Electronic Supplementary Information

Two Nickel-Added Poly(polyoxometalate)s Built by Keggin-Type {Ni₆PW₉}

and Anderson-Type NiW₆O₂₄ via WO₄/Sb₂O Bridges and Ni–O–W Linkages

with Efficient Hydrogen Evolution Activity

Peng-Yun Zhang, Chen Lian, Zhen-Wen Wang, Juan Chen, Hongjin Lv* and Guo-Yu Yang*

MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488.

*Corresponding Author(s): Guo-Yu Yang: <u>ygy@bit.edu.cn</u>; Hongjin Lv: <u>hlv@bit.edu.cn</u>

Table of Contents

Fig. S1. (a) The structural unit and (b) asymmetrical unit of 1.

Fig. S2 (a) The Ni_6 -1 cluster of 1. (b) The Ni_6 -2 cluster of 1.

Fig. S3 (a) The distance between Ni_{6} -1 and Ni_{6} -2 units of 1. (b) The diameter of the Anderson-type cluster of 1.

Fig. S4. The structural unit of 2.

Fig. S5 The SHG oscilloscope traces signals of KDP and compound 2 in the same powder particle size (75–106 μ m).

Fig. S6. The comparison of 1 mg of compounds 1 and 2 used for H₂ evolution. Conditions: white light (10 W, 400–800 nm), 0.3 mM [Ir(coumarin)₂(dtbbpy)]⁺, 0.2 M TEOA, 2.5 M H₂O, 6 mL DMF/CH₃CN (v/v, 3:1) degassed with Ar/CH₄ (v/v, 4:1).

Fig. S7. The (a) IR Spectra and (b) PXRD patterns of catalyst **2** including freshly synthesized samples and samples immersed into different acidic/alkaline solutions and organic solvents for 24 h.

Fig. S8. The cyclic experiments for H₂ evolution with 2 mg of catalyst **2**. Conditions: white light (10 W, 400–800 nm), 0.3 mM [Ir(coumarin)₂(dtbbpy)]⁺, 0.2 M TEOA, 2.5 M H₂O, 6 mL DMF/CH₃CN (v/v, 3:1) degassed with Ar/CH₄ (v/v, 4:1), reaction time: 5 h.

Fig. S9. The (a) IR Spectra and (b) PXRD patterns of 2 before and after catalysis.

Fig. S10. The XPS full survey spectra of compound 2 before and after catalysis.

Fig. S11. The IR spectra of (a) **1** and (b) **2**.

Fig. S12. Simulated and experimental PXRD patterns of (a) 1 and (b) 2.

Fig. S13. The thermogravimetric analyses of compounds 1 and 2.

Fig. S14. The UV–Vis diffuse-reflectance spectra and (inset) the UV–Vis plots of Kubelka–Munk function versus energy E (eV) of compounds (a) 1 and (b) 2.

Table S1. The BVS values of all Ni atoms and some selected O atoms in the compound 1.

Table S2. Summary of some POM-based heterogeneous catalysts for H₂ evolution.

Experimental Procedures

Materials and Instruments. The precursor Na₉[A- α -PW₉O₃₄]·7H₂O and the photosensitizer [Ir(coumarin)₂-(dtbbpy)]⁺ were prepared as literature reported.^{1,2} All other chemicals with analytical grade utilized in this work were commercially obtained. SHG measurements were performed on a Q-switched Nd:YAG laser (1064 nm). Powder X-ray diffraction (PXRD) patterns were obtained by employing a Bruker D8 Advance diffractometer (Cu K α radiation, λ =1.54056 Å). IR spectra were tested by a Nicolet iS10 FT-IR spectrometer with the wavenumber varying from 4000 to 400 cm⁻¹. The X-ray photoelectron spectroscopy (XPS) was measured by a PHI VersaProbe III device. Elemental analyses for C, H, and N were performed by a Perkin-Elmer 2400-II CHNS/O analyzer. ICP analyses of Ni, Sb, and W were conducted on a Perkin–Elmer Optima 2000 ICP-AES spectrometer. UV–Vis diffuse- reflectance spectra were collected on a Perkin-Elmer Lambda 750 S spectrometer. TG analyses were recorded on a Mettler Toledo instrument from 25 to 700 °C.

