Supporting Information

Arene displacement, C-H activation and acetonitrile insertion reactions enabled by coordination of a functionalized iminophosphorane to Ru^{II} -*p*-cymene scaffold

Rani Gourkhede,[†] Bhupinder Kaur,[†] Basvaraj S. Kote,[†] Maravanji S. Balakrishna^{*†}

[†]Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India

Table of Content

Crystal structure determination of complexes 2-5 and 7	S2
Crystallographic information for compounds 2-5 and 7	S3
Selected bond lengths and bond angles of complex 2	S4
NMR, HRMS and FT-IR spectra of compounds 1-7	S4-S30
NMR spectral data of catalytic products	S31-S33
NMR spectra of substrates	S34-S48
References	S48

Crystal structure determination of complexes 2-5

Single-crystal X-ray diffraction suitable crystal of compounds 2-5 and 7 was mounted on a cryoploop with a drop of paratone oil and placed in the cold nitrogen stream on a Bruker D8 Venture diffractometer. Data was collected at 150(2) K, 300 K or 100 K using Bruker D8 Venture diffractometer with a graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) with 'phi–omega scan' techniques and were scaled and reduced using CrysalisPro Red 171.41_64.93a software. The crystal structures of all the compounds were solved using Olex21.5¹ with the ShelXT² structure solution program using intrinsic phasing and refined with the ShelXL³ refinement package using least-square minimization. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions and included as riding contributions, with isotropic displacement parameters tied to those of the attached non-hydrogen atoms. Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 2302590 (compound **3**), 2302591 (compound **4**), 2302664 (compound **5**) and 2344271 (compound **7**). The details of X-ray structural determinations are given in Table S1.

Crystallographic information of complexes 2-5 and 7

Table S1. Crystallographic information of complexes 2-5 and 7

	2	3.(0.9CH ₂ Cl ₂)(1.6C ₄ H ₁₀	4.(1.21CH ₂ Cl ₂)	5.(1.6CH ₂ Cl ₂)	7
		0)			
Empirical	$C_{68}H_{63}Cl_2NP_2Ru$	$C_{65.3}H_{65.8}Cl_{2.8}NO_{2.6}P_2Ru$	C _{59.23} H _{50.46} Cl _{3.46} NO	$C_{67.6}H_{64.2}B_2Cl_{3.2}F_8N_5$	$C_{41}H_{41}Cl_2NP_2Ru$
formula			$P_2 Ru$	P ₂ Ru	
Formula weight	1128.18	1169.039	1077.85	1396.793	781.66
<i>T</i> (K)	100	150	300	150	150
Cryst. System	triclinic	triclinic	monoclinic	monoclinic	monoclinic
Space group	P-1	P-1	$P 2_1/c$	$P 2_1/c$	$P 2_1/c$
a/Å	15.7093(6)	13.1607(2)	14.4145(8)	13.422(4)	18.7777(2)
<i>b</i> /Å	19.6268(7)	13.4638(3)	15.8158(8)	21.209(5)	11.3055(10)
c/Å	20.6953(10)	18.5572(3)	23.9074(13)	24.410(47)	17.3485(2)
a/°	75.523(4)	74.144(2)	90	90	90
β/°	76.473(4)	70.026(2)	102.198	99.495(11)	100.6520(10)
γ/°	89.531(3)	67.700(2)	90	90	90
V, A^3	5998.3(5)	2820.02(11)	5327.3(5)	6854(3)	3619.47
Ζ	2	2	4	4	4
ρcalc g/cm ³	1.343	1.376	1.344	1.354	1.434
μ (Mo Ka), mm ⁻¹	0.535	0.514	0.568	0.465	0.700
<i>F</i> (000)	2512.0	1214.0	2215.0	2860.0	1608.0
crystal size, mm	0.056 x 0.043 x	$0.089 \times 0.078 \times 0.045$	$0.091 \times 0.071 \times$	0.090 imes 0.068 imes	0.089 imes 0.073 imes
	0.024		0.046	0.036	0.043
2θ range, deg	3.336 to 50	3.642 to 60	3.678 to 49.998	3.78 to 50	4.414 to 59.996
Refl. collected	54698	165754	98307	155476	82029
Indep.	20861 [R _{int} =	$16437 [R_{int} = 0.0632]$	9368 [R _{int} =	$12061[R_{int}=0.1602]$	$10519[R_{int}=0.0658]$
reflections	0.0670]		0.1146]		
Goodness-of-fit	1.037	1.025	1.064	1.057	1.035
on F ²					
R ₁	0.1155	0.0431	0.0776	0.0664	0.0485
wR ₂	0.2104	0.0918	0.1317	0.1342	0.0946

