†Electronic supplementary information (ESI)

Development of ruthenium complexes with S-donor ligands for application in synthesis and, catalytic acceptorless alcohol dehydrogenation and crossed-aldol condensation[†]

Anushri Chandra,^a Pousali Basu,^a Shreya Raha,^{a,§} Papu Dhibar^{a,b} and Samaresh Bhattacharya^{*a}

^a Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700 032, India. E-mail: samareshb.chemistry@jadavpuruniversity.in

^b Department of Chemistry, Brainware University, Kolkata 700 125, India

Contents:

Fig. S1	DFT-optimized structures of the <i>trans</i> and <i>cis</i> isomers of	Pg. 3
	[Ru(L^2) ₂ (dmso) ₂], and the energy difference (ΔE) between them.	
Fig. S2	DFT-optimized structures of the <i>trans</i> and <i>cis</i> isomers of	Pg. 3
	[Ru(L ³) ₂ (dmso) ₂], and the energy difference (ΔE) between them.	
Fig. S3	DFT-optimized structures of the <i>trans</i> and <i>cis</i> isomers of	Pg. 4
	[Ru(L ⁴) ₂ (dmso) ₂], and the energy difference (ΔE) between them.	
Fig. S4	Molecular structure of $[Ru(L^1)_2(dmso)_2]$ showing the disordered	Pg. 5
	methyl carbons.	
Fig. S5	Molecular structure of $[Ru(L^2)_2(dmso)_2]$.	Pg. 6
Table S1	Selected bond distances and bond angles for [Ru(L ²) ₂ (dmso) ₂]	Pg. 6
Fig. S6	Molecular structure of $[Ru(L^3)_2(dmso)_2]$.	Pg. 7
Table S2	Selected bond distances and bond angles for [Ru(L ³) ₂ (dmso) ₂]	Pg. 7
Fig. S7	Molecular structure of $[Ru(L^4)_2(dmso)_2]$ showing the disordered	Pg. 8
	central carbons of the tert-butyl groups.	
Table S3	Selected bond distances and bond angles for [Ru(L ⁴) ₂ (dmso) ₂]	Pg. 8
Fig. S8	Intermolecular C-H···S and C-H···O interactions in the lattice of	Pg. 9
	$[\operatorname{Ru}(\mathrm{L}^3)_2(\operatorname{dmso})_2].$	
Table S4	Selected bond distances and bond angles for [Ru(L ³) ₂ (bpy)]	Pg. 10
Fig. S9	DFT-optimized structure of [Ru(L ²) ₂ (phen)]	Pg. 11
Table S5	Some computed bond distances and bond angles for $[Ru(L^2)_2(phen)]$	Pg. 11
Table S6-	Computed parameters from TDDFT calculations on $[Ru(L^n)_2(dmso)_2]$	Pg. 12-31
S17	$(n = 1-4)$, $[Ru(L^3)_2(bpy)]$ and $[Ru(L^2)_2(phen)]$ for electronic spectral	
	properties in dichloromethane solution & compositions of selected	
	molecular orbitals associated with the electronic spectral transitions	
Fig S10-	Contour plots of the molecular orbitals associated with the electronic	
S15	spectral transitions	
Table S18	Optimization of the reaction conditions for the catalysis	Pg 32
Fig. S16	¹ H NMR spectrum of trapped H ₂ .	Pg. 33
Table S19	Comparison of different catalysts for the acceptorless alcohol	Pg.34
	dehvdrogenation	- 8
Chart S1	Characterization data of $\mathbf{P}_1 - \mathbf{P}_{16}$ and $\mathbf{P}_{18} - \mathbf{P}_{20}$	Pg. 35-58
Fig. S17	Molecular structure of 1,5-bis-(4-methoxyphenyl)-penta-1,4-(<i>E</i> , <i>E</i>)-	Pg. 59
C	dien-3-one (\mathbf{P}_2).	C
Table S20	Selected bond distances and bond angles for P ₂	Pg. 59
Table S21	Comparison of different catalysts for the crossed-aldol reactions	Pg. 60
Table S22	Crystallographic data for $[Ru(L^1)_2(dmso)_2]$ and $[Ru(L^2)_2(dmso)_2]$	Pg. 61
Table S23	Crystallographic data for $[Ru(L^3)_2(dmso)_2]$ and $[Ru(L^4)_2(dmso)_2]$	Pg. 62
Table S24	Crystallographic data for $[Ru(L^3)_2(bpy)]$ and P ₂	Pg. 63

Fig. S1 DFT-optimized structures of the *trans* and *cis* isomers of $[Ru(L^2)_2(dmso)_2]$, and the energy difference (ΔE) between them.

Fig. S2 DFT-optimized structures of the *trans* and *cis* isomers of $[Ru(L^3)_2(dmso)_2]$, and the energy difference (ΔE) between them.

Fig. S3 DFT-optimized structures of the *trans* and *cis* isomers of $[Ru(L^4)_2(dmso)_2]$, and the energy difference (ΔE) between them.

Fig. S4 Molecular structure of $[Ru(L^1)_2(dmso)_2]$ showing the disordered methyl carbons (C2, C22 and C2a, C22a).

Fig. S5 Molecular structure of $[Ru(L^2)_2(dmso)_2]$.

Bond distances (Å)						
Ru1-S1	2.3904(9)	C4-S3	1.684(4)			
Ru1-S2	2.4441(11)	C4-S4	1.690(3)			
Ru1-S3	2.4337(11)	\$5-03	1.473(3)			
Ru1-S4	2.3977(10)	S6-O4	1.478(3)			
Ru1-S5	2.2602(11)	C1-O1	1.320(4)			
Ru1-S6	2.2592(10)	C2-O1	1.457(4)			
C1-S1	1.696(4)	C4-O2	1.329(4)			
C1-S2	1.688(4)	C5-O2	1.455(5)			
Bond angles (°)						
S1-Ru1-S4	162.82(4)	S1-Ru1-S2	72.15(3)			
S2-Ru1-S6	166.61(3)	S3-Ru1-S4	72.29(3)			
S3-Ru1-S5	166.72(4)					

Table S1 Selected bond distances and bond angles for $[Ru(L^2)_2(dmso)_2]$

Fig. S6 Molecular structure of $[Ru(L^3)_2(dmso)_2]$.

