Supplementary Information (ESI)

Adsorption properties of M-UiO-66 (M = Zr (IV); Hf (IV) or Ce (IV)) with BDC or PDC

linker

Diego González^a, Cesar Pazo-Carballo^{a,b,d*}, Esteban Camú ^{c,d}, Yoan Hidalgo-Rosa ^{d,e}, Ximena Zarate^{d,e}, Néstor Escalona^{b,c,d,}, Eduardo Schott^{a,d*}

^a Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC,

Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile

^b Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile,

Avenida Vicuña Mackenna 4860, Santiago, Chile Santiago, Chile

^c Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile.

^d Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC)-Chile.

*edschott@uc.cl

Contents

Chemicals	1
Synthesis Procedures	1
Characterization data	3
FT-IR spectra	3
Powder x-ray diffraction	
N ₂ adsorption-desorption analysis	4
Defect chemistry	7
Defect determination for M-UiO-66 via titration	7
Defect determination for M-UiO-66-PDC via TGA	8
CO ₂ adsorption parameters and error range	9
Computational Analysis	
Kinetics of adsorption	16
Kinetic Model	16
Rate-limiting kinetic model	22
Isosteric Heat	26
\mathbf{Q}_{st} calculated for each temperature combination	27
References	

^e Instituto de Ciencias Químicas Aplicadas, Theoretical and Computational Chemistry Center, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago, Chile.

Chemicals

Ammonium cerium (IV) nitrate (98%, (NH₄)₂Ce(NO₃)₆), 1,4-benzenedicarboxylic acid (98%, H₂BDC), 2,5-pyridinedicarboxylic acid (98%, H₂PDC), Zirconium(IV) chloride (99%, ZrCl₄), Zirconyl (VI) Chloride octahydrate (98%, ZrOCl₂·8H₂O), (Hafnium (IV) chloride (99%, HfCl₄), n-butylamine (CH₃(CH₂)₃NH₂, \geq 99%), formic acid (96%, CH₂O₂), and Sodium nitrate (NaNO₃, ACS reagent, \geq 99.0 %) were purchased from Sigma-Aldrich. Acetic acid (CH₃COOH, 98.5-100.5%), Acetone (C₃H₆O, 99%), hydrochloric acid (HCl, 98%), Sodium hydroxide (NaOH, 99%), N,N'-dimethylformamide (DMF, 99 wt.%), Ethanol (C₂H₆O, 99.9%), Methanol (CH₃OH, 99.9%) was supplied by Fine Chemical Co. Ltd. and reagent alcohols were purchased from Macron Chemicals. Carbon dioxide (CO₂, 99.999%).

Synthesis Procedures

Synthesis of Zr (IV) and Hf (IV) UiO-66¹

0,5 mmol of ZrCl₄ (or HfCl₄) was added on a 20 mL vial with 5 mL of DMF and 1 mL of concentrated HCl. After sonication for 10 minutes (for dissolving), 10 mL of DMF was added with 0,6 mmol of Terephthalic acid (H₂BDC) and 10 additional minutes of sonication before being heated ay 80°C for 12 hours. The resulting solid was separated and washed by centrifugation at 8000 rpm for 10 minutes with DMF (2x10 mL) and then with ethanol (2x10 mL). The MOF was dried under reduced pressure at room temperature for 3 days.

Synthesis of Ce-UiO-66²

On a 20 mL vial, the following reactive were added: first 1,5 mmol of terephthalic acid with 7,5 mL of DMF and then 2,4 mL of $(NH_4)_2[Ce(NO_3)_6]$ 0,533 M. The vial was heated using an aluminum heater block under stirring for 30 minutes at 100°C. The resulting light-yellow solid was separated and washed by centrifugation at 8000 rpm for 10 minutes (sometimes 20) with DMF (3x10 mL) and then with ethanol (3x10 mL). The MOF was dried under reduced pressure at room temperature for 3 days.