X-ray Crystallography. The size-suitable and high-quality single crystals of 1 and 2 were picked out and stuck to the top of glass thread for collecting diffraction data on the Bruker APEX II CCD detector (Mo Kα radiation, λ =0.71073 Å) at room temperature. In the OLEX2 interface, the structures of 1 and 2 were determined by using the intrinsic phasing method through the ShelXT program and further refined by employing full-matrix leastsquares on F^2 through the SHELXL program.^{3–5} In the process of refinement, all non-hydrogen atoms of 1 and 2 were refined anisotropically, respectively. The hydrogen atoms attached to carbon and nitrogen atoms were geometrically placed and refined isotropically by using a riding model. The effect of disordered solvent molecules on the overall intensity data of the structures was processed by the Solvent Mask in the OLEX2 interface.⁶ The "OMIT" commands were used to omit both weak diffraction data above 50 degrees and low-quality diffraction data with significant deviations for 1 and 2. For compound 1, the largest residual electron density peak is 5.27 $e^{A^{-3}}$, with the Q-peak located extremely close to the N4 atom at an unreasonable position, leading to its nonattribution. According to the Fourier maps, 22 and 5 lattice water molecules (electron density peak > 5 $e \cdot Å^{-3}$) have been found for compounds 1 and 2, respectively. There were numerous short connections between O(water)...O, indicating extensive H-bonding interactions between them, alongside the high disorder of lattice water molecules within the channels of framework. In addition, there were some residual electron density peaks below 5 e Å-3 remaining unassigned, leading to ambiguities in the precise location and quantity of lattice water molecules. Importantly, however, the absence of definitive attribution for these residual peaks does not compromise the accuracy of the final model for 1 and 2. Based on the potential electron counts and solvent-accessible voids from the Solvent Mask reports, 17 and 40 lattice water molecules should be additionally added for 1 and 2, respectively, and further verified by elemental analyses and TGA. The Flack factor of 0.33 for compound 2 is attributed to the presence of two different configurations in the structure, resulting in partial internal racemization.

Photocatalytic Hydrogen Evolution Experiments. The experiments were carried out in a mixed DMF/CH₃CN (6 ml, v/v, 3/1) solution containing **1** or **2** as catalysts, 0.3 mM [Ir(coumarin)₂(dtbbpy)]⁺ as photosensitizer, 0.2 M triethanolamine (TEOA) as sacrificial electron donor, 2.5 M H₂O as proton source. The solution was degassed with Ar/CH₄ (v/v, 4/1) and the quartz photocatalytic reactor was placed in the multichannel photochemical reaction system of the Beijing Perfectlight PCX-50C instrument. Then illuminated by a white-light source (10 W, $\lambda = 400-800$ nm), and the reaction temperature was adjusted at 25 °C by a low-temperature thermostat bath. The

gas samples were analyzed by GC979011 gas chromatograph equipped with TCD and 5 Å molecular sieve column (3 m \times 3 mm) with argon gas as carrier gas and quantified based on the internal CH₄ standard.

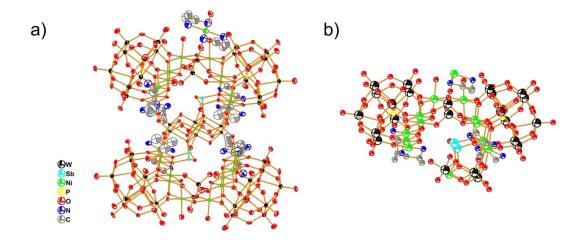


Fig. S1. (a) The structural unit and (b) asymmetrical unit of 1.

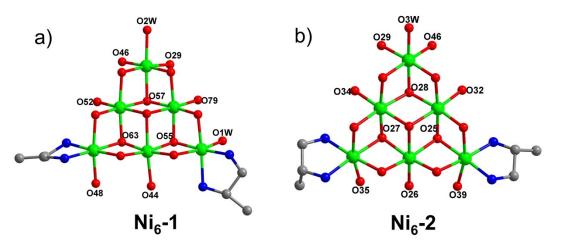


Fig. S2 (a) The Ni₆-1 cluster of 1. (b) The Ni₆-2 cluster of 1.

