SUPPLEMENTARY INFORMATION

Table of Contents

Table/	Name	Page No.
Figure No.		
Figure S1.	Representation of complexes 2 & 3 by wire or stick model.	S2
Figure S2.	Packing diagram for complexes 1 (top), 2 (middle) and 3 (bottom).	S2-S3
Table S1.	Crystal data and structure refinement parameters for complexes 1, 2 and 3.	S3
Table S2.	Comparison of bond lengths (Å) around Co ^{II} center in complexes 1–3.	S5
Table S3.	BVS Calculations for the Co1 and Co2 centers.	S6
Figure S3.	PXRD of Complexes $1 - 3$	
Table S4.	Continuous Shape Measurements (<i>CShM</i>) for complexes 1–3.	S7-S8
Figure S3.	M(H) Hysteresis plots for 1–3 using a scan rate of 2.0 mTs ⁻¹ .	S8
Figure S4.	Field dependences of magnetization in the field range 0–70 kOe at 2 K temperature for 1–3 .	
Figure S5.	M(H) Hysteresis plots for 1–3 using a scan rate of 2.0 mTs ⁻¹	S 9
Figure S6.	Plots of ac susceptibility vs. temperature	S 9
Figure S7.	Plots of ac susceptibility vs. applied field from 0-10 kOe	S 9
Figure S8.	Molecular structure of 2 overlaid with a) <i>D</i> -tensors axes calculated with CASSCF/NEVPT2 on the left, b) three- dimensional molar magnetization calculated at $T = 2$ K and B = 0.1 T on the right.	S10
Figure S9.	Molecular structure of 3 overlaid with a) <i>D</i> -tensors axes calculated with CASSCF/NEVPT2 on the left, b) three- dimensional molar magnetization calculated at $T = 2$ K and B = 0.1 T on the right.	S10
Figure S10.	Magnetization reversal blocking barrier of pentagonal- bipyramidal Co ^{II} ion (a) and tetrahedral Co ^{II} ion (b) in 2-3 calculated by CASSCF/NEVPT2/SINGLE_ANISO.	S11
Figure S11.	The POLY_ANISO module analysis for 2	

Figure S12.	The POLY_ANISO module analysis for 3	

Figure S1. Representation of complexes 2 & 3 by wire or stick model.

Figure S2. Packing diagram for complexes 1 (top), 2 (middle) and 3 (bottom).

Table	S1 .	Crystal	data	and	structure	refinement	parameters	for con	plexes	1,	2 and	13.
							F			-,		

	1	2	3
Empirical formula	$C_{21}H_{20}Cl_2Co_2N_4O_4$	$C_{21}H_{20}Br_2Co_2N_4O_4$	$C_{23}H_{19}I_2Co_2N_5O_2$
Formula weight	581.17	670.09	769.09
Temperature/K	273.15	105.0	298.0
Crystal system	Monoclinic	Monoclinic	Monoclinic

Space group	P2 ₁ /n	$P2_1/n$	P2 ₁ /n
a/Å	12.068(3)	12.3152(7)	12.8418(7)
b/Å	14.316(3)	14.3406(8)	14.6125(8)
c/Å	13.869(3)	13.8984(7)	14.0835(8)
α/°	90	90	90
$\beta/^{\circ}$	95.056(6)	93.729(2)	92.407(2)
$\gamma/^{\circ}$	90	90	90
Volume/Å ³	2386.9(10)	2449.4(2)	2640.4(3)
Ζ	4	4	4
$\rho_{\rm calc} g/{\rm cm}^3$	1.617	1.817	1.935
μ/mm ⁻¹	1.649	14.732	3.624
F(000)	1716.0	1320.0	1472.0
Crystal size/mm ³	0.076 × 0.055 × 0.043	$0.4 \times 0.2 \times 0.18$	$0.16 \times 0.15 \times 0.14$
Radiation	$MoK_{\alpha} (\lambda = 0.71073)$	$CuK_{\alpha} (\lambda = 1.54178)$	$MoK_{\alpha} (\lambda = 0.71073)$
2Θ range for data	5.692 to 56.636	8.87 to 133.34	1 018 to 50 996
collection/°			4.018 10 50.770
Index ranges	$-16 \le h \le 16, -19 \le k \le 19, -18 \le l \le 18$	$-14 \le h \le 14, -17 \le k$ $\le 17, -16 \le l \le 16$	$-15 \le h \le 15, -17 \le k$ $\le 17, -17 \le l \le 17$
Reflections collected	37251	45670	62636
Independent	5930	4319	4918
reflections	$[R_{\text{int}}=0.0542,$	$[R_{\text{int}}=0.0648,$	$[R_{\text{int}}=0.0465,$
Teneetions	$R_{\text{sigma}} = 0.0346$]	$R_{\text{sigma}} = 0.0351$]	$R_{\text{sigma}} = 0.0202$]
Data/restraints/para meters	5930/0/303	4319/0/304	4918/11/309
Goodness-of-fit on F^2	1.080	1.080	1.142
Final <i>R</i> indexes		$R_1 = 0.0663,$	
$[I \ge 2\sigma(I)]$	$R_1 = 0.0345,$	$wR_2=0.1838$	$R_1 = 0.0824,$