Synthesis of Zr-UiO-66-PDC³

4,4 mmol of 2,5-pirydinedicarboxilic acid (H₂PDC) and 4,4 mmol of $\text{ZrOCl}_2 \cdot 8$ H₂O were mixed in 45 mL formic acid and 5 mL water in a round bottom flask. The mixture was heated at 120°C under reflux for 3 hours. The reaction was quenched by placing the round bottom flask under cold water. The resulting solid was separated and washed by centrifugation at 8000 rpm for 10 minutes with water (2x10 mL) and ethanol (2x10 mL). The MOF was dried under reduced pressure at room temperature for 3 days.

Synthesis of Hf-UiO-66-PDC³

5 mmol of H_2PDC and 5 mmol of $HfCl_4$ were mixed in 25 mL of acetic acid and 25 mL of water in a round bottom flask. The mixture was heated at 120°C under reflux for 3 hours. The reaction was quenched by placing the round bottom flask under cold water. The resulting solid was separated and washed by centrifugation at 8000 rpm for 10 minutes with water (2x10 mL) and then with ethanol (2x10 mL). The MOF was dried under reduced pressure at room temperature for 5 days.

Synthesis of Ce-UiO-66-PDC³

10 mmol of H_2PDC and 10 mmol of $(NH_4)_2[Ce(NO_3)_6]$ were mixed in 5 mL of concentrated HNO₃ and 45 mL of water in a round bottom flask. The mixture was heated at 90°C under reflux for 30 minutes. The reaction was quenched by placing the round bottom flask under cold water. The resulting solid was separated and washed by centrifugation at 8000 rpm for 10 minutes (sometimes 20) with water (2x10 mL) and then with ethanol (2x10 mL). The MOF was dried under reduced pressure at room temperature for 3 days.

Figure S1. Structural Model $M_6O_4(OH)_4(Linker)_3(HCOO^-)_8$] (M = Zr (IV), Ce (IV), and Hf (IV); linker = BDC or PDC), representation of the M-UiO-66 truncated.

Figure S2. FT-IR spectra of M-UiO-66 (M = Zr (IV), Ce (IV), Hf (IV)) with BDC or PDC linker.

Powder x-ray diffraction

Figure S3. (a) PXRD pattern of M-UiO-66 (M = Zr (IV), Ce (IV), Hf (IV)) with BDC or PDC linker and (b) PXRD of Hf-UiO-66-PDC before and after activation process at 180°C under vacuum for 4 hours.

Table S1. Crystallite size and crystallinity percentage of M-UiO-66 (M = Zr (IV), Ce (IV), Hf (IV)) with BDC or PDC linker.

Materials	Crystallite size (nm)	Crystallinity (%)		
Zr-UiO-66	25.5	99.6		
Zr-UiO-66-PDC	44.8	98.3		
Ce-UiO-66	40.5	97.0		
Ce-UiO-66-PDC	52.2	95.6		
Hf-UiO-66	31.6	98.3		
Hf-UiO-66-PDC	52.7	80.3		

N₂ adsorption-desorption analysis

Figure S4. Nitrogen isotherm at 77 K of M-UiO-66 (M = Zr (IV), Ce (IV), Hf (IV)) with BDC or PDC linker.

Compound	$S_{BET} \left[m^2 g^{-1} \right]$	$V_{Micro} [cm^3g^{-1}]$	$V_{total} [cm^3g^{-1}]$	Bibliographic	V _{Meso} [cm ³ g ⁻¹]
				$S_{BET} [m^2 g^{-1}]$	
Zr-UiO-66	1188	0.46	0.63	11054	0.17
Zr-UiO-66-PDC	1083	0.42	0.51	1376 ³	0.09
Ce-UiO-66	925	0.42	0.48	1282 ²	0.06
Ce-UiO-66-PDC	626	0.30	0.33	768 ³	0.03
Hf-UiO-66	1196	0.42	0.59	358-749 ⁵	0.17
Hf-UiO-66-PDC	509	0.16	0.41	383 ³	0.25

Table S2. Textural properties of MOFs.

Figure S5. (a) Pore size distribution of MOFs calculated by NLDFT and (b) mesoporous region for Hf and Ce UiO-66-PDC calculated by Barrett-Joyner-Halenda (BJH) method.