Bond distance (Å)	2	Bond angles (°)	2
N1-P1	1.524(4)	N1-P1-C46	109.0(3)
P1-C46	1.838(6)	P1-C46-P2	132.6(3)
C46–P2	1.837(6)	P2-Ru1-Cl1	84.85(5)
Ru1–P2	2.3662(16)	P2-Ru1-Cl2	88.21(5)
Ru1–Cl1	2.3942(15)	Cl1–Ru1–Cl2	88.09(5)
Ru1–Cl2	2.4222(16)		

 Table S2. Selected bond lengths and bond angles of compound 2

NMR and HRMS spectra of compounds 1-7

Figure S1. ${}^{31}P{}^{1}H$ NMR spectrum of 1 in CDCl₃ (202 MHz).

Figure S2. ¹H NMR spectrum of 1 in CDCl₃ (500 MHz).

Figure S3. ${}^{13}C{}^{1}H$ NMR spectrum of 1 in CDCl₃ (101 MHz).

Figure S4. HRMS spectrum of 1.

Figure S5. FT-IR spectrum of 1.

Figure S6. ${}^{31}P{}^{1}H$ NMR spectrum of 2 in CDCl₃ (162 MHz).

Figure S7. ¹H NMR spectrum of 2 in CDCl₃ (400 MHz).

Figure S8. ${}^{13}C{}^{1}H$ NMR spectrum of 2 in CDCl₃ (101 MHz).

Figure S9. HRMS spectrum of 2.

Figure S10. FT-IR spectrum of 2.

Figure S11. ³¹P{¹H} NMR spectrum of 3 in CDCl₃ (162 MHz).

Figure S12. ¹H NMR spectrum of 2 in CDCl₃ (400 MHz).

Figure S13. ${}^{13}C{}^{1}H$ NMR spectrum of 3 in CDCl₃ (126 MHz).

Figure S14. HRMS spectrum of 3.

Figure S15. FT-IR spectrum of 3.

Figure S16. ³¹P{¹H} NMR spectrum of 4 in CDCl₃ (202 MHz)

Figure S17. ¹H NMR spectrum of 4 in CDCl₃ (400 MHz).

Figure S18. ¹³C NMR spectrum of 4 in CDCl₃ (202 MHz).

Figure S19. HRMS spectrum of 4.

Figure S20. FT-IR spectrum of 4.

Figure S21. ${}^{31}P{}^{1}H$ NMR spectrum of 5 in CDCl₃ (162 MHz).

Figure S22. ¹H NMR spectrum of 5 in CDCl₃ (400 MHz).

Figure S23. ¹³C NMR spectrum of 5 in CDCl₃ (101 MHz).

Figure S24. ¹⁹F NMR spectrum of 5 in CDCl₃ (377 MHz).

Figure S25. ¹¹B NMR spectrum of 5 in CDCl₃ (128 MHz).

Figure S26. HRMS spectrum of 5.

Figure S27. FT-IR spectrum of 5.

Figure S28. Molecular structure of **5**. Hydrogen atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.

Figure S29. ${}^{31}P{}^{1}H$ NMR spectrum of 6 in CDCl₃ (162 MHz).

$\begin{array}{c} 7.82\\ 7.81\\ 7.81\\ 7.81\\ 7.82\\ 7.73\\$

Figure S30. ¹H NMR spectrum of 6 in CDCl₃ (400 MHz).

Figure S31. ¹³C NMR spectrum of 6 in CDCl₃ (126 MHz).

Figure S32. HRMS spectrum of 6.

Figure S33. ${}^{31}P{}^{1}H$ NMR spectrum of 7 in CDCl₃ (162 MHz).

Figure S34. ¹H NMR spectrum of 7 in CDCl₃ (400 MHz).

Figure S35. ¹³C NMR spectrum of 7 in CDCl₃ (101 MHz).

Figure S36. HRMS spectrum of 7.