	wR ₂ =0.0801		wR ₂ =0.2556
Final <i>R</i> indexes [all data]	$R_1 = 0.0478,$ $wR_2 = 0.0894$	$R_1 = 0.0707,$ $wR_2 = 0.1876$	$R_1 = 0.0952,$ $wR_2 = 0.2787$
Largest diff. peak/hole / e Å ⁻³	1.09/-0.94	1.24/-2.10	1.73/-2.90

Table S2. Comparison of bond lengths (Å) around Co^{II} center in complexes 1–3.

Bond Length	1	2	3
Co1-N _{imino}	2.213(2) – 2.2239(19)	2.217(5) – 2.219(5)	2.218(7) – 2.219(7)
Co1-N _{pyridine}	2.145(2)	2.141(5)	2.132(8)
Co1–O _{phenolate}	2.1632(17) – 2.1676(17)	2.164(4) – 2.165(5)	2.150(7) – 2.159(6)
Co1-N _{acetonitrile}	2.134(2)	2.134(6)	2.162(9) – 2.177(11)
Co1-O _{water}	2.1742(18)	2.179(5)	-
Co2–O _{phenolate}	1.9448(17) – 1.9522(16)	1.937(4) – 1.938(4)	1.931(6) – 1.943(6)
Co2-X _{halogen}	2.2536(9) – 2.2641(9)	2.3285(14) - 2.3543(13)	2.4240(19) – 2.5074(17)
O _{phenolate} -Co1- O _{phenolate}	70.16(6)	70.26(16)	70.8(2)
O _{phenolate} -Co2- O _{phenolate}	79.39(7)	80.03(19)	80.2(3)
X _{halogen} -Co2-X _{halogen}	110.71(3)	110.47(6)	115.91(7)
Col-O _{phenolate} -Co2	103.67(7)	103.53(19)	103.9(3)
N _{acetonitrile} -Co1- O _{water}	175.57(8)	176.0(2)	-
$N_{acetonitrile}$ -Co1- $N_{acetonitrile}$	-	-	175.7(4)

 Table S3: BVS Calculations for the Co1 and Co2 centers.

	Co1-	Co1-	Co1-	Co1-	Co1-	Co1-	Co1-	Co1-	Total
	N _{imino}	N _{imino}	N _{pyridine}	O _{phenolate}	Ophenolate	N _{acetonitrile}	N _{acetonitrile}	Owater	BVS
Bond Length (1)	2.213	2.2239	2.145	2.1632	2.1676	2.134		2.1742	
BVS(1)	0.243	0.236	0.295	0.279	0.276	0.301		0.271	1.901
Bond Length (2)	2.217	2.219	2.141	2.164	2.165	2.134		2.179	
BVS (2)	0.242	0.240	0.297	0.279	0.278	0.303		0.268	1.907
Bond	2.218	2.219	2.132	2.150	2.159	2.162	2.163		

Length (3)								
BVS (3)	0.241	0.240	0.304	0.290	0.281	0.280	0.280	1.916

	Co2-	Co2-O _{phenolate}	Co2-X	Co2-X	Total BVS
	O _{phenolate}				
Bond Length (1)	2.031	2.032	2.205	2.215	
BVS (1)	0.398	0.399	0.628	0.612	2.03
Bond Length (2)	2.0256	2.0478	2.193	2.212	
BVS (2)	0.406	0.382	0.649	0.616	2.05
Bond Length (3)	2.020	2.032	2.184	2.205	
BVS (3)	0.412	0.399	0.664	0.628	2.10

Figure S3. PXRD of Complexes 1 - 3.

Table S4. Continuous Shape Measurements (*CShM*) for complexes 1–3.