Bond distances (Å)						
Ru1-S1	2.4028(5)	C1-S1	1.6946(19)			
Ru1-S2	2.4232(6)	C1-S2	1.698(2			
Ru1-S3	2.2577(6)	C1-O1	1.315(2)			
S3-O2	1.474(2)	C2-O1	1.473(3)			
Bond angles (°)						
S1-Ru1-S1a	162.96(2)	S2a-Ru1-S3a	166.08(2)			
S2-Ru1-S3	166.08(2)	S1-Ru1-S2	72.34(2)			

Table S2 Selected bond distances and bond angles for $[Ru(L^3)_2(dmso)_2]$

Fig. S7 Molecular structure of [Ru(L⁴)₂(dmso)₂] showing the disordered central carbons of the *tert*-butyl groups (C201, C202 and C201a, C202a). The other three carbons of the *tert*-butyl groups are not shown, as they suffer from heavy disorder problem.

Bond distances (Å)						
Ru1-S1	2.3865(11)	C1-S1	1.682(4)			
Ru1-S2	2.4449(13)	C1-S2	1.685(5)			
Ru1-S3	2.2532(13)	C1-O1	1.343(6)			
S3-O2	1.476(4)					
	Bond angles (°)					
S1-Ru1-S1a	164.15(38)	S1-Ru1-S2	71.99(40)			
S2-Ru1-S3	164.22(43)					

Table S3 Selected bond distances and bond angles for $[Ru(L^4)_2(dmso)_2]$

Fig. S8 Intermolecular C-H \cdots S and C-H \cdots O interactions in the lattice of [Ru(L³)₂(dmso)₂].

Bond distances (Å)						
Ru1-S1	2.3935(9)	C5-O2	1.315(5)			
Ru1-S2	2.3904(7)	C1-S1	1.693(3)			
Ru1-S3	2.395(1)	C1-S2	1.683(4)			
Ru1-S4	2.3912(7)	C1-O1	1.328(5)			
Ru1-N1	2.055(2)	C2-O1	1.476(5)			
Ru1-N2	2.061(2)	C2-C3	1.502(7)			
C5-S3	1.695(3)	C2-C4	1.490(6)			
C5-S4	1.683(4)					
	Bond a	angles (°)				
S1-Ru1-S3	163.79(3)	S1-Ru1-S2	72.60(3)			
S2-Ru1-N1	174.08(7)	S3-Ru1-S4	72.60(3)			
S4-Ru1-N2	171.97(3)	N1-Ru1-N2	78.28(8)			

Table S4 Selected bond distances and bond angles for $[Ru(L^3)_2(bpy)]$

Fig. S9 DFT-optimized structure of $[Ru(L^2)_2(phen)]$.

Bond distances (Å)						
Ru1-S1	2.4812	C1-S1	1.7164			
Ru1-S2	2.4810	C1-S2	1.7052			
Ru1-S3	2.4846	C1-O1	1.3305			
Ru1-S4	2.4702	C2-O1	1.4486			
Ru1-N1	2.0970	C4-S3	1.7106			
Ru1-N2	2.0929	C4-S4	1.7084			
		C4-O2	1.3295			
		C5-O2	1.4465			
	Bond a	angles (°)				
S1-Ru1-S4	163.523	S1-Ru1-S2	71.737			
S2-Ru1-N1	169.983	S3-Ru1-S4	71.879			
S3-Ru1-N2	169.517	N1-Ru1-N2	78.965			

Table S5 Some computed bond distances and bond angles for $[Ru(L^2)_2(phen)]$

Table S6Computed parameters from TDDFT calculations on [Ru(L¹)₂(dmso)₂] for
electronic spectral properties in dichloromethane solution

Excited	Composition	CI value	E(eV)	Oscillator	$\lambda_{ ext{theo}}$	Assignment	λ_{exp}
State				strength (f)	(nm)		(nm)
9	$H-1 \rightarrow L$	0.54398	3.7074	0.0151	334.43	MLCT/LLCT	346
	$\text{H-1} \rightarrow \text{L+1}$	0.28212				MLCT/LLCT	
	$\mathrm{H} \rightarrow \mathrm{L}$	0.15373				MLCT/LLCT	
	$H \rightarrow L+1$	0.26411				MLCT/LLCT	
26	$H-7 \rightarrow L+2$	0.20556	5.0205	0.1389	246.95	LMCT/ LLCT	284
	$\text{H-7} \rightarrow \text{L+3}$	0.17035				LMCT/LLCT	
	$\text{H-6} \rightarrow \text{L+2}$	0.50223				LMCT/LLCT	
	$\text{H-5} \rightarrow \text{L+2}$	0.29678				LMCT	
	$H-3 \rightarrow L+3$	0.14770				LMCT	
	$H \rightarrow L+2$	0.11650				LLCT /LMCT	
74	$H-13 \rightarrow L+3$	0.20601	6.3603	0.0985	194.94	LMCT/LLCT	236
	$\text{H-3} \rightarrow \text{L+4}$	0.21991				LMCT	
	$\text{H-2} \rightarrow \text{L+7}$	0.13528				LMCT	
	$\text{H-1} \rightarrow \text{L+8}$	0.10349				MLCT/LLCT	
	$\text{H-1} \rightarrow \text{L+9}$	0.15416				MLCT/LLCT	
	$\text{H-1} \rightarrow \text{L+12}$	0.10071				MLCT/LLCT	
	$H \rightarrow L+11$	0.50848				MLCT/LLCT	

% Contribution	Fragments					
of fragments to	Ru	$L^{1}(1)$	$L^{1}(2)$	DMSO (1)	DMSO (2)	
HOMO (H)	50	8	38	1	3	
H-1	50	38	7	3	2	
H-2	66	17	12	3	2	
H-3	7	36	34	10	13	
H-5	7	15	17	31	30	
H-6	27	14	31	8	20	
H-7	30	26	18	21	5	
H-13	21	37	38	2	2	
LUMO (L)	6	58	35	0	1	
L+1	4	35	60	0	1	
L+2	53	11	16	13	7	
L+3	52	24	17	1	6	
L+4	87	0	0	6	7	
L+7	91	3	3	3	0	
L+8	11	30	6	32	21	
L+9	23	1	18	21	37	
L+11	13	42	4	39	2	
L+12	9	11	19	31	30	

Table S7 Compositions of selected molecular orbitals of $[Ru(L^1)_2(dmso)_2]$ associated with the electronic spectral transitions

HOMO (H)	H-1	H-2	H-3
H-5	H-6	H-7	H-13
LUMO (L)	L+1	L+2	L+3
L+4	L+7	L+8	L+9

Fig. S10 Contour plots of the molecular orbitals of $[Ru(L^1)_2(dmso)_2]$, which are associated with the electronic spectral transitions (See **Table S6**).