Synthesis of [RuCl₂{(η^6 -*p*-cymene)(PPh₂CH₂Ph₂P=O)- κ^1 -*P*}](8)

The mixture of 1 (0.04 g, 0.04866 mmol) and $[Ru(p-cymene)Cl_2]_2$ (0.014 g, 0.02433 mmol) in chlorobenzene along with few drops of water was stirred at 120 °C for 16 h. The solution was allowed to cool to room temperature, the resulting reaction mixture was evaporated and washed with petroleum ether twice (2 x 15 ml) followed by vacuum evaporation which yielded compound **8**⁴. ³¹P NMR (162 MHz, CDCl₃) δ 24.98, 23.05. ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 7.93 (m, 4H), 7.38 (dd, J = 11.8, 8.4 Hz, 4H), 7.19 (t, J = 7.3 Hz, 4H), 5.26 (d, J = 8.0 Hz, 2H), 5.11 (d, J = 6.3 Hz, 2H), 3.87 (dd, J = 10.4, 9.2 Hz, 2H), 2.49 (p, J = 6.9 Hz, 1H), 1.83 (s, 3H), 0.80 (d, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 134.93, 133.82 (d, J = 9.7 Hz), 131.58, 131.12, 130.87 (dd, J = 10.2, 2.6 Hz), 130.18 (d, J = 9.3 Hz), 128.20 (d, J = 12.0 Hz), 127.83 (d, J = 10.3 Hz), 108.27, 94.04, 90.17 (d, J = 4.4 Hz), 85.78 (d, J = 6.1 Hz), 30.01, 21.25, 17.28.

Scheme S1. Synthesis of complex 8.

Figure S37. ${}^{31}P{}^{1}H$ NMR spectrum of 8 in CDCl₃ (162 MHz).

Figure S38. ¹H NMR spectrum of 8 in CDCl₃ (400 MHz).

Figure S39. ¹³C NMR spectrum of 8 in CDCl₃ (101 MHz).

Synthesis of complex 3 from 2

Scheme S2. Formation of complex 3 from 2.

Figure S40. ${}^{31}P{}^{1}H$ NMR spectrum of 3 in CDCl₃ (162 MHz).

Formation of C-H activated Ru^{II} complex 3

The reaction of compound 1 (0.0121 mmol) with $[Ru(p-cymene)Cl_2]_2$ (0.00609 mmol) in chlorobenzene was carried out in a J Youngs NMR tube. The progression of the reaction was monitored using ³¹P NMR spectroscopy and mass spectrometry.

Figure S41. ³¹P variable time NMR spectra for the formation of 3 in C_6H_5Cl .

Figure S42. HRMS spectrum of **M**₁. (HRMS (ESI) of C₅₈H₄₉Cl₂NP₂Ru calc for [M-Cl]⁺ : 958.1914, Found: 958.2000.)

Т

Figure S43. HRMS spectrum of **M**₂. (HRMS (ESI) of C₅₈H₄₉Cl₂NOP₂Ru calc for [M-Cl]⁺ : 974.2016, Found: 974.2013.)

Figure S44. LRMS spectrum of intermediate B of transfer hydrogenation reaction.

NMR spectral data of catalytic products

1-phenylethan-1-ol (**a**₁). The compound was isolated as a colorless liquid. Yield: 97%. ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 6.84 (m, 1H), 4.86 (q, J = 6.5 Hz, 1H), 3.19 – 2.97 (d, J = 5.7 Hz, 1H), 1.51 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.99, 128.48, 127.39, 125.52, 70.23, 25.20.

1-(p-tolyl)ethan-1-ol (**a**₂). The compound was isolated as a colorless liquid. Yield: 95%. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.16 (m, 4H), 4.90 – 4.80 (m, 1H), 3.20 – 3.13 (m, 1H), 2.43 (s, 3H), 1.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.10, 136.96, 129.15, 125.51, 70.07, 25.17, 21.17.

1-(o-tolyl)ethan-1-ol (**a**₃). The compound was isolated as a colorless liquid. Yield: 94%. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (dd, J = 7.7, 1.5 Hz, 1H), 7.27 – 7.09 (m, 3H), 5.12 (q, J = 6.4 Hz, 1H), 2.35 (s, 3H), 2.01 (s, 1H), 1.46 (d, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.87, 130.38, 127.18, 126.39, 124.50, 66.80, 23.94, 18.93.