Defect chemistry

Determination of defect concentration varies between BDC and PDC MOFs due to the hydrophobicity of M-UiO-66-PDC materials who impeded the correct measurement of *Glass* pH Electrode during potentiometric titration.

Defect determination for M-UiO-66 via titration

Defect determination via potentiometric titration was calculated according to Klet et al.⁶

Figure S6. Potentiometric titrations of M-UiO-66 for defect determination.

Material	Missing Linker	Molecular Formula	MW (g mol ⁻¹)
Zr-UiO-66	0,85	$Zr_6O_4(OH)_4(C_8H_4O_4)_{5.15}[(H_2O)(OH)]_{1.7}$	1583,82
Ce-UiO-66	1,85	$Ce_6O_4(OH)_4(C_8H_4O_4)_{4.15}[(H_2O)(OH)]_{3.7}$	1783,1
Hf-UiO-66	1,05	$Hf_6O_4(OH)_4(C_8H_4O_4)_{4.95}[(H_2O)(OH)]_{2.1}$	2085,4

Table S3 Defect determination for M-UiO-66

Defect determination for M-UiO-66-PDC via TGA

Defect determination via TGA was calculated according to Lázaro.⁷ **Table S4** Defect determination for M-UiO-66-PDC

Material	Wexp.Pla	NLexp	Missing Linker	Molecular Formula
Zr-UiO-66-PDC	186	4,1	1,9	$Zr_6O_4(OH)_4(C_7NH_4O_4)_{4.1}[(H_2O)(OH)]_{3.8}$
Ce-UiO-66-PDC	170	4,7	1,3	$Ce_6O_4(OH)_4(C_7NH_4O_4)_{4.7}[(H_2O)(OH)]_{2.6}$
Hf-UiO-66-PDC	167	5,5	0,5	$Hf_{6}O_{4}(OH)_{4}(C_{7}NH_{4}O_{4})_{5.5}[(H_{2}O)(OH)]_{1.0}$

Figure S7. Thermogravimetric analysis of M-UiO-66-PDC for defect determination.

CO₂ adsorption parameters and error range

Figure S8. Freundlich-Langmuir fit parameters for each curve.

Figure S9. CO_2 adsorption curves under logarithmic scale to visualize the error at low pressures.

Compound	Uptake at 95 kPa and 263 K [mmol g ⁻¹]	Uptake at 95 kPa and 273 K [mmol g ⁻¹]	Uptake at 95 kPa and 283 K [mmol g ⁻¹]
Zr-UiO-66	2.10	1.46	1.23
Zr-UiO-66-PDC	4.18	2.77	1.53
Ce-UiO-66	4.72	4.20	2.90
Ce-UiO-66-PDC	4.12	3.54	3.04
Hf-UiO-66	1.76	1.49	1.15
Hf-UiO-66-PDC	2.22	1.86	1.54

Table S5. CO₂ adsorption of the materials at the maximum measured pressure.

Figure S10. Comparison of adsorption capacity between cycles of Zr-UiO-66-PDC, all cycles have been normalized respective to first cycle.

Computational Analysis

Figure S11. Structural Model $M_6O_4(OH)_4(Linker)_3(HCOO^-)_8]/CO_2$ (M = Zr (IV), Ce (IV), and Hf (IV); linker = BDC or PDC), representation of the M-UiO-66 truncated

Figure S12. Contours of deformation density channels ($\Delta \rho_1$) with the corresponding energies, in kcal/mol, describing the donor–acceptor interaction in M-UiO-66/CO₂ systems

Figure S13. Contours of deformation density channels ($\Delta \rho_2$) with the corresponding energies, in kcal/mol, describing the donor–acceptor interaction in M-UiO-66/CO₂ systems

Table S6. Selected bond lengths and hydrogen bond in the Ground state (S_0) distances (Å) at M06L/TZ2P/ZORA