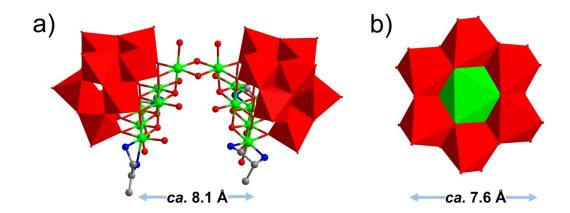


Fig. S3 (a) The distance between Ni_6 -1 and Ni_6 -2 units of 1. (b) The diameter of the Anderson-type cluster of 1.

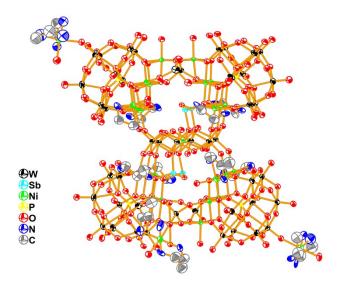


Fig. S4. The structural unit of 2.

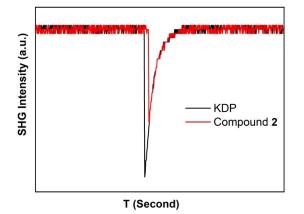


Fig. S5 The SHG oscilloscope traces signals of KDP and compound 2 in the same powder particle size (75–106 µm).

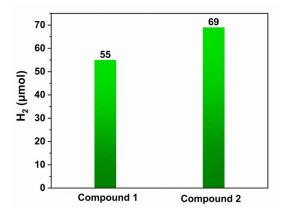


Fig. S6. The comparison of 1 mg of compounds 1 and 2 used for H₂ evolution. Conditions: white light (10 W, 400–800 nm), 0.3 mM [Ir(coumarin)₂(dtbbpy)]⁺, 0.2 M TEOA, 2.5 M H₂O, 6 mL DMF/CH₃CN (v/v, 3:1) degassed with Ar/CH₄ (v/v, 4:1).

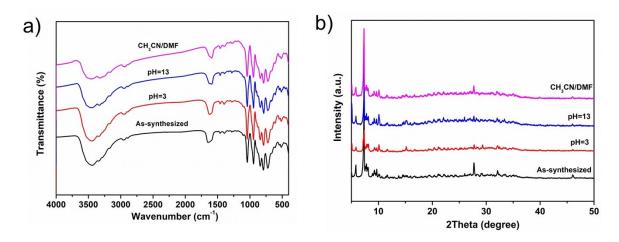


Fig. S7. The (a) IR Spectra and (b) PXRD patterns of catalyst 2 including freshly synthesized samples and samples immersed into different acidic/alkaline solutions and organic solvents for 24 h.

Fig. S8. The cyclic experiments for H₂ evolution with 2 mg of catalyst **2**. Conditions: white light (10 W, 400–800 nm), 0.3 mM [Ir(coumarin)₂(dtbbpy)]⁺, 0.2 M TEOA, 2.5 M H₂O, 6 mL DMF/CH₃CN (v/v, 3:1) degassed with Ar/CH₄ (v/v, 4:1), reaction time: 5 h.

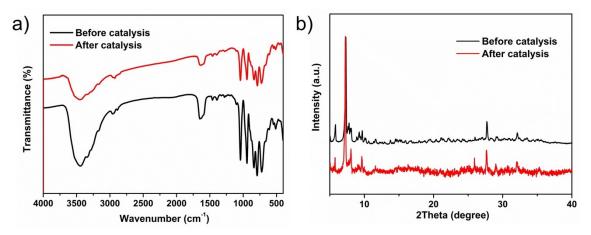


Fig. S9. The (a) IR Spectra and (b) PXRD patterns of 2 before and after catalysis.