Excited	Composition	CI value	<i>E</i> (eV)	Oscillator	$\lambda_{ ext{theo}}$	Assignment	λ_{exp}
State				strength (f)	(nm)		(nm)
9	$H-1 \rightarrow L$	0.60432	3.7162	0.0160	333.64	MLCT/LLCT	347
	$\text{H-1} \rightarrow \text{L+1}$	0.14342				MLCT/LLCT	
	$H \rightarrow L+1$	0.27974				MLCT/LLCT	
26	$H-7 \rightarrow L+2$	0.25423	5.0233	0.1430	246.82	LMCT/ LLCT	285
	$\text{H-7} \rightarrow \text{L+3}$	0.13889				LMCT/LLCT	
	$H-6 \rightarrow L+2$	0.48971				LMCT/LLCT	
	$H-3 \rightarrow L+3$	0.14097				LMCT	
	$H \rightarrow L+2$	0.12147				LLCT/LMCT	
72	$H-13 \rightarrow L+1$	0.11096	6.3243	0.1163	196.04	MLCT/LLCT	237
	$H-13 \rightarrow L+3$	0.21573				LMCT/LLCT	
	$H-12 \rightarrow L+2$	0.17009				LMCT/LLCT	
	$H-4 \rightarrow L+4$	0.20482				LMCT/LLCT	
	$\text{H-3} \rightarrow \text{L+4}$	0.30120				LMCT	
	$\text{H-2} \rightarrow \text{L+7}$	0.17294				LMCT	
	$H-2 \rightarrow L+8$	0.22678				MLCT/LLCT	
	$\text{H-1} \rightarrow \text{L+9}$	0.26937				MLCT/LLCT	
	$\text{H-1} \rightarrow \text{L+10}$	0.18582				MLCT/LLCT	

Table S8Computed parameters from TDDFT calculations on [Ru(L2)2(dmso)2] for
electronic spectral properties in dichloromethane solution

% Contribution	Fragments					
of fragments to	Ru	$L^{2}(1)$	$L^{2}(2)$	DMSO (1)	DMSO (2)	
HOMO (H)	50	9	37	1	3	
H-1	50	37	9	2	2	
H-2	65	18	12	3	2	
H-3	9	37	34	8	12	
H-4	17	36	37	5	5	
H-6	26	14	30	9	21	
H-7	31	27	18	20	4	
H-12	28	24	29	11	8	
H-13	21	34	41	2	2	
LUMO (L)	6	62	31	0	1	
L+1	4	32	64	0	0	
L+2	53	10	16	14	7	
L+3	52	24	17	1	6	
L+4	86	1	0	6	7	
L+7	92	0	6	2	0	
L+8	11	25	5	36	23	
L+9	24	1	15	23	37	
L+10	11	12	36	8	33	

Table S9 Compositions of selected molecular orbitals of $[Ru(L^2)_2(dmso)_2]$ associated with the electronic spectral transitions

Fig. 11 Contour plots of the molecular orbitals of $[Ru(L^2)_2(dmso)_2]$, which are associated with the electronic spectral transitions (See **Table S8**).

Excited	Composition	CI value	<i>E</i> (eV)	Oscillator	$\lambda_{ ext{theo}}$	Assignment	λexp
State				strength (f)	(nm)		(nm)
10	$H-2 \rightarrow L$	0.10111	3.7320	0.0198	332.22	MLCT/LLCT	345
	$\text{H-1} \rightarrow \text{L+1}$	0.64772				MLCT/LLCT	
	$H-1 \rightarrow L+3$	0.15926				MLCT/LLCT	
	$H \rightarrow L$	0.16827				MLCT/LLCT	
25	$H-7 \rightarrow L+3$	0.10910	5.0142	0.1837	247.27	LMCT	286
	$H-6 \rightarrow L+2$	0.53426				LMCT	
	$H-5 \rightarrow L+2$	0.35139				LMCT	
	$H-3 \rightarrow L+3$	0.14814				LMCT	
	$H \rightarrow L+2$	0.12279				LLCT	
73	$H-13 \rightarrow L+3$	0.16218	6.3218	0.1614	196.12	LMCT/LLCT	238
	$H-12 \rightarrow L+2$	0.14175				LMCT/LLCT	
	$H-5 \rightarrow L+5$	0.13576				LMCT	
	$H-3 \rightarrow L+4$	0.25160				LMCT	
	$\text{H-2} \rightarrow \text{L+7}$	0.10755				LMCT/LLCT	
	$H-2 \rightarrow L+8$	0.38866				MLCT/LLCT	
	$\text{H-1} \rightarrow \text{L+9}$	0.27524				LLCT/MLCT	
	$\text{H-1} \rightarrow \text{L+10}$	0.16223				MLCT	
	$H-1 \rightarrow L+12$	0.15338				MLCT/LLCT	
1	1	1	1		1	1	1

Table S10Computed parameters from TDDFT calculations on $[Ru(L^3)_2(dmso)_2]$ for
electronic spectral properties in dichloromethane solution

% Contribution		Fragments				
of fragments to	Ru	$L^{3}(1)$	$L^{3}(2)$	DMSO (1)	DMSO (2)	
HOMO (H)	50	23	23	2	2	
H-1	50	23	23	2	2	
H-2	65	15	14	3	3	
H-3	7	37	37	10	9	
H-5	7	17	17	30	29	
H-6	19	19	18	22	22	
H-7	40	24	24	6	6	
H-12	26	28	28	9	9	
H-13	22	37	37	2	2	
LUMO (L)	9	45	45	0	1	
L+1	4	48	48	0	0	
L+2	50	14	14	11	11	
L+3	52	21	21	3	3	
L+4	85	4	5	3	3	
L+5	73	0	0	13	14	
L+7	82	7	7	2	2	
L+8	12	12	10	33	33	
L+9	30	6	6	29	29	
L+10	8	32	32	14	14	
L+12	14	15	15	28	28	

Table S11 Compositions of selected molecular orbitals of $[Ru(L^3)_2(dmso)_2]$ associated with the electronic spectral transitions

Fig. S12 Contour plots of the molecular orbitals of $[Ru(L^3)_2(dmso)_2]$, which are associated with the electronic spectral transitions (See **Table S10**).

