Supporting information

Synthesis of a series of octaalkoxy-substituted cage silsesquioxanes catalyzed by zinc acetate

Naoki Watanabe^{a, b, c}, Hiroaki Imoto^a, Kensuke Naka^{a, b}

¹ Faculty of Molecular Chemistry and Engineering, Graduate School of Science and

Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku,

Kyoto 606-8585 (Japan)

² Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho,

Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.

^c JNC Petrochemical Corporation, 5-1, Goikaigan, Ichihara, Chiba 290-8551 Japan.

Corresponding Author: kenaka@kit.ac.jp

Contents:

- 1. Synthesis
- 2. NMR spectra
- 3. FT-IR spectra
- 4. MALDI-TOF-MS spectra
- 5. Effect of acetic acid addition
- 6. Solubility

1. Synthesis

Procedure for octamethoxy-POSS (8MeO-POSS).

8MeO-POSS was synthesized by reacting 8H-POSS with methanol in the presence of $Zn(OAc)_2$ as a catalyst. 8H-POSS (0.20 g, 0.47 mmol) and $Zn(OAc)_2$ (0.0026 g, 0.014 mmol) was added in 50 mL flask and purge to N₂ atmosphere. THF (12 mL: 1 L per 40 mmol of 8H-POSS) was added into the flask and stirred at 25 °C. MeOH (1.51 g, 47.1 mmol) were added into the flask and stirred at 25 °C. The 8H-POSS / methanol / $Zn(OAc)_2$ molar ratio was 1:100:0.03. Then the mixture was heated to 60 °C and stirred for 3 h under a N₂ atmosphere, after which the mixture was stirred 18 h at 25 °C. Then an acetic acid (20 mg, 0.33 mmol) was added. The mixture was dried under vacuum pressure to give a colorless solid. The crude product was purified by extract using chloroform (50 mL) and filtration. The solution was evaporated and dried under vacuum pressure for 18 h at 40 °C. Product was gained as white solid (0.31 mg).

¹H-NMR (in CD₃CN, 400 MHz): $\delta = 3.38$ (s) ppm for SiOMe. ²⁹Si-NMR (in CD₃CN, 80 MHz): $\delta = -101.4$ ppm for (SiO)₃SiOMe, -92.7 ppm for (SiO)₂Si(OR)₂ (R = Me or H). MALDI-TOF-MS (m/z. [M+Na]⁺): 686.9 (calculated), 685.9 (observed).

Procedure for octaethoxy-POSS (8EtO-POSS).

8EtO-POSS was synthesized by reacting 8H-POSS with methanol in the presence of $Zn(OAc)_2$ as a catalyst. 8H-POSS (0.20 g, 0.47 mmol) and $Zn(OAc)_2$ (0.0026 g, 0.014 mmol) was added in 50 mL flask and purge to N₂ atmosphere. THF (12 mL: 1 L per 40 mmol of 8H-POSS) was added into the flask and stirred at 25 °C. EtOH (2.17 g, 47.1 mmol) were added into the flask and stirred at 25 °C. The 8H-POSS / ethanol / $Zn(OAc)_2$ molar ratio was 1:100:0.03. Then the mixture was heated to 60 °C and stirred for 3 h under a N₂ atmosphere, after which the mixture was stirred 18 h at 25 °C. Then an acetic acid (20 mg, 0.33 mmol) was added. The mixture was dried under vacuum pressure to give a colorless solid. The crude product was purified by extract using chloroform (50 mL) and filtration. The solution was evaporated and dried under vacuum pressure for 18 h at 40 °C. Product was gained as white solid (NMR yield: >99%, isolated yield: 99% (0.36 mg)).

¹H-NMR (in CDCl₃, 400 MHz): δ = 1.24 (t, 3H) ppm, 3.89 (m, 2H) ppm. ²⁹Si-NMR

(in CDCl₃, 80 MHz): δ = -102.7 ppm. MALDI-TOF-MS (m/z. [M+Na]⁺): 799.0 (calculated), 799.5 (observed).