1-(4-methoxyphenyl)ethan-1-ol (**a**₄). The compound was isolated as a colorless liquid. Yield: 89%. ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 4.82 (t, J = 6.5 Hz, 1H), 3.80 (s, 3H), 2.72 (s, 1H), 1.46 (d, J = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.85, 138.16, 126.71, 113.80, 69.79, 55.27, 25.05.

1-(4-nitrophenyl)ethan-1-ol (**a**s). The compound was isolated as a colorless liquid. Yield: 93%. ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, *J* = 8.4 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 4.99 (q, *J* = 6.7 Hz, 1H), 2.97 (s, 1H), 1.48 (d, *J* = 6.6 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 153.37, 146.98, 126.16, 123.67, 69.37, 25.38.

1-(4-flurophenyl)ethan-1-ol (**a**₆). The compound was isolated as a colorless liquid. Yield: 92%. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (ddd, J = 8.9, 5.4, 0.6 Hz, 2H), 7.02 (t, J = 8.8 Hz, 2H), 4.84 (qd, J = 6.3, 2.3 Hz, 1H), 2.68 (d, J = 3.1 Hz, 1H), 1.45 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ

163.29, 160.86, 141.57, 141.54, 127.11, 127.02, 115.30, 115.09, 69.65, 25.22.

1-(4-cholrophenyl)ethan-1-ol (**a**₇). The compound was isolated as a yellowish liquid. Yield: 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 10.7 Hz, 4H), 4.79 (q, J = 4.7 Hz, 1H), 3.03 – 2.98 (m, 1H), 1.42 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.29, 132.95, 128.54, 126.84, 69.57, 25.20.

1-(4-bromophenyl)ethan-1-ol (**as**). The compound was isolated as a yellow liquid. Yield: 89%. ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.41 (m, 2H), 7.28 – 7.18 (m, 2H), 4.83 (d, *J* = 6.4 Hz, 1H), 2.22 (s, 1H), 1.45 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.77, 131.55, 127.18, 121.15, 69.75, 25.24.

1-(2-bromophenyl)ethan-1-ol (**a**₉). The compound was isolated as a white solid. Yield: 87%. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 2.0 Hz, 1H), 7.37 (dt, J = 7.8, 1.6 Hz, 1H), 7.24 (d, J = 7.7 Hz, 2H), 4.79 (d, J = 6.5 Hz, 1H), 2.64 (s, 1H), 1.43 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.14, 130.43, 130.11, 128.57, 124.06, 122.58, 69.66, 25.22.

1-(3-bromophenyl)ethan-1-ol (**a**₁₀). The compound was isolated as a yellowish liquid. Yield: 88%. ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.45 (m, 2H), 7.31 (td, *J* = 7.6, 1.3 Hz, 1H), 7.10 (td, *J* = 7.7, 1.8 Hz, 1H), 5.20 (q, *J* = 6.4 Hz, 1H), 2.73 (d, *J* = 12.2 Hz, 1H), 1.44 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.68, 132.63, 128.74, 127.87, 126.71, 121.67, 69.13, 23.61.

1-(1-hyroxyethyl)phenol (**a**₁₁). The compound was isolated as a colorless liquid. Yield: 91%. ¹H NMR (400 MHz, DMSO) δ 9.24 (s, 1H), 7.05 (t, *J* = 7.8 Hz, 1H), 6.76 – 6.67 (m, 2H), 6.60 – 6.53 (m, 1H), 5.05 (d, *J* = 4.2 Hz, 1H), 4.59 (dd, *J* = 6.5, 4.2 Hz, 1H), 1.25 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 157.59, 149.46, 129.35, 116.41, 113.81, 112.61, 68.47, 26.40.

Diphenylmethanol (**a**₁₂). The compound was isolated as a white solid. Yield: 88%. ¹H NMR (500 MHz, CDCl₃) δ 7.61 – 6.95 (m, 10H), 5.88 (d, J = 3.3 Hz, 1H), 2.34 (d, J = 3.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 143.83, 128.53, 127.60, 126.57, 76.28.

(4-chlorophenyl)(phenyl)methanol (**a**₁₃). The compound was isolated as a colorless liquid. Yield: 86%. ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.24 (m, 9H), 5.77 (s, 1H), 2.80 (d, *J* = 12.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 143.46, 142.27, 133.26, 131.56, 130.03, 128.70, 128.67, 128.62, 128.48, 127.95, 127.87, 126.58, 75.57.