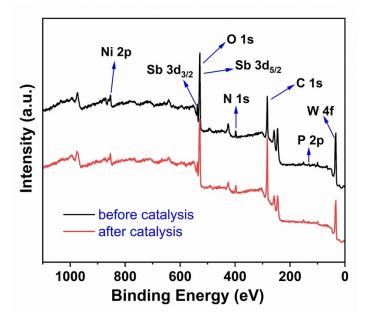


Fig. S10. The XPS full survey spectra of compound 2 before and after catalysis.

IR spectra. As shown in Fig. S11, characteristic absorption peaks can be observed at 1046, 949, 845–793, 722 cm⁻¹ for compound **1** and 1040, 943, 835–792, 725 cm⁻¹ for compound **2**, which are attributed to v(P-O), $v(W-O_t)$, $v(W-O_b)$ and $v(W-O_c)$ respectively, indicating the existence of $[B-\alpha-PW_9O_{34}]^{9-}$ fragments. The stretching and bending vibration peaks attributed to –OH can be seen at 3446 cm⁻¹, 1622 cm⁻¹ for compound **1** and 3450 cm⁻¹, 1636 cm⁻¹ for compound **2**, respectively. In addition, the characteristic peaks observed at 2925 cm⁻¹, 1464–1403 cm⁻¹ for compound **1**, and 2950 cm⁻¹, 1458–1391 cm⁻¹ for compound **2** are attributed to –NH₂ and –CH₂ of organic amine.

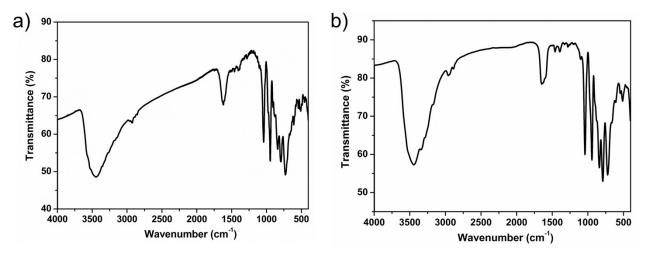


Fig. S11. The IR spectra of (a) 1 and (b) 2.

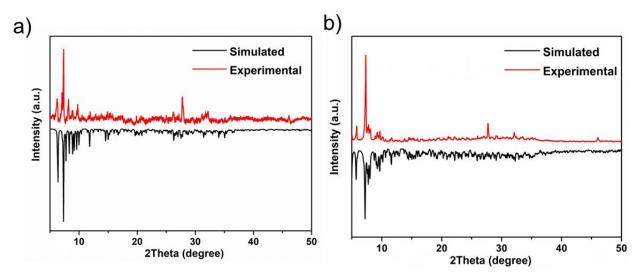


Fig. S12. Simulated and experimental PXRD patterns of (a) 1 and (b) 2.

Thermogravimetric analyses. To evaluate the thermal stability of compounds 1 and 2, the thermogravimetric analyses were tested from 25 to 700 °C (Fig. S13). The weight loss of both compounds can be regarded as a continuous process. From 25 to 640 °C, the reduction of 14.27% for the mass of compound 1 was attributed to the loss of 31 adsorbed water molecules, 39 lattice water molecules, 6 coordination water molecules, 10 enMe molecules and the dehydration of 8 protons (4 H₂O) and 8 OH⁻ groups (4 H₂O). The mass of compound 2 was reduced by 12.84% (calc. 12.95%) from 25 to 645 °C due to the loss of 45 lattice water molecules, 9 coordination water molecules, 10 enMe molecules, 10 en molecules, 4 enMe molecules and the dehydration of 9 protons (4.5 H₂O) and 8 OH⁻ groups (4 H₂O).

Fig. S13. The thermogravimetric analyses of compounds 1 and 2.