Excited	Composition	CI value	<i>E</i> (eV)	Oscillator	$\lambda_{ ext{theo}}$	Assignment	λ_{exp}
State				strength (f)	(nm)		(nm)
10	$H-2 \rightarrow L$	0.10618	3.6858	0.0193	336.38	MLCT/LLCT	345
	$\text{H-1} \rightarrow \text{L+1}$	0.65694				MLCT/LLCT	
	$H-1 \rightarrow L+3$	0.11120				MLCT/LLCT	
	$H \rightarrow L$	0.17414				MLCT/LLCT	
25	$\text{H-7} \rightarrow \text{L+3}$	0.13542	5.0234	0.1669	246.81	LMCT	283
	$\text{H-6} \rightarrow \text{L}$	0.16854				LLCT/MLCT	
	$\text{H-6} \rightarrow \text{L+2}$	0.52297				LMCT	
	$\text{H-5} \rightarrow \text{L+2}$	0.31405				LMCT	
	$H-3 \rightarrow L+3$	0.16320				LMCT	
	$H \rightarrow L+2$	0.12923				LLCT/LMCT	
74	$H-16 \rightarrow L+1$	0.10296	6.2953	0.0945	196.95	MLCT	240
	$\text{H-15} \rightarrow \text{L}$	0.15666				LMCT/LLCT	
	$\text{H-14} \rightarrow \text{L+1}$	0.13018				MLCT/LLCT	
	$\text{H-12} \rightarrow \text{L+2}$	0.19600				LMCT/LLCT	
	$\text{H-4} \rightarrow \text{L+4}$	0.25886				LMCT	
	$\text{H-3} \rightarrow \text{L+4}$	0.20642				LMCT	
	$\text{H-2} \rightarrow \text{L+7}$	0.11601				LMCT	
	$\text{H-1} \rightarrow \text{L+9}$	0.28232				LLCT/MLCT	
	$\text{H-1} \rightarrow \text{L+10}$	0.30329				MLCT	
	$\text{H-1} \rightarrow \text{L+12}$	0.13713				MLCT/LLCT	
	$H \rightarrow L+11$	0.18178				MLCT	

Table S12Computed parameters from TDDFT calculations on $[Ru(L^4)_2(dmso)_2]$ for
electronic spectral properties in dichloromethane solution

% Contribution		Fragments				
of fragments to	Ru	L ⁴ (1)	L ⁴ (2)	DMSO(1)	DMSO (2)	
HOMO (H)	49	24	23	2	2	
H-1	50	23	23	2	2	
H-2	64	15	15	3	3	
H-3	7	37	37	9	10	
H-4	17	38	38	4	3	
H-5	8	17	17	29	29	
H-6	19	18	18	22	23	
H-7	41	24	25	5	5	
H-12	29	25	25	11	10	
H-14	16	40	40	2	2	
H-15	4	48	48	0	0	
H-16	12	44	44	0	0	
LUMO (L)	6	47	46	1	0	
L+1	4	48	48	0	0	
L+2	53	12	13	11	11	
L+3	52	21	21	3	3	
L+4	89	3	4	2	2	
L+7	78	10	10	1	1	
L+9	27	9	10	27	27	
L+10	10	29	28	16	17	
L+11	14	23	24	20	19	
L+12	10	15	15	30	30	

Table S13Compositions of selected molecular orbitals of $[Ru(L^4)_2(dmso)_2]$
associated with the electronic spectral transitions

HOMO (H)	H-1	H-2	H-3
H-4	H-5	H-6	H-7
H-12	H-14	H-15	H-16
LUMO (L)	L+1	L+2	L+3

Fig. S13 Contour plots of the molecular orbitals of $[Ru(L^4)_2(dmso)_2]$, which are associated with the electronic spectral transitions (See **Table S12**).

Excited	Composition	CI value	<i>E</i> (eV)	Oscillator	$\lambda_{ ext{theo}}$	Assignment	λ_{exp}
State				strength (f)	(nm)		(nm)
3	$H-2 \rightarrow L$	0.38146	2.5033	0.1017	495.29	MLCT/LLCT	560
	$H-1 \rightarrow L$	0.56561				MLCT/LLCT	
	$H \rightarrow L+5$	0.12297				MLCT	
14	$H-2 \rightarrow L+1$	0.46287	3.2995	0.0384	375.77	MLCT/ LLCT	409
	$H-2 \rightarrow L+2$	0.20042				MLCT/LLCT	
	$\text{H-1} \rightarrow \text{L+1}$	0.21778				MLCT/LLCT	
	$H-1 \rightarrow L+2$	0.33870				MLCT/LLCT	
	$\text{H-1} \rightarrow \text{L+6}$	0.10499				LLCT/MLCT	
	$H \rightarrow L+4$	0.19244				MLCT/LLCT	
22	$H-3 \rightarrow L$	0.40488	3.6229	0.1456	342.22	LLCT/MLCT	378
	$H-2 \rightarrow L+1$	0.14001				MLCT/LLCT	
	$H-2 \rightarrow L+4$	0.41210				MLCT/LLCT	
	$\text{H-1} \rightarrow \text{L+1}$	0.20206				MLCT/LLCT	
	$H-1 \rightarrow L+3$	0.10930				MLCT/LLCT	
	$\text{H-1} \rightarrow \text{L+4}$	0.14342				MLCT/LLCT	
	$\text{H-1} \rightarrow \text{L+6}$	0.10009				LLCT/MLCT	
	$H \rightarrow L+4$	0.16497				MLCT/LLCT	
28	$H-6 \rightarrow L$	0.55046	4.4206	0.2723	280.47	LLCT/MLCT	299
	$H-4 \rightarrow L+2$	0.20889				LLCT/MLCT	
	$H-3 \rightarrow L+2$	0.25077				LLCT/MLCT	
	$H-3 \rightarrow L+4$	0.15431				LLCT/MLCT	
48	$H-5 \rightarrow L+1$	0.12309	5.0939	0.1981	243.40	LLCT/MLCT	290
	$H-5 \rightarrow L+3$	0.14403				LLCT/MLCT	
	$H-5 \rightarrow L+4$	0.13169				LLCT/MLCT	
	$H-5 \rightarrow L+5$	0.38799				LMCT	
	$H-4 \rightarrow L+5$	0.39837				LMCT	
	$H-3 \rightarrow L+5$	0.15756				LMCT	
	$H-3 \rightarrow L+6$	0.11123				LMCT/LLCT	
	$H \rightarrow L+8$	0.16743				LMCT	

Table S14Computed parameters from TDDFT calculations on [Ru(L³)₂(bpy)] for
electronic spectral properties in dichloromethane solution

% Contribution	Fragments					
of fragments to	Ru	$L^{3}(1)$	L ³ (2)	bpy		
HOMO (H)	66	14	17	3		
H-1	59	15	15	11		
H-2	72	12	9	7		
H-3	8	44	43	5		
H-4	11	45	40	4		
H-5	24	32	39	5		
H-6	19	38	38	5		
LUMO (L)	6	1	1	92		
L+1	4	1	0	95		
L+2	2	0	0	98		
L+3	6	92	1	1		
L+4	6	1	92	1		
L+5	54	20	22	4		
L+6	57	14	13	16		
L+8	91	4	3	2		

Table S15Compositions of selected molecular orbitals of $[Ru(L^3)_2(bpy)]$ associated
with the electronic spectral transitions

Fig. S14 Contour plots of the molecular orbitals of $[Ru(L^3)_2(bpy)]$, which are associated with the electronic spectral transitions (See **Table S14**).