Phenylmethanol (**a**₁₄). The compound was isolated as a colorless liquid. Yield: 89%. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 5H), 4.64 (s, 2H), 2.94 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.92, 128.55, 127.60, 127.06, 65.08, 65.05.

(2-nitrophenyl)methanol (**a**₁₅). The compound was isolated as a white solid. Yield: 90%. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (dd, J = 8.2, 1.3 Hz, 1H), 7.78 – 7.63 (m, 2H), 7.48 (ddd, J = 8.7, 7.4, 1.6 Hz, 1H), 4.98 (s, 2H), 2.59 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 136.78, 134.17, 130.02, 128.54, 125.05, 62.58.

Figure S45. ¹H NMR spectrum of a₁ in CDCl₃ (500 MHz).

Figure S46. ¹³C $\{^{1}H\}$ NMR spectrum of a_{1} in CDCl₃ (126 MHz).

Figure S47. ¹H NMR spectrum of a2 in CDCl₃ (400 MHz).

Figure S48. ${}^{13}C{}^{1}H$ NMR spectrum of a2 in CDCl₃ (101 MHz).

Figure S50. ${}^{13}C{}^{1}H$ NMR spectrum of as in CDCl₃ (101 MHz).

Figure S51. ¹H NMR spectrum of a4 in CDCl₃ (500 MHz).

Figure S52. ${}^{13}C{}^{1}H$ NMR spectrum of a_4 in CDCl₃ (126 MHz).

Figure S53. ¹H NMR spectrum of as in CDCl₃ (500 MHz).

Figure S54. ${}^{13}C{}^{1}H$ NMR spectrum of as in CDCl₃ (126 MHz).

Figure S55. ¹H NMR spectrum of **a**₆ in CDCl₃ (400 MHz).

Figure S56. ¹³C $\{^{1}H\}$ NMR spectrum of a_{6} in CDCl₃ (101 MHz).

Figure S57. ¹H NMR spectrum of **a**₇ in CDCl₃ (400 MHz).

Figure S58. $^{13}C{^{1}H}$ NMR spectrum of a_7 in CDCl₃ (101 MHz).

Figure S60. ${}^{13}C{}^{1}H$ NMR spectrum of as in CDCl₃ (101 MHz).

Figure S61. ¹H NMR spectrum of a9 in CDCl₃ (400 MHz).

Figure S62. ${}^{13}C{}^{1}H$ NMR spectrum of a9 in CDCl₃ (101 MHz).

Figure S63. ¹H NMR spectrum of a₁₀ in CDCl₃ (400 MHz).

Figure S64.¹³C $\{^{1}H\}$ NMR spectrum of a_{10} in CDCl₃ (101 MHz).

Figure S65. ¹H NMR spectrum of a₁₁ in CDCl₃ (400 MHz).

Figure S66. ${}^{13}C{}^{1}H$ NMR spectrum of a_{11} in CDCl₃ (101 MHz).

Figure S67. ¹H NMR spectrum of a₁₂ in CDCl₃ (500 MHz).

Figure S68. ${}^{13}C{}^{1}H$ NMR spectrum of a_{12} in CDCl₃ (126 MHz).

Figure S69. ¹H NMR spectrum of a₁₃ in CDCl₃ (500 MHz).

Figure S70. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of a_{13} in CDCl₃ (126 MHz).

Figure S71. ¹H NMR spectrum of a₁₄ in CDCl₃ (400 MHz).

Figure S72. ¹³C $\{^{1}H\}$ NMR spectrum of a_{14} in CDCl₃ (101 MHz).

Figure S73. ¹H NMR spectrum of a15 in CDCl₃ (400 MHz).

Figure S74. ¹³C{¹H} NMR spectrum of a₁₅ in CDCl₃ (101 MHz).

References

- 1. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. *Appl. Cryst.*, 2009, **42**, 339-341.
- 2. G. Sheldrick, *Acta Cryst.*, 2015, **71**, 3-8.
- 3. G. Sheldrick, *Acta Cryst.*, 2008, **64**, 112-122.
- 4. J. W. Faller, B. P. Patel, M. A. Albrizzio and M. Curtis, *Organometallics*, 1999, **18**, 3096-3104.