Supplementary Information

Mononuclear Copper(II) Complexes with Polypyridyl Ligands: Synthesis, Characterization, DNA Interactions/Cleavages and *in vitro* Cytotoxicity towards Human Cancer Cells

Arabinda Muley^a,† Sadananda Kumbhakar^a,† Rajnikant Raut^b, Shobhit Mathur^a, Indrajit Roy^a, Taruna Saini^b, Ashish Misra^{b*}, Somnath Maji^{a*} ^aDepartment of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284 Telangana, India ^bDepartment of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284 Telangana, India <u>ashishmisra@bt.iith.ac.in</u>

† These authors contributed equally

Email address: smaji@chy.iith.ac.in (Somnath Maji)

*Corresponding author

Fig. S1 ¹H NMR spectra of L^2 in CDCl₃.

Fig. S2 13 C NMR spectra of L² in CDCl₃.

Fig. S3 (a) ESI-MS spectra, (b) and (b)[/] are simulated mass spectra of L².

Fig. S4 ESI-MS spectra of [1](ClO₄)₂.

Fig. S5 ESI-MS spectra of [2](ClO₄)₂.

Fig. S6 FT-IR (solid) spectra of L².

Fig. S7 FT-IR (solid) spectra of $[1](ClO_4)_2$.

Fig. S8 FT-IR (solid) spectra of [2](ClO₄)₂.

Fig. S9 Stability of (a) $[1](ClO_4)_2$ and (b) $[2](ClO_4)_2$ verified in Tris-HCl buffer solution (pH 7.2) for two days.

 $\beta = 160.58(14), \alpha = 130.25(13)$

 τ_5 values:

For [**1**](ClO₄)₂ 0.58 (Cu1 and Cu2)

For [**2**](ClO₄)₂ 0.51

 $\beta = 161.3(2), \alpha = 126.83(19)$

Fig. S10 Schematic representation of $[1](ClO_4)_2$ and $[2](ClO_4)_2$ and respective τ_5 values calculation.

(c)

Fig. S11 The polyhedron view of (a) Cu1 center of $[1](ClO_4)_2$ (b) Cu2 center of $[1](ClO_4)_2$ and (c) Cu1 center of $[2](ClO_4)_2$.

Fig. S12 Crystal packing of [1](ClO₄)₂ viewed along *b*-axis.

Fig. S13 Crystal packing of [2](ClO₄)₂ viewed along *b*-axis.

Fig. S14 π - π stacking present in the crystal structures of [1](ClO₄)₂.

Fig. S15 π - π stacking present in the crystal structures of [2](ClO₄)₂.

Fig. S16 CV and DPV of (a) [1](ClO₄)₂ and (b) [2](ClO₄)₂ in acetonitrile using 0.1 M TBAP as supporting electrolyte under argon atmosphere. The peak indicated by * is the deposited copper, for $Cu^0 \rightarrow Cu^I$ oxidation.

Fig. S17 Absorption spectra of $[\mathbf{2}](ClO_4)_2$ (50 µM) in the absence (black) and presence (color) of ss-DNA (10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 µM, respectively) in 5 mM Tris-HCl buffer (pH =7.2). The arrow shows the absorbance changes on increasing DNA concentration. Inset: the plot of A₀/A–A₀ versus 1/[DNA] for the calculation of binding constant of complex $[\mathbf{2}](ClO_4)_2$.

Fig. S18 Agarose gel showing the cleavage of plasmid DNA (pDNA 200 ng/ μ L) at different concentrations upon incubation at 37 °C for 3 h in 50 mM Tris-HCl buffer (pH 7.2). Lane 1: Control; Lane 2-6 pDNA + complex [1](ClO₄)₂ & [2](ClO₄)₂ (A-B). The following concentrations range was used for each complex. Complex [1](ClO₄)₂: 1 μ M, 5 μ M, 25 μ M, 50 μ M, 100 μ M. Complex [2](ClO₄)₂: 5 μ M, 10 μ M, 25 μ M, 50 μ M, 100 μ M.

Fig. S19 Histograms representing the coverage of supercoiled and linear DNA in concentration-dependent cleavage assay.

 Table S1 Concentration-dependent cleavage assay

Sr.No.	Concentrations	Form I (%)	Form II (%)
1	Control	67	33
2	1 µM	66	34
3	5 µM	59	41
4	25 μΜ	68	32
5	50 µM	56	44
6	100 µM	47	53

[1](ClO₄)₂

[**2**](ClO₄)₂

Sr.No.	Concentrations	Form I (%)	Form II (%)
1	Control	37	63
2	5 µM	18	82
3	10 µM	16	84
4	25 μΜ	17	83
5	50 µM	21	79
6	100 µM	15	85

Fig. S20 Histograms representing the coverage of supercoiled and linear DNA in radical scavenging assay.

Table S2 Radical Scavenging assay values

Lanes	Form II%	Form I%
Lane 1	22	78
Lane 2	37	63
Lane 3	83	17
Lane 4	76	24
Lane 5	78	22
Lane 6	88	12

E 1	٦ <i>1</i>		\sim	
	11	(11 12
	- 11	\mathbf{v}		412
L.	`			

[**2**](ClO₄)₂

Lanes	Form II%	Form I%
Lane 1	27	73
Lane 2	35	65
Lane 3	93	7
Lane 4	72	28
Lane 5	46	54
Lane 6	92	8