Excited	Composition	CI value	<i>E</i> (eV)	Oscillator	$\lambda_{ ext{theo}}$	Assignment	λ_{exp}
State				strength (f)	(nm)		(nm)
4	$H-2 \rightarrow L$	0.15308	2.5195	0.0443	492.11	MLCT/LLCT	540
	$\text{H-2} \rightarrow \text{L+1}$	0.40989				MLCT/LLCT	
	$\text{H-1} \rightarrow \text{L}$	0.45837				MLCT/LLCT	
	$H-1 \rightarrow L+1$	0.14257				MLCT/LLCT	
	$H \rightarrow L+1$	0.22241				MLCT/LLCT	
	$H \rightarrow L+5$	0.14750				MLCT	
7	$H-2 \rightarrow L$	0.10867	2.7212	0.1338	455.63	MLCT/ LLCT	496
	$\text{H-2} \rightarrow \text{L+1}$	0.53525				MLCT/LLCT	
	$\text{H-1} \rightarrow \text{L}$	0.39303				MLCT/LLCT	
	$H \rightarrow L+1$	0.14678				MLCT/LLCT	
15	$H-2 \rightarrow L+2$	0.19555	3.3169	0.0419	373.80	MLCT	351
	$H-2 \rightarrow L+3$	0.52184				MLCT	
	$\text{H-1} \rightarrow \text{L+3}$	0.40663				MLCT	
24	$H-6 \rightarrow L$	0.12879	3.9000	0.0440	317.91	LLCT/MLCT	324
	$\text{H-2} \rightarrow \text{L+4}$	0.38011				MLCT/LLCT	
	$\text{H-1} \rightarrow \text{L+4}$	0.54648				MLCT/LLCT	
42	$H-9 \rightarrow L$	0.32779	4.8097	0.4374	257.78	MLCT	269
	$\text{H-8} \rightarrow \text{L}$	0.45029				LLCT/MLCT	
	$\text{H-8} \rightarrow \text{L+4}$	0.10327				LLCT/MLCT	
	$H-6 \rightarrow L+1$	0.28400				LLCT/MLCT	
	$H-5 \rightarrow L+3$	0.10516				MLCT/LLCT	
	$H-4 \rightarrow L+5$	0.10628				LMCT	
	$H-1 \rightarrow L+7$	0.12297				LLCT/LMCT	

Table S16Computed parameters from TDDFT calculations on $[Ru(L^2)_2(phen)]$ for
electronic spectral properties in dichloromethane solution

% Contribution	Fragments					
of fragments to	Ru	$L^{2}(1)$	$L^{2}(2)$	phen		
HOMO (H)	66	14	17	3		
H-1	57	16	15	12		
H-2	74	12	8	6		
H-4	12	45	39	4		
H-5	24	33	38	5		
H-6	19	38	37	6		
H-8	23	31	33	13		
H-9	1	1	1	97		
LUMO (L)	7	1	1	91		
L+1	1	0	0	99		
L+2	6	35	11	48		
L+3	5	51	31	13		
L+4	4	7	52	37		
L+5	54	20	22	4		
L+7	58	14	13	15		

Table S17Compositions of selected molecular orbitals of $[Ru(L^2)_2(phen)]$ associated
with the electronic spectral transitions

Fig. S15 Contour plots of the molecular orbitals of $[Ru(L^2)_2(phen)]$, which are associated with the electronic spectral transitions (See **Table S16**).

Entry	Mole % of	Solvent	Base	Mole %	Temp,	Time,	Yield,
	catalyst			of base	°C	h	%
1	1	2-propanol	КОН	1	83	6	43
2	1	2-propanol	КОН	1	83	3	40
3	1	2-propanol	КОН	0.5	83	6	52
4	1	2-propanol	KO ^t Bu	1	83	6	81
5	1	2-propanol	KO ^t Bu	0.5	83	6	79
6	0.5	2-propanol	KO ^t Bu	0.5	83	6	75
7	0.5	2-propanol	KO ^t Bu	0.5	83	8	60
8	0.5	2-propanol	K ₃ PO ₄	0.5	83	6	9
9	0.25	2-propanol	KO ^t Bu	0.5	83	6	36
10	-	2-propanol	KO ^t Bu	0.5	83	6	NO
11	0.5	2-propanol	-	-	83	6	NO
12	0.5	2-propanol	KO ^t Bu	0.25	83	6	29
13	1	1-propanol	КОН	1	97	6	NO
14	1	1-propanol	KO ^t Bu	1	97	6	NO
15	0.5	ethanol	KO ^t Bu	0.5	78	6	NO
16 ^b	0.5	2-propanol	KO ^t Bu	0.5	83	6	73
17 ^c	0.5	2-propanol	KO ^t Bu	0.5	83	6	75
18^d	0.5	2-propanol	KO ^t Bu	0.5	83	6	70

Table S18 Optimization of the reaction conditions for the catalysis^a

^{*a*} Reaction conditions: Catalyst, [Ru(L³)₂(dmso)₂]; substrate, 4-methoxybenzaldehyde

(1 mmol); solvent (5.0 mL). ^b Catalyst, $[Ru(L^1)_2(dmso)_2]$ ^c Catalyst, $[Ru(L^2)_2(dmso)_2]$

^{*d*} Catalyst, $[Ru(L^4)_2(dmso)_2]$

Fig. S16 ¹H NMR spectrum of H_2 generated from cycle-I, trapped in CDCl₃.

 Table S19
 Comparison of different catalysts for the acceptorless alcohol dehydrogenation

Chart S1 NMR spectral characterization data for the organic products.

1,5-diphenyl-penta-1,4-(*E*,*E*)-**dien-3-one** (**P**₁). Yellow solid. Yield: 80%. ¹H NMR (400 MHz, CDCl₃): δ 7.10 (2H, d, *J* = 15.9) 7.31 – 7.49 (6H, m), 7.62 (4H, dd, *J* = 6.8, 2.9), 7.75 (2H, d, *J* = 16.0). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 125.5, 128.5, 129.1, 130.6, 134.9, 143.4, 189.0.