 $\underline{Co_2Cl_2}$

S H A P E v2.0 Continuous Shape Measures calculation

(c) 2010 Electronic Structure Group, Universitat de Barcelona

Contact: llunell@ub.edu

HP-7	1 D7h	Heptagon								
HPY-7	2 C6v	Hexagona	exagonal pyramid							
PBPY-7	3 D5h	Pentagon	entagonal bipyramid							
COC-7	4 C3v	Capped o	ctahedron							
CTPR-7	5 C2v	Capped t	rigonal pri	sm						
JPBPY-7	6 D5h	Johnson	pentagona	l bipyramid .	113					
JETPY-7	7 C3v	Johnson	elongated	triangular py	ramid J7					
Structure [JETPY-7	ML7]	HP-7	HPY-7	PBPY-7	COC-7	CTPR-7	JPBPY-7			
vani 24.559	,	34.459,	25.460,	0.062,	8.110,	6.265,	3.444,			
SP-4	1 D4h - S	Square								
T-4	2 Td Te	etrahedron								
SS-4	3 C2v S	Seesaw								
Structure [ML4]	SP-4	T-4	SS-4						
vani	, 26.88	81, 3.50	67, 9.3	60						
<u>Co₂Br₂</u>										
Structure [JETPY-7	ML7]	HP-7	HPY-7	PBPY-7	COC-7	CTPR-7	JPBPY-7			
vani 24.621	,	34.824,	25.575,	0.056,	8.107,	6.339,	3.470,			
Structure [ML4]	SP-4	T-4	SS-4						
vani	,	28.113,	3.749,	10.111						

<u>Co₂I₂</u>

Structure JETPY-7	[ML7]	HP-7	HPY-7	PBPY-7	COC-7	CTPR-7	JPBPY-7
vani 24.210	,	34.440,	25.739,	0.080,	8.155,	6.304,	3.639,

 Structure [ML4]
 SP-4
 T-4
 SS-4

 vani
 ,
 30.461,
 4.290,
 10.800

Complex	HP-7	HPY-7	PBPY-7	COC-7	CTPR-7	JPBPY-7	JETPY-7
C02Cl2(C01)	34.459	25.460	0.062	8.110	6.265	3.444	24.559
Co ₂ Br ₂ (Co1)	34.824	25.575	0.056	8.107	6.339	3.470	24.621
Co ₂ I ₂ (Co1)	34.440	25.739	0.080	8.155	6.304	3.639	24.210

Complex	SP-4	T-4	SS-4
$Co_2Cl_2(Co2)$	26.881	3.567	9.360
Co ₂ Br ₂ (Co2)	28.113	3.749	10.111
C0 ₂ I ₂ (C02)	30.461	4.290	10.800

Figure S4. Field dependences of magnetization in the field range 0–70 kOe at 2 K temperature for **1–3**.

Figure S5. M(H) Hysteresis plots for 1–3 using a scan rate of 2.0 mTs⁻¹.

Figure S6. Plots of ac susceptibility vs. temperature at $H_{ac} = 3.5$ Oe, $H_{dc} = 0$ Oe, oscillating at 1–1488 Hz for 1–3.

Figure S7. Plots of ac susceptibility vs. applied field from 0–10 kOe for 1–3.

Figure S8. Molecular structure of **2** overlaid with a) *D*-tensors axes calculated with CASSCF/NEVPT2 (red/green/blue vectors represent x/y/z axes of D-tensors) on the left, b)

three-dimensional molar magnetization calculated at T = 2 K and B = 0.1 T on the right. The hydrogen atoms were omitted.

Figure S9. Molecular structure of **3** overlaid with a) *D*-tensors axes calculated with CASSCF/NEVPT2 (red/green/blue vectors represent x/y/z axes of D-tensors) on the left, b) three-dimensional molar magnetization calculated at T = 2 K and B = 0.1 T on the right. The hydrogen atoms were omitted.

Figure S10. Magnetization reversal blocking barrier of pentagonal-bipyramidal Co^{II} ion (a) and tetrahedral Co^{II} ion (b) in **2-3** calculated by CASSCF/NEVPT2/SINGLE_ANISO. The numbers presented for the lowest two doublets represent the corresponding matrix element of the transversal magnetic moment (for values larger than 0.1, an efficient relaxation mechanism is expected).

Figure S11. The POLY_ANISO module analysis for **2** with $J^{\text{Lin}} = 2.6 \text{ cm}^{-1}$, $zj = -0.086 \text{ cm}^{-1}$, and a scaling factor of 0.987. Left: temperature-dependent $\chi_{\text{mol}}T$ product and isothermal magnetization at T = 1.9 K. Right: magnetization reversal blocking barrier showing the two lowest pseudo-doublets. The values indicated for the two lowest doublets correspond to the corresponding matrix elements of the transversal magnetic moment. The values colored in blue show the tunneling gap Δ_{tun} (cm⁻¹) of the indicated pseudo-doublets.

Figure S12. The POLY_ANISO module analysis for **3** with $J^{\text{Lin}} = 1.4 \text{ cm}^{-1}$, $zj = -0.14 \text{ cm}^{-1}$, and a scaling factor of 1.14. Left: temperature-dependent $\chi_{\text{mol}}T$ product and isothermal magnetization at T = 1.9 K. Right: magnetization reversal blocking barrier showing the two lowest pseudo-doublets. The values indicated for the two lowest doublets correspond to the corresponding matrix elements of the transversal magnetic moment. The values colored in blue show the tunneling gap Δ_{tun} (cm⁻¹) of the indicated pseudo-doublets.