂O 1:1 v/v) of 4.

Figure S28. Absorbance decrease (F/F⁰ %) observed upon addition of the metal complex **4** to the DNA/EB mixture in aqueous buffer; $C_{DNA} = 1.82 \times 10^{-4}$ M, $C_{EB} = 3.32 \times 10^{-5}$ M; titrant is $C_{4}^{0} = 2.06 \times 10^{-3}$ M in DMF; aqueous buffer = NaCl 0.1 M, NaCac 0.01 M, pH = 7.0; DMF v/v% from 0 to 5.2% maximum, T = 25.0 °C, $\lambda_{exc} = 520$ nm, $\lambda_{em} = 583$ nm, F⁰ is the fluorescence read at zero addition of **4**, correction for dilution factors has been considered for F. Blank test means addition of DMF only, exactly at same v/v% than the corresponding experimental point.

References

- 1 G. M. Sheldrick, SADABS-2008/1 Bruker AXS Area Detector Scaling and Absorption Correction, Bruker AXS: Madison, Wisconsin, USA, 2008.
- 2 G. M. Sheldrick, Acta Cryst. C 2015, 71, 3.
- 3 N. M. Rice, H. M. N. H. Irving and M. A. Leonard, Pure Appl. Chem. 1993, 65, 2373-2396.
- 4 L. Biancalana, L. K. Batchelor, T. Funaioli, S. Zacchini, M. Bortoluzzi, G. Pampaloni, P. J. Dyson and F. Marchetti, *Inorg. Chem.* 2018, 57, 6669-6685.
- a) OECD Guidelines for Testing of Chemicals, in OECD, Paris: 1995; Vol. 107. b) J. C. Dearden, G. M. Bresnen, *Quant. Struct.-Act. Relat.* 1988, 7, 133-144.
- 6 D. J. Currie, C. E. Lough, R. F. Silver, H. L. Holmes, Can. J. Chem. 1966, 44, 1035-1043.
- 7 T. Rundlöf, M. Mathiasson, S. Bekiroglu, B. Hakkarainen, T. Bowden, T. Arvidsson, *J. Pharm. Biomed. Anal.* 2010, **52**, 645–651.
- 8 Calculated by the formula pD = pH* + 0.4, where pH* is the value measured for H₂O-calibrated pHmeter. a) C. C. Westcott, pH Measurements; Academic Press: New York, 1978. b) A. K. Covington, M. Paabo, R. A. Robinson and R. G. Bates, *Anal. Chem.* 1968, 40, 700-706.