1,5-Bis-(4-methoxyphenyl)-penta-1,4-(*E*,*E*)-**dien-3-one** (**P**₂). Yellow solid. Yield: 75%. ¹H NMR (400 MHz, CDCl₃): δ 3.87 (6H, s), 6.94 – 7.00 (6H, m), 7.59 (4H, d, *J* = 8.9), 7.73 (2H, d, *J* = 15.9). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 55.4, 114.4, 123.4, 127.7, 130.1, 142.9, 161.6, 188.9.

1,5-Bis-(4-methylphenyl)-penta-1,4-(*E*,*E*)-**dien-3-one** (**P**₃). Yellow solid. Yield: 89%. ¹H NMR (400 MHz, CDCl₃): δ 2.42 (6H, s), 7.07 (2H, d, *J* = 15.9), 7.25 (4H, d, *J* = 8.1), 7.54 (4H, d, *J* = 8.1), 7.75 (2H, d, *J* = 15.9). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 21.6, 124.6, 128.5, 129.8, 132.2, 141.0, 143.3, 189.2.

1,5-Bis-(4-fluorophenyl)-penta-1,4-(*E*,*E*)-**dien-3-one** (**P**4). Yellow solid. Yield: 51%. ¹H NMR (400 MHz, CDCl₃): δ 7.01 (2H, d, *J* = 15.8), 7.12 (4H, m), 7.62 (4H, dd, *J* = 5.4, 3.5), 7.72 (2H, d, *J* = 15.9). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 116.0 (²*J*_{*C*-*F*} = 22.2, *1st* Ar<u>*C*</u>H), 116.3 (²*J*_{*C*-*F*} = 22.2, *2nd* Ar<u>*C*</u>H), 126.9 (⁶*J*_{*C*-*F*} = 2.0, Ar-CH=<u>*C*</u>H-), 126.9 (⁶*J*_{*C*-*F*} = 2.0, Ar-CH=<u>*C*</u>H-), 126.9 (⁶*J*_{*C*-*F*} = 2.0, Ar-CH=<u>*C*</u>H-), 130.3 (³*J*_{*C*-*F*} = 8.1, *1st* Ar<u>*C*</u>H), 130.3 (³*J*_{*C*-*F*} = 8.1, *2nd* Ar<u>*C*</sub>H), 131.0 (⁴*J*_{*C*-*F*} = 3.0, Ar<u>*C*</u>), 142.1 (Ar-<u>*C*</u>H=CH-), 162.8 (¹*J*_{*C*-*F*} = 251.2 Ar<u>*C*</u>-F), 165.3 (¹*J*_{*C*-*F*} = 251.2 Ar<u>*C*</u>-F), 188.5. ¹⁹F NMR (377 MHz, CDCl₃): δ -109.5.</u>

1,5-Bis-(4-chlorophenyl)-penta-1,4-(*E*,*E*)-**dien-3-one** (**P**5). Yellow solid. Yield: 72%. ¹H NMR (400 MHz, CDCl₃): δ 7.05 (2H, d, *J* = 16.0), 7.42 (4H, d, *J* = 8.4), 7.57 (4H, d, *J* = 8.6), 7.71 (2H, d, *J* = 16.0). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 125.7, 129.3, 129.5, 133.2, 136.5, 142.1, 188.3.

1,5-Bis-(4-bromophenyl)-penta-1,4-(*E*,*E*)-**dien-3-one** (**P**₆). Yellow solid. Yield: 59%. ¹H NMR (400 MHz, CDCl₃): δ 7.06 (2H, d, *J* = 16.0), 7.49 (4H, d, *J* = 8.6), 7.57 (4H, d, *J* = 8.6), 7.68 (2H, d, *J* = 15.9). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 124.9, 125.8, 129.8, 132.3, 133.6, 142.2, 188.4. **1,5-Bis-(4-iodophenyl)-penta-1,4-**(*E*,*E*)-**dien-3-one** (**P**₇). Yellow solid. Yield: 54%. ¹H NMR (400 MHz, CDCl₃): δ 7.07 (2H, d, *J* = 15.9), 7.35 (4H, dd, *J* = 8.3, 2.0), 7.66 (2H, d, *J* = 15.9), 7.78 (4H, dd, *J* = 7.6, 2.2). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 96.8, 125.9, 129.7, 134.2, 138.2, 142.1, 188.3.

1,5-Bis-(2-methoxyphenyl)-penta-1,4-(*E*,*E*)-**dien-3-one** (**P**₈). Yellow solid. Yield: 81%. ¹H NMR (400 MHz, CDCl₃): δ 3.93 (6H, s), 6.95 (2H, dd, *J* = 8.5, 1.1), 7.01 (2H, td, *J* = 7.5, 1.1), 7.20 (2H, d, *J* = 16.1), 7.39 (2H, m), 7.64 (2H, dd, *J* = 7.7, 1.8), 8.09 (2H, d, *J* = 16.2). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 55.6, 111.2, 120.8, 124.0, 126.2, 128.7, 131.6, 138.3, 158.6, 190.1.

1,5-Bis-(2-fluorophenyl)-penta-1,4-(*E*,*E*)-**dien-3-one** (**P**₉). Yellow solid. Yield: 48%. ¹H NMR (400 MHz, CDCl₃): δ 7.11 – 7.20 (6H, m), 7.29 – 7.34 (2H, m), 7.64 (2H, dt, *J* = 7.6, 1.9), 7.84 (2H, d, *J* = 16.1). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 116.1 (²*J*_{*C*-*F*} = 21.9, *Ist* Ar<u>*C*</u>H), 116.3 (²*J*_{*C*-*F*} = 21.9, 2*nd* Ar<u>*C*</u>H), 122.7 (²*J*_{*C*-*F*} = 11.7, ArC), 122.8 (²*J*_{*C*-*F*} = 11.7, ArC), 124.5 (³*J*_{*C*-*F*} = 3.6, Ar-CH=<u>*C*</u>H-), 124.6 (³*J*_{*C*-*F*} = 3.6, Ar-CH=<u>*C*</u>H-), 127.5 (³*J*_{*C*- *F* = 6.2, *Ist* Ar<u>*C*</u>H), 127.6 (³*J*_{*C*-*F*} = 6.2, 2*nd* Ar<u>*C*}H), 129.3 (³*J*_{*C*-*F*} = 2.9, *Ist* Ar<u>*C*</sub>H), 129.3 (³*J*_{*C*-*F*} = 2.9, 2*nd* Ar<u>*C*</sub>H), 131.9 (⁴*J*_{*C*-*F*} = 8.7, *Ist* Ar<u>*C*H), 132.0 (⁴*J*_{*C*-*F*} = 8.7, 2*nd* Ar<u>*C*H), 135.9 (Ar-<u>*C*</u>H=CH-), 160.3 (¹*J*_{*C*-*F*} = 254.8 Ar<u>*C*-F), 162.8 (¹*J*_{*C*-*F*} = 254.8 Ar<u>*C*-F), 188.7. ¹⁹F NMR (377 MHz, CDCl₃): δ -114.7.</sub></u></u></u></u></u></u></u>

1,5-Bis-(2-nitrophenyl)-penta-1,4-(*E*,*E*)-**dien-3-one** (**P**₁₀). Yellow solid. Yield: 57%. ¹H NMR (400 MHz, CDCl₃): δ 7.00 (2H, d, *J* = 16.0), 7.60 (2H, ddd, *J* = 8.6, 6.9, 1.9), 7.70 – 7.77 (4H, m), 8.10 (2H, dd, *J* = 8.1, 1.4), 8.18 (2H, d, *J* = 15.9). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 125.1, 129.2, 130.6, 131.0, 139.4, 148.5, 188.3.