Matarials/	M-O1	M-O2	M-O3	
	(M–µ ₃ -OH)	(M–µ3-O)	(M-OOC-R)	01
UiO-66-Zr	2.25(5)	2.12(5)	2.21(1)	
UiO-66-Ce	2.44(3)	2.28(2)	2.36(0)	
UiO-66-Hf	2.26(5)	2.13(4)	2.21(2)	03
UiO-66-Zr ⁸	2.27	2.07	2.23	02
UiO-66-Ce ⁹	2.45	2.25	2.47	
UiO-66-Hf ¹⁰	2.27	2.06(7)	2.21	A
UiO-66-Zr-PDC	2.28(2)	2.24(2)	2.16(4)	
UiO-66-Ce-PDC	2.44(8)	2.29(0)	2.36(7)	
UiO-66-Hf -PDC	2.27(3)	2.27(4)	2.16(1)	

Table S7. Optimized molecular structures of M-UiO-66 at M06L/ TZ2P/ZORA

Materials/	MCO ₂	-О-Н····СО 2 (–µ3-ОН)	Ο … CO ₂ (-μ ₃ -O)	_
UiO-66-Ce····CO ₂	3.040	3.296	3.362	
UiO-66-Zr···CO ₂	2.962	3.173	3.231	
UiO-66-Hf···CO ₂	2.925	3.150	3.180	
UiO-66-Ce-PDC····CO ₂	3.035	3.300	3.342	
UiO-66-Zr-PDC····CO ₂	3.181	3.063	3.090	
UiO-66-Hf-PDC····CO ₂	3.374	3.038	3.025	

Table S8. Selected bond lengths and hydrogen bond in the Ground state (S_0) distances (Å) at M06-L/TZ2P/ZORA theoretical level.

Table S9. Morokuma–Ziegler scheme energy decomposition analysis (EDA), values in kcal/mol, for all interacting systems M-UiO-66/CO₂.

System	ΔE_{Pauli}	ΔE_{Elec}	ΔE _{Orb}	ΔE_{Disp}	ΔE_{Int}
UiO-66-Zr	16.82	-10.37 (42 %)	-7.54 (31%)	-6.75 (27 %)	-7.83
UiO-66-Ce	13.55	-9.28 (42 %)	-6.67 (31%)	-5.91 (27 %)	-8.31
UiO-66-Hf	18.82	-12.27 (45 %)	-8.49 (31%)	-6.39 (24 %)	-8.33
UiO-66-Zr-PDC	11.75	-8.97 (48 %)	-4.77 (22 %)	-6.02 (29%)	-8.01
UiO-66-Ce-PDC	13.67	-9.36 (45%)	-6.85 (24 %)	-5.92 (30 %)	-8.46
UiO-66-Hf-PDC	10.54	-8.34 (42 %)	-3.87 (31%)	-5.00 (27 %)	-6.67

Kinetics of adsorption

Kinetics data was obtained from the same report of CO_2 adsorption capacity experiments, where the points are collected in a batch system in the relative pressure range of $0.05 \le P/P_0 \le 0.99$. That means each point is graphed as an amount adsorbed in function of time. The amount adsorbed is obtained by adding a small known amount of adsorbate (CO_2) and taking the time it takes to the pressure to stop reducing (and that is converted to an adsorbed amount). Then another alicuote of adsorbate is added to graph another point and the process is repeated until de relative pressure reaches the value of 0.99.

Kinetic Model

			Avrami fractional-orde	er
		263 K	273 K	283 K
UiO-66-Zr	K _{Av}	0.03064	0.02994	0.03008
	n_{Av}	3.8283	3.90391	4.30755
	q _e	2.05989	1.4636	1.2108
	R ²	0.99449	0.99075	0.99154
UiO-66-Zr-PDC	K_{Av}	0.02851	0.03326	0.02688
	n_{Av}	3.88066	4.34535	3.57448
	q _e	4.18614	2.72374	1.52613
	R ²	0.99414	0.99597	0.9959
UiO-66-Ce	K_{Av}	0.0309	0.0312	0.03095
	n _{Av}	3.80977	4.50818	4.17657
	q _e	4.62802	4.0901	2.84934
	R ²	0.99717	0.9959	0.99639
UiO-66-Ce-PDC	K_{Av}	0.03156	0.03132	0.03154
	n_{Av}	2.83463	3.52024	3.73543
	q _e	4.15888	3.5137	3.00462
	R ²	0.99681	0.99692	0.99726
UiO-66-Hf	K_{Av}	0.03179	0.03155	0.03154
	n _{Av}	3.7351	3.93656	3.94531
	q _e	1.73921	1.47132	1.13783
	\mathbb{R}^2	0.99394	0.99408	0.9922
UiO-66-Hf-PDC	K_{Av}	0.03336	0.03232	0.03301
	n _{Av}	3.69314	4.03082	3.73094
	q _e	2.22111	1.85187	1.54021
	R ²	0.99453	0.99163	0.99177