Optical Band gaps. Fig. S14 shows the solid UV–vis diffuse-reflectance spectra of compounds 1 and 2 recorded from 200 to 800 nm. The ratio of α /S (α represents absorption coefficient, S represents scattering coefficient) was obtained according to the Kubelka–Munk formula: α /S = F(R) = $(1-R)^2/(2R)$.⁷ The band gap values of 1 and 2 were 3.41 and 3.32 eV, respectively, revealing the properties of semiconductors. The band gap values of 1 and 2 are similar to that of the reported NiAPs, such as [Ni(enMe)₂(H₂O)₂][Ni₆(μ ₃-OH)₃(H₂O)₄(enMe)₃(CH₃COO)- (B- α -PW₉O₃₄)]₂·10H₂O (E_g =3.75 eV) and [Ni₆(μ ₃-OH)₃(H₂O)₂(dien)₃(B- α -PW₉O₃₄)]·4H₂O (E_g =3.66 eV).⁸

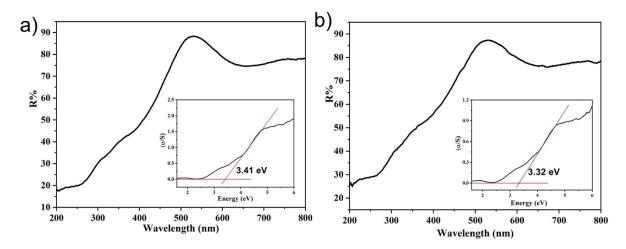


Fig. S14. The UV–Vis diffuse-reflectance spectra and (inset) the UV–Vis plots of Kubelka–Munk function versus energy E (eV) of compounds (a) 1 and (b) 2.

Atom1	Atom2	Bond length (Å)	Bond valence sum (BVS)	Atom1	Atom2	Bond length (Å)	Bond valence sum (BVS)
Ni1	O41	2.107		Ni8	N1	2.069	
Ni1	O41 ¹	2.107		Ni8	N2	2.102	
Ni1	043	2.027	1.00	Ni8	O48 ¹	2.034	1.05
Ni1	O431	2.027	- 1.99 -	Ni8	058	2.110	1.95
Ni1	O45	2.058		Ni8	O59	2.181	
Ni1	O45 ¹	2.058		Ni8	O63	2.035	
Ni2	O25	2.061	- 1.84 -	Ni9	O28	1.991	
Ni2	O26	2.093		Ni9	O29	2.107	
Ni2	O27	2.053		Ni9	O31	2.098	2.00
Ni2	O30	2.265		Ni9	O37	2.065	2.00
Ni2	O36	2.061		Ni9	O46	2.082	
Ni2	O40	2.057		Ni9	O3W	2.030	
Ni3	052	2.088		Ni10	N5	2.070	
Ni3	O56	2.066		Ni10	N6	2.067	
Ni3	057	2.020	2.01	Ni10	025	2.083	1.00
Ni3	O58	2.017	2.01	Ni10	O33	2.152	1.99
Ni3	O63	2.012		Ni10	O39	2.041	
Ni3	O65	2.172		Ni10	O40	2.070	
Ni4	N7	2.064	1.99	Ni11	N3	2.094	
Ni4	N8	2.073		Ni11	N4	2.079	1.00
Ni4	O27	2.088		Ni11	O55	2.042	1.90
Ni4	035	2.003		Ni11	O64	2.184	

Table S1. The BVS values of all Ni atoms and some selected O atoms in the compound 1.