1,5-Bis-(3-nitrophenyl)-penta-1,4-(*E***,***E***)-dien-3-one (P**₁₁**).** Brown solid. Yield: 93%. ¹H NMR (400 MHz, DMSO-d₆): δ 7.58 (2H, d, *J* = 16.1), 7.78 (2H, t, *J* = 7.8), 7.97 (2H, d, *J* = 16.1), 8.27 - 8.33 (4H, m), 8.65 (2H, t, *J* = 2.0). ¹³C{¹H} NMR (101 MHz, DMSO-d₆): δ 123.4, 125.2, 128.4, 131.0, 135.0, 137.0, 141.3, 148.9, 189.0.

1,5-Bis-(2,5-dimethoxyphenyl)-penta-1,4-(*E*,*E*)-**dien-3-one** (**P**₁₂). Yellow solid. Yield: 73%. ¹H NMR (400 MHz, CDCl₃): δ 3.88 (6H, s), 3.93 (6H, s), 6.88 – 7.01 (4H, m), 7.14 – 7.19 (4H, m), 8.03 (2H, d, *J* = 16.2). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 55.6, 55.8, 111.3, 112.0, 117.2, 124.4, 127.5, 136.6, 152.9, 153.5, 189.6. **1,5-Bis-(2,6-dichlorophenyl)-penta-1,4-(***E***,***E***)-dien-3-one (P₁₃). Yellow solid. Yield: 65%. ¹H NMR (400 MHz, DMSO-d₆): \delta 7.28 (2H, d,** *J* **= 16.4), 7.44 (2H, dd,** *J* **= 7.5, 1.2), 7.59 (4H, d,** *J* **= 8.4), 7.74 (2H, d,** *J* **= 16.4). ¹³C{¹H} NMR (101 MHz, DMSO-d₆): \delta 129.6, 131.6, 132.3, 133.7, 134.5, 137.4, 188.5.**

1,5-Bis-(naphthalen-1-yl)-penta-1,4-(*E*,*E*)-**dien-3-one** (**P**₁₄). Yellow solid. Yield: 71%. ¹H NMR (400 MHz, CDCl₃): δ 7.27 (2H, d, *J* = 15.6), 7.56 – 7.66 (6H, m), 7.92 – 7.97 (6H, m), 8.31 (2H, d, *J* = 8.6), 8.68 (2H, d, *J* = 15.8). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 123.5, 125.2, 125.5, 126.3, 127.0, 128.1, 128.9, 130.8, 131.8, 132.3, 133.8, 140.4, 188.7.

1,5-Bis-(anthracen-9-yl)-penta-1,4-(*E***,***E***)-dien-3-one** (**P**₁₅**).** Yellow solid. Yield: 66%. ¹H NMR (400 MHz, CDCl₃): δ 7.21 (2H, d, *J* = 16.2), 7.50 – 7.57 (8H, m), 8.05 (4H, d, *J* = 8.1), 8.35 (4H, d, *J* = 8.5), 8.50 (2H, s), 8.82 (2H, d, *J* = 16.1). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 123.5, 125.7, 129.1, 129.3, 131.0, 132.1, 135.2, 148.5, 192.9.

(**1E,3E,6E,8E**)-**1,9-diphenylnona-1,3,6,8-tetraen-5-one** (**P**₁₆). Yellow solid. Yield: 67%. ¹H NMR (400 MHz, CDCl₃): δ 6.60 (2H, d, J = 15.1), 6.94 – 7.02 (4H, m), 7.33 – 7.43 (6H, m), 7.47 – 7.55 (6H, m). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 127.0, 127.3, 128.9, 129.1, 129.2, 136.2, 141.5, 143.1, 189.0.

1,5-Bis-(4-cyanophenyl)-penta-1,4-(*E***,***E***)-dien-3-one** (**P**₁₇**).** Yield: 0%.

1,5-Bis-(4-(dimethylamino)phenyl)-penta-1,4-(*E*,*E*)-**dien-3-one** (**P**₁₈). Red solid. Yield: 77%. ¹H NMR (400 MHz, CDCl₃): δ 3.05 (12H, s), 6.71 (4H, d, *J* = 9.0), 6.91 (2H, d, *J* = 15.7), 7.54 (4H, d, *J* = 9.0), 7.71 (2H, d, *J* = 15.7). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 40.2, 111.9, 121.4, 123.0, 130.1, 143.0, 151.8, 188.9.

1,5-Bis-(pyridin-2-yl)-penta-1,4-(*E***,***E***)-dien-3-one (P**₁₉**).** Yellow solid. Yield: 26%. ¹H NMR (400 MHz, CD₃OD): δ 7.44 (2H, dd, *J* = 8.4, 5.2), 7.61 (2H, d, *J* = 15.9), 7.75 – 7.80 (4H, m), 7.90 (2H, td, *J* = 7.8, 2.5), 8.63 (2H, d, *J* = 4.7). ¹³C{¹H} NMR (101 MHz, DMSO-d₆): δ 124.3, 131.9, 137.6, 141.2, 148.6, 150.8, 155.7, 188.0.

1,5-Bis-(2-hydroxyphenyl)-penta-1,4-(*E*,*E*)-**dien-3-one** (**P**₂₀). Yellow solid. Yield: 56%. ¹H NMR (400 MHz, CDCl₃): δ 6.85 (2H, t, *J* = 7.4), 6.95 (2H, d, *J* = 8.4), 7.24 –

7.30 (4H, m), 7.69 (2H, dd, J = 8.2, 1.6), 7.92 (2H, d, J = 16.0). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 116.9, 120.0, 121.9, 125.9, 129.3, 138.5, 157.7, 189.2.

1,5-Bis-(pyrrol-2-yl)-penta-1,4-(*E***,***E***)-dien-3-one** (**P**₂₁**).** Yield: 0%.