Table S10. Resume of avrami's kinetic model parameters.

		Pseudo-first order				Pseuc	lo-second or	der
		263 K	273 K	283 K		263 K	273 K	283 K
UiO-66-Zr	K ₁	0.02587	0.01769	0.02224	Ks	0.0024	0.00153	0.00282
	q_e	3.61239	3.38092	2.44738	q_e	6.26893	6.24395	4.40217
	\mathbb{R}^2	0.96797	0.95882	0.95719	\mathbb{R}^2	0.96625	0.95792	0.9559
UiO-66-Zr-PDC	K_1	0.03099	0.04563	0.02867	K_s	0.00186	0.0052	0.00446
	q_e	6.28184	3.68129	2.36023	q_e	10.35126	5.79622	3.93397
	\mathbb{R}^2	0.96464	0.96957	0.98112	\mathbb{R}^2	0.96163	0.965	0.97948
UiO-66-Ce	K_1	0.02917	0.02489	0.0235	K_s	0.00136	0.00105	0.00135
	q_e	7.54962	7.57988	5.48316	q_e	12.81406	13.40191	9.76773
	\mathbb{R}^2	0.97526	0.95614	0.96598	\mathbb{R}^2	0.9733	0.95421	0.96453
UiO-66-Ce-PDC	K_1	0.03865	0.04883	0.04606	Ks	0.00323	0.00535	0.00525
	q_e	5.33483	4.34943	3.89047	q_e	8.20574	6.51222	5.9926
	\mathbb{R}^2	0.97512	0.97654	0.97767	\mathbb{R}^2	0.9709	0.97177	0.97346
	17	0.02201	0.02022	0.02000	17	0.00460	0.00400	0.00510
U10-66-HI	\mathbf{K}_1	0.03381	0.02932	0.02889	K _s	0.00469	0.00408	0.00512
	q_e	2.6633	2.47306	1.93022	q_e	4.42619	4.2417	3.31967
	\mathbb{R}^2	0.96735	0.96549	0.961	\mathbb{R}^2	0.96476	0.96344	0.95894
	V	0.04803	0.04521	0.04214	V	0.00764	0.00754	0.00821
010-00-mi-FDC	κı	0.04895	0.04321	0.04314	\mathbf{K}_{S}	0.00704	0.00734	0.00051
	q _e	2.8672	2.51033	2.12021	q _e	4.402	3.95864	3.37799
	\mathbb{R}^2	0.96134	0.95555	0.96258	\mathbb{R}^2	0.95611	0.95092	0.95862

 Table S11. Resume of pseudo-first order and pseudo-second order kinetic model parameters.

For pseudo-first and pseudo-second order the time t = 0 was determined at the point where $dq_t/dt \neq 0$.

Figure S14. Example of the determination of time t = 0 for the non-linear fit of pseudo-first and pseudo-second order kinetic models.

Figure S15. Non-linear fit of pseudo-first order kinetic model.

Figure S16. Non-linear fit of pseudo-second order kinetic model.

Figure S17. Effect of temperature on curves of CO_2 adsorption against time onto M-UiO-66 (M = Zr (IV), Ce (IV), Hf (IV)) with BDC or PDC linker.

Rate-limiting kinetic model

Figure S18. Plots of Boyd's film diffusion model for CO_2 adsorption onto M-UiO-66 with BDC or PDC linker under different temperatures.

Figure S19. Plots of interparticle diffusion model for CO_2 adsorption onto M-UiO-66 with BDC or PDC linker under different temperatures.