Procedure for octaisopropoxy-POSS (8iPrO-POSS).

8*i*PrO-POSS was synthesized by reacting 8H-POSS with methanol in the presence of Zn(OAc)₂ as a catalyst. 8H-POSS (0.20 g, 0.47 mmol) and Zn(OAc)₂ (0.0026 g, 0.014 mmol) was added in 50 mL flask and purge to N₂ atmosphere. THF (12 mL: 1 L per 40 mmol of 8H-POSS) was added into the flask and stirred at 25 °C. isopropanol (2.83 g, 47.1 mmol) were added into the flask and stirred at 25 °C. The 8H-POSS / isopropanol / Zn(OAc)₂ molar ratio was 1:100:0.03. Then the mixture was heated to 60 °C and stirred for 3 h under a N₂ atmosphere, after which the mixture was stirred 18 h at 25 °C. Then an acetic acid (20 mg, 0.33 mmol) was added. The mixture was dried under vacuum pressure to give a colorless solid. The crude product was purified by extract using chloroform (50 mL) and filtration. The solution was evaporated and dried under vacuum pressure for 18 h at 40 °C. Product was gained as white solid (NMR yield: >99%, isolated yield: >99% (0.42 mg)). ¹H-NMR (in CDCl₃, 400 MHz): $\delta = 1.23$ (d, 6H) ppm, 4.29 (m, 1H). ²⁹Si-NMR (in CDCl₃, 80 MHz): $\delta = -103.8$ ppm. MALDI-TOF-MS (m/z. [M+Na]⁺): 911.2 (calculated), 911.7 (observed).

Procedure for octa-tert-butoxy-POSS (8tBuO-POSS).

8*t*BuO-POSS was synthesized by reacting 8H-POSS with methanol in the presence of Zn(OAc)₂ as a catalyst. 8H-POSS (0.20 g, 0.47 mmol) and Zn(OAc)₂ (0.0026 g, 0.014 mmol) was added in 50 mL flask and purge to N₂ atmosphere. THF (12 mL: 1 L per 40 mmol of 8H-POSS) was added into the flask and stirred at 25 °C. *tert*-Butanol (1.75 g, 47.1 mmol) were added into the flask and stirred at 25 °C. The 8H-POSS / *tert*-butanol / Zn(OAc)₂ molar ratio was 1:100:0.03. Then the mixture was heated to 60 °C and stirred for 3 h under a N₂ atmosphere, after which the mixture was stirred 18 h at 25 °C. Then an acetic acid (20 mg, 0.33 mmol) was added. The mixture was dried under vacuum pressure to give a colorless solid. The crude product was purified by extract using chloroform (50 mL) and filtration. The solution was evaporated and dried under vacuum pressure for 18 h at 40 °C. Product was gained as white solid (NMR yield: 55% (0.22 g)). ¹H-NMR (in CDCl₃, 400 MHz): $\delta = 1.36$ (s) ppm for SiO*t*Bu, 4.25 ppm for SiH. ²⁹Si-NMR (in CDCl₃, 80 MHz): $\delta = -108.8$ ppm for SiO*t*Bu, -84.4 ppm for SiH.

Dehydration and condensation of 8MeO-POSS

Typical procedure is as follow. 8MeO-POSS (0.050 g, 0.072 mmol) and pure H₂O (0.087 g, 4.8 mmol) in toluene (1.4 mL) was stirred at 25 °C for 10 min. 0.1 mol/L of hydrochloric acid aqueous solution (0.051 mL, 0.0051 mmol) was added to the solution, and stirred for 1 h at 60 °C (first step). After that the temperature was raised to 100 °C for dehydration condensation (second step), and then the mixture was stirred for 1 h at 100 °C to remove alcohol and water. The solvent was removed under reduced pressure to obtain a target product. For base-treated hydrolysis, 1 wt% of triethylamine (Et₃N) aqueous solution (0.051 g, 0.0051 mmol) was used instead of hydrochloric acid aqueous solution.