1,5-Bis-(2-hydroxynaphthalen-1-yl)-penta-1,4-(*E***,***E***)-dien-3-one (P22).** Yield: 0%.

¹³C NMR spectrum of **P**₂ in CDCl₃

¹³C NMR spectrum of **P**₃ in CDCl₃

SB(I)-AC-P4-19F

 ^{13}C NMR spectrum of **P**₁₁ in DMSO-d₆

 13 C NMR spectrum of **P**₁₃ in DMSO-d₆

 ^{13}C NMR spectrum of \textbf{P}_{14} in CDCl_3

 ^{13}C NMR spectrum of \textbf{P}_{15} in CDCl_3

SB(I)-AC-P19-1H

Fig. S17 Molecular structure of 1,5-bis-(4-methoxyphenyl)-penta-1,4-(E,E)-dien-3-one (P₂).

Bond distances (Å)					
C1-C8	1.520(9)	C10-O2	1.199(13)		
C8-C9	1.272(10)	C4-O1	1.352(6)		
C9-C10	1.497(10)	C7-O1	1.432(9)		
	Bond a	angles (°)			
C1-C8-C9	124.3(6)	C9-C10-C9	126.0(12)		
C8-C9-C10	125.7(8)				

Table S20 Selected bond distances and bond angles for P_2

Entry	Base loading	Condition	TON	TOF (h ⁻¹)	Reference
1	1 mmol	75 °C, 15 h	1.6	0.11	27a
2	2 mol%	MW (1250 W), 3 min	49.5	990*	27b
3	20 mol%	90 °C, 45 h	2.75	0.06	27c
4	0.5 mol%	83 °C, 6 h	160	26.67	This work

* This data is for a catalytic reaction carried out using micro-wave.

 Table S21
 Comparison of different catalysts for the crossed-aldol reactions

Sample	$[Ru(L^1)_2(dmso)_2]$	$[Ru(L^2)_2(dmso)_2]$
empirical formula	$C_8H_{18}O_4S_6Ru$	$C_{10}H_{22}O_4S_6Ru$
Fw	471.61	499.77
Space group	Orthorhombic, Ibca	Orthorhombic, Pbca
<i>a</i> (Å)	10.3358(10)	11.6867(16)
<i>b</i> (Å)	11.1063(10)	11.6375(16)
<i>c</i> (Å)	30.191(3)	29.571(4)
α (°)	90	90
β (°)	90	90
γ (°)	90	90
V (Å ³)	3465.7(6)	4021.8(10)
Z	8	8
Crystal size (mm)	$0.16 \times 0.18 \times 0.18$	$0.10 \times 0.18 \times 0.20$
T (K)	273	273
μ (mm ⁻¹)	1.628	1.410
$\mathbf{R}1^{a}$	0.0380	0.0385
wR2 ^b	0.1466	0.1444
GOF^c	1.23	1.15

Table S22 Crystallographic data for $[Ru(L^1)_2(dmso)_2]$ and $[Ru(L^2)_2(dmso)_2]$

^{*a*} R1 = $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|$.

^b wR2 = $[\Sigma \{w(F_o^2 - F_c^2)^2\} / \Sigma \{w(F_o^2)\}]^{1/2}$.

^{*c*} GOF = $[\Sigma(w(F_o^2-F_c^2)^2)/(M-N)]^{1/2}$, where M is the number of reflections and N is the number of parameters refined.

Sample	$[Ru(L^3)_2(dmso)_2]$	$[Ru(L^4)_2(dmso)_2]$
empirical formula	$C_{12}H_{26}O_4S_6Ru$	$C_{14}H_{30}O_4RuS_6$
Fw	527.82	555.98
Space group	Monoclinic, C2/c	Orthorhombic, Ibca
<i>a</i> (Å)	13.9281(11)	10.3525(7)
<i>b</i> (Å)	16.4456(13)	11.1613(8)
<i>c</i> (Å)	9.3353(8)	30.316(2)
α (°)	90	90
β (°)	94.318(2)	90
γ (°)	90	90
V (Å ³)	2132.2(3)	3502.93(40)
Z	4	8
Crystal size (mm)	$0.16 \times 0.22 \times 0.24$	$0.14 \times 0.18 \times 0.22$
T (K)	273	273
μ (mm ⁻¹)	1.335	1.618
R1 ^a	0.0186	0.0404
wR2 ^b	0.1134	0.0810
GOF ^c	1.05	1.080

Table S23 Crystallographic data for $[Ru(L^3)_2(dmso)_2]$ and $[Ru(L^4)_2(dmso)_2]$

^{*a*} R1 = $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|.$

 ${}^{b} wR2 = [\Sigma \{w(F_{o}{}^{2}\text{-}F_{c}{}^{2})^{2}\} / \Sigma \{w(F_{o}{}^{2})\}]^{1/2}.$

^{*c*} GOF = $[\Sigma(w(F_o^2-F_c^2)^2)/(M-N)]^{1/2}$, where M is the number of reflections and N is the number of parameters refined.

Sample	$[Ru(L^3)_2(bpy)]$	P2
empirical formula	$C_{18}H_{22}N_2O_2RuS_4$	C ₁₉ H ₁₈ O ₃
Fw	527.70	294.33
Space group	Monoclinic, P2 ₁ /n	Orthorhombic, Aba2
<i>a</i> (Å)	12.6625(4)	7.4066(5)
<i>b</i> (Å)	11.4820(4)	34.011(2)
<i>c</i> (Å)	16.5225(6)	6.1761(4)
α (°)	90	90
β (°)	105.7030(10)	90
γ (°)	90	90
V (Å ³)	2312.56(14)	1555.8 (17)
Z	4	4
crystal size (mm)	$0.18 \times 0.22 \times 0.24$	$0.05 \times 0.14 \times 0.24$
T (K)	273	273
μ (mm ⁻¹)	1.061	0.081
R1 ^a	0.0281	0.1111
wR2 ^b	0.1203	0.2520
GOF ^c	0.975	1.445

Table S24 Crystallographic data for $[Ru(L^3)_2(bpy)]$ and 1,5-Bis-(4-methoxyphenyl)-
penta-1,4-(*E*,*E*)-dien-3-one (**P**₂)

^{*a*} R1 = $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|$.

^b wR2 = $[\Sigma \{ w(F_o^2 - F_c^2)^2 \} / \Sigma \{ w(F_o^2) \}]^{1/2}$.

 c GOF = $[\Sigma(w(F_{o}^{2}-F_{c}^{2})^{2})/(M-N)]^{1/2}$, where M is the number of reflections and N is the number of parameters refined.