Table S12. Linear fitting parameters of interparticle diffusion model.

Material	Temperature	Slope	Intercept	R ²
UiO-66-Zr	263 K	-0.08619	1.07412	0.81648
	273 K	-0.0973	1.09153	0.76701
	283 K	-0.07941	1.13155	0.79124
UiO-66-Zr-PDC	263 K	-0.08039	0.95016	0.79213
	273 K	-0.07721	0.89019	0.78001
	283 K	-0.0778	0.9457	0.77116
UiO-66-Ce	263 K	-0.08329	0.93442	0.77914
	273 K	-0.09798	1.14522	0.66041
	283 K	-0.08561	0.97891	0.75912
UiO-66-Ce-PDC	263 K	-0.08051	0.81262	0.89778
	273 K	-0.09418	1.10393	0.81448
	283 K	-0.09666	1.14354	0.78223
UiO-66-Hf	263 K	-0.09319	1.08837	0.75149
	273 K	-0.08061	0.87309	0.78521
	283 K	-0.08856	0.99759	0.77101
UiO-66-Hf-PDC	263 K	-0.09853	1.09127	0.8262
	273 K	-0.10121	1.18231	0.7802
	283 K	-0.09254	1.02646	0.81829

Figure S20. Plots of intraparticle diffusion model onto M-UiO-66 with BDC or PDC linker under different temperatures.

Isosteric Heat

Calculations of the isosteric heats using the Clausius-Clapeyron equation were performed with a temperature difference of 20 K.

Table S13.	Short bibliog	graphic resear	ch on CO ₂ ac	lsorption and	d reported	isosteric he	eats of di	fferent
MOFs.								

Material	Adsorbate	Experimental conditions	Amount adsorbed (mmol g ⁻¹)	Q _{st} (kJ mol ⁻¹) a = Zero/Low coverage b = High coverage	Ref.
Hf-UiO-66	CO_2	273-298 K and	2,38	22,8ª	11
Hf-UiO-66-NH ₂	CO ₂	1 bar 273-298 K and	3,99	25,6ª	11
Hf-UiO-66-(OH) ₂	CO ₂	1 bar 273-298 K and 1 bar	4,93	28,4ª	11
Hf-UiO-66-(COOH) ₂	CO_2	273-298 K and	1,67	28,2ª	11
Hf-UiO-66-F ₄	CO_2	273-298 K and	1,23	23,4ª	11
Zr-UiO-67-BBS	CO_2	273-298 K and 760 torr	4,84	26,5ª; 22,9 ^b	12
Hf-UiO-67-BBS	CO ₂	273-298 K and 760 torr	4,45	25,1ª	12
Zr-UiO-67	CO_2	273-298 K and 760 torr	2,17	18,5ª	12
Zr-UiO-66-(OH) ₂ -50	CO_2	25-35°C and 100 kPa	4,83	39,6ª	13
Zr-UiO-66-(OH) ₂ -250	CO ₂	25-35°C and 100 kPa	5,63	31,5ª	13
Mg-MOF-74	CO ₂	273-296 K and 1 bar	8	47ª; 30 ^b	14
Co-MOF-74	CO ₂	273-296 K and 1 bar	7,1	37 ^a ; 36 ^b	14
Ni-MOF-74	CO_2	273-296 K and 1 bar	5,8	41ª; 34 ^b	14
Carbonized MOF-5	CO ₂	40-100 °C and 40 bar	2,43 (1 bar)	18ª; 12,5 ^b	15
Zr-UiO-66-1HCl	CO ₂	298-318 K and 1 bar	1,66	25,9ª	16
Zr-UiO-66-2FA	CO ₂	298-318 K and 1 bar	1,42	21,5ª	16
Zr-UiO-66	CO ₂	263-283 K and 95 kPa	2,10	29,5ª; 26,2 ^b	This work
Zr-UiO-66-PDC	CO ₂	263-283 K and 95 kPa	4,17	45,5°; 66,0°	This work
Hf-UiO-66	CO ₂	263-283 K and 95 kPa	1,76	31,8ª; 23,7 ^b	This work
Hf-UiO-66-PDC	CO ₂	263-283 K and 95 kPa	2,22	3,65°; 29,6°	This work
Ce-UiO-66	CO_2	263-283 K and 95 kPa	4,71	24,9ª; 26,2 ^b	This work
Ce-UiO-66-PDC	CO_2	263-283 K and 95 kPa	4,12	21,5 ^a ; 30,5 ^b	This work

95 kPa work The tabulated amount adsorbed corresponds to the captured adsorbent at the maximum pressure and the minimal temperature.