Ni4	O36	2.139		Ni11	O66	2.077	
Ni4	038	2.122		Nill	O1W	2.114	
Ni5	O441	2.109		Ni12	O29	2.057	
Ni5	055	2.024		Ni12	O46	2.057	
Ni5	059	2.073		Ni12	056	2.045	
Ni5	O63	2.021	1.88	Ni12	057	2.033	2.01
Ni5	O64	2.079		Ni12	O67	2.063	
Ni5	O65	2.224	-	Ni12	O2W	2.096	
Ni6	055	2.026		Ni13	027	2.043	
Ni6	O57	2.002		Ni13	O28	2.011	
Ni6	O65	2.172		Ni13	O30	2.146	2.02
Ni6	O66	2.037		Ni13	034	2.050	2.03
Ni6	O67	2.060		Ni13	O37	2.053	
Ni6	079	2.069		Ni13	O38	2.041	
Ni7	O25	2.057	2.01	Ni14	N9	2.135	
Ni7	028	2.005		Ni14	N9 ²	2.135	
Ni7	O30	2.168		Ni14	N10	2.094	1.00
Ni7	O31	2.055		Ni14	N10 ²	2.094	1.89
Ni7	O32	2.062		Ni14	O54 ²	2.110	
Ni7	O33	2.028		Ni14	054	2.110	
025	Ni2	2.061		055	Ni5	2.024	
O25	Ni7	2.057	2.01 N 2.01 N N N N N N N N C C C C C C C C C C C C C	055	Ni6	2.026	1.08
O25	Ni10	2.083		055	Ni11	2.042	
O25	Sb2	1.963		057	Ni3	2.020	
O27	Ni2	2.053		057	Ni6	2.002	1.12
O27	Ni4	2.088	2.02	057	Ni12	2.033	
027	Ni13	2.043		O63	Ni3	2.012	
027	Sb1	1.965		O63	Ni5	2.021	1.11
O28	Ni7	2.005	1.17	O63	Ni8	2.035	
O28	Ni9	1.991					
O28	Ni13	2.011					

Table S2. Summary of some POM-based heterogeneous catalysts for H_2 evolution.

Catalyst formula	Photosensitizer	co- catalyst	Sacrificial electron donor	light	Activit y (µmol g ⁻¹ h ⁻¹)
$\begin{array}{c} K_8 N a_8 H_4 [P_8 W_{60} T a_{12} (H_2 O)_4 \textbf{-} \\ (OH)_8 O_{236}] \cdot 42 H_2 O \ ^9 \end{array}$	None	Pt	CH₃OH	250W Hg	1250
Cs _{10.5} K ₄ H _{5.5} [Ta ₄ O ₆ (SiW ₉ Ta ₃ O ₄₀) ₄]· 30H ₂ O ⁹	None	Γι	Спзон	lamp	803
K ₆ SiW ₁₁ O ₃₉ Ni(H ₂ O)·15H ₂ O ¹⁰			_:	500 W Xe	98
K ₆ SiW ₁₁ O ₃₉ Co(H ₂ O)·14H ₂ O ¹⁰	None	Pt	zinc powders	lamp (λ>400	65
$K_6SiW_{11}O_{39}Cu(H_2O) \cdot 14H_2O^{10}$		powd		nm)	150

K ₆ SiW ₁₁ O ₃₉ Zn(H ₂ O)·15H ₂ O ¹⁰					48
$[Cu^{I}_{12}(trz)_{8}(H_{2}O)_{2}]- \\ [\alpha-SiW_{12}O_{40}] \cdot 2H_{2}O^{-11}$	None	Pt	CH ₃ OH	300 W Xe lamp	192.2
Na8Ta6O19/Cd0.7Zn0.3S 12	None	None	Na ₂ S/Na ₂ S O ₃	300 W Xe lamp	43050
$ \begin{array}{c} [Cu(en)_2]_6 \{ [Cu(en)_2] @ \{ [Cu_2(trz)_2 - \\ (en)_2]_6 [H_{10}Nb_{68}O_{188}] \} \}^{-13} \end{array} $	[Ir(ppy) ₂ (dtbbpy)][PF ₆]	None	TEOA	300 W Xe lamp (λ>420 nm)	381
$ [Cu^{II}_{5}(2\text{-ptz})_{6}(H_{2}O)_{4}(GeW_{12}O_{40})] \cdot \\ 4H_{2}O^{14} $	None	None	CU OU	Xe lamp	3813
$[Cu^{I}_{2}(ppz)_{4}][H_{2}GeW_{12}O_{40}]\cdot 8H_{2}O^{-14}$	None	None	CH ₃ OH	Ae lamp	500
$\frac{Cu_8(H_2O)_2(en)_4(B-\alpha-H_2-SiW_9O_{34})_2]^{15}}$	[Ir(ppy) ₂ (dtbbpy)][PF ₆]	None	TEOA	LED light (450 nm)	833.33
[Ni(H ₂ O) ₆]KH[NiMo ₆ O ₂₄ (Sb ₃ O ₃) ₂]· 5H ₂ O ¹⁶	[Ir(coumarin) ₂ - (dtbbpy)] ⁺	None	TEOA	300 W Xe lamp (400 nm cutoff filter)	10358
H ₃ [(btc)Ni ₆ (μ ₃ -OH) ₃ (H ₂ O) ₅ (B-α- PW ₉ O ₃₄)]·17H ₂ O ¹⁷	[Ir(ppy) ₂ (dtbbpy)][PF ₆]	None	TEOA	white light (400-800 nm, 5 W)	1058.2 4
$\begin{array}{c} H_6Na_8Cs_3[Co_9(\mu_{3}\text{-}\\OH)_3(H_2O)_6(HPO_4)_2(B\text{-}\alpha\text{-}\\PW_9O_{34})_3]Cl\cdot40H_2O^{-18} \end{array}$	[Ir(ppy) ₂ (dtbbpy)][PF ₆]	None	TEOA	white light (400–800 nm, 10 W)	1217.6
Compound 2 (this work)	[Ir(coumarin) ₂ - (dtbbpy)] ⁺	None	TEOA	white light (400–800 nm, 10 W)	19214