 Q_{st} calculated for each temperature combination. Note that the average $Q_{st}\, curve$ is hided by the 263-283 K $Q_{st}\, curve.$

Figure S21. Q_{st} calculated for all temperature combinations.

Different perspectives of the isosteric heats.

Figure S22. Isosteric heat in function of the amount adsorbed organized by metal center.

References

- 1 M. J. Katz, Z. J. Brown, Y. J. Colón, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp and O. K. Farha, *Chemical Communications*, 2013, **49**, 9449–9451.
- 2 M. Lammert, M. T. Wharmby, S. Smolders, B. Bueken, A. Lieb, K. A. Lomachenko, D. De Vos and N. Stock, *Chemical Communications*, 2015, **51**, 12578–12581.
- S. Waitschat, D. Fröhlich, H. Reinsch, H. Terraschke, K. A. Lomachenko, C. Lamberti, H. Kummer, T. Helling, M. Baumgartner, S. Henninger and N. Stock, *Dalton Transactions*, 2018, **47**, 1062–1070.
- 4 G. C. Shearer, S. Chavan, J. Ethiraj, J. G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga and K. P. Lillerud, *Chemistry of Materials*, 2014, **26**, 4068–4071.
- 5 M. J. Cliffe, W. Wan, X. Zou, P. A. Chater, A. K. Kleppe, M. G. Tucker, H. Wilhelm, N. P. Funnell, F. X. Coudert and A. L. Goodwin, *Nat Commun*, DOI:10.1038/ncomms5176.
- 6 R. C. Klet, Y. Liu, T. C. Wang, J. T. Hupp and O. K. Farha, *J Mater Chem A Mater*, 2016, **4**, 1479–1485.
- 7 I. A. Lázaro, Eur J Inorg Chem, 2020, **2020**, 4284–4294.
- 8 S. Huang, D. G. Truhlar, A. Tang, X. He, H. Yin, Y. Li and Y. Zhang, *Journal of Physical Chemistry C*, 2021, **125**, 9679–9687.
- 9 C. Pazo-Carballo, E. Blanco, E. Camu, A. Leiva, Y. Hidalgo-Rosa, X. Zarate, A. B. Dongil, E. Schott and N. Escalona, *ACS Appl Nano Mater*, , DOI:10.1021/acsanm.2c05555.
- 10 Y. Wei, A. Tang, X. He, H. Chen, H. Yin, Y. Li, Y. Zhang and S. Huang, *Journal of Physical Chemistry C*, 2022, **126**, 4286–4295.
- 11 Z. Hu, A. Nalaparaju, Y. Peng, J. Jiang and D. Zhao, *Inorg Chem*, 2016, **55**, 1134–1141.
- 12 P. Xydias, I. Spanopoulos, E. Klontzas, G. E. Froudakis and P. N. Trikalitis, *Inorg Chem*, 2014, **53**, 679–681.
- 13 T. K. Vo, V. C. Nguyen, D. T. Quang, B. J. Park and J. Kim, *Microporous and Mesoporous Materials*, , DOI:10.1016/j.micromeso.2020.110746.
- 14 S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, *J Am Chem Soc*, 2008, **130**, 10870–10871.
- 15 W. Kukulka, K. Cendrowski, B. Michalkiewicz and E. Mijowska, *RSC Adv*, 2019, **9**, 18527–18537.
- 16 W. Liang, C. J. Coghlan, F. Ragon, M. Rubio-Martinez, D. M. D'Alessandro and R. Babarao, Dalton Transactions, 2016, **45**, 4496–4500.