References

[1] P. J. Domaille, G. Hervéa, and A. Téazéa, Inorganic Syntheses, 1990, 27, 96.

[2] L. Qin, C. Y. Zhao, L. Y. Yao, H. B. Dou, M. Zhang, J. Xie, T. C. Weng, H. J. Lv and G. Y. Yang, CCS Chem., 2022, 4, 259.

[3] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339.

- [4] G. M. Sheldrick, Acta Cryst., 2015, A71, 3.
- [5] G. M. Sheldrick, Acta Cryst., 2015, C71, 3.
- [6] B. Rees, L. Jenner and M. Yusupov, Acta Cryst., 2005, D61, 1299.
- [7] W. M. Wendlandt and H. G. Hecht, Reflectance Spectroscopy, Interscience: New York, 1966.
- [8] S. T. Zheng, D. Q. Yuan, H. P. Jia, J. Zhang and G. Y. Yang, Chem. Commun., 2007, 18, 1858.

[9] S. J. Li, S. M. Liu, S. X. Liu, Y. W. Liu, Q. Tang, Z. Shi, S. X. Ouyang and J. H. Ye, *J. Am. Chem. Soc.*, 2012, **134**, 19716.

- [10] Z. L. Wang, Y. Lu, Y. G. Li, S. M. Wang and E. B. Wang, Chin. Sci. Bull., 2012, 57, 2265.
- [11] X. X. Zhao, S. W. Zhang, J. Q. Yan, L. D. Li, G. J. Wu, W. Shi, G. M. Yang, N. J. Guan and P. Cheng, *Inorg. Chem.*, 2018, **57**, 5030.
- [12] X. J. Zhou, H. Yu, D. Zhao, X. C. Wang and S. T. Zheng, Appl. Catal. B: Environ., 2019, 248, 423.
- [13] Z. K. Zhu, Y. Y. Lin, H. Yu, X. X. Li and S. T. Zheng, Angew. Chem. Int. Ed., 2019, 58, 16864.

- [14] Q. B. Shen, C. J. Gómez-García, W. L. Sun, X. Y. Lai, H. J. Pang and H. Y. Ma, *Green Chem.*, 2021, 23, 3104.
- [15] J. J. Sun, W. D. Wang, X. Y. Li, B. F. Yang and G. Y. Yang, Inorg. Chem., 2021, 60, 10459.
- [16] M. Z. Chi, H. J. Li, X. Xin, L. Qin, H. J. Lv and G. Y. Yang, Inorg. Chem., 2022, 61, 8467.
- [17] Z. W. Wang, Q. Zhao, C. A. Chen, J. J. Sun, H. J. Lv and G. Y. Yang, Inorg. Chem., 2022, 61, 7477.
- [18] Z. W. Wang and G. Y. Yang, *Molecules*, 2023, 28, 664.