Dehydration and condensation of 8EtO-POSS

Typical procedure is as follow. 8EtO-POSS (0.050 g, 0.064 mmol) and pure H₂O (0.077 g, 4.3 mmol) in toluene (1.3 mL) was stirred at 25 °C for 10 min. 0.1 mol/L of hydrochloric acid aqueous solution (0.045 mL, 0.0045 mmol) was added to the solution, and stirred for 1 h at 60 °C (first step). After that the temperature was raised to 100 °C for dehydration condensation (second step), and then the mixture was stirred for 1 h at 100 °C to remove alcohol and water. The solvent was removed under reduced pressure to obtain a target product. For base-treated hydrolysis, 1 wt% of triethylamine (Et₃N) aqueous solution (0.046 g, 0.0045 mmol) was used instead of hydrochloric acid aqueous solution.

Dehydration and condensation of 8iPrO-POSS

Typical procedure is as follow. 8*i*PrO-POSS (0.050 g, 0.057 mmol) and pure H₂O (0.068 g, 3.8 mmol) in toluene (1.1 mL) was stirred at 25 °C for 10 min. 0.1 mol/L of hydrochloric acid aqueous solution (0.040 mL, 0.0040 mmol) was added to the solution, and stirred for 1 h at 60 °C (first step). After that the temperature was raised to 100 °C for dehydration condensation (second step), and then the mixture was stirred for 1 h at 100 °C to remove alcohol and water. The solvent was removed under reduced pressure to obtain a target product. For base-treated hydrolysis, 1 wt% of triethylamine (Et₃N) aqueous solution (0.040 g, 0.0039 mmol) was used instead of hydrochloric acid aqueous solution.

2. NMR spectra

Fig. S1. (a) ¹H (400 MHz) and (b) ²⁹Si (80 MHz) NMR spectra of 7tBu1MeO-POSS obtained by entry 4 in Table 1 via Zn(OAc)₂ catalyzed reaction between 7tBu1H-POSS and MeOH. The spectra were recorded in CDCl₃.

Fig. S2. (a) ¹H and (b) ²⁹Si NMR spectra of 8MeO-POSS via $Zn(OAc)_2$ catalyzed reaction between 8H-POSS and methanol. The spectra were recorded in acetonitrile-d₃.

Fig. S3. (a) ¹H and (b) ²⁹Si NMR spectra of 8EtO-POSS via Zn(OAc)₂ catalyzed reaction between 8H-POSS and ethanol. The spectra were recorded in CDCl₃.

Fig. S4. (a) ¹H and (b) ²⁹Si NMR spectra of 8*i*PrO-POSS via Zn(OAc)₂ catalyzed reaction between 8H-POSS and isopropanol. The spectra were recorded in CDCl₃.

Fig. S5. (a) ¹H and (b) ²⁹Si NMR spectra of 8tBuO-POSS via Zn(OAc)₂ catalyzed reaction between 8H-POSS and *tert*-butanol. The spectra were recorded in C₆D₆.

3. FT-IR spectra

Fig. S6. FT-IR spectrum of colorless solid during methoxylation from 8H-POSS without acetic acid addition.

Fig. S7. FT-IR spectrum of 8MeO-POSS.

Fig. S8. FT-IR spectrum of 8EtO-POSS.

Fig. S9. FT-IR spectrum of 8*i*PrO-POSS.

4. MALDI-TOF-MS spectra

Fig. S10. MALDI-TOF-MS spectrum of 8MeO-POSS via Zn(OAc)₂ catalyzed reaction between 8H-POSS and methanol.

Fig. S11. MALDI-TOF-MS spectrum of 8EtO-POSS via Zn(OAc)₂ catalyzed reaction between 8H-POSS and ethanol.

Fig. S12. MALDI-TOF-MS spectrum of 8*i*PrO-POSS via Zn(OAc)₂ catalyzed reaction between 8H-POSS and isopropanol.

Table S1. Addition of acetic acid for reaction mixture of 8H-POSS and alcohol. ^a						
Entry	Alcohol	Acid	Acid (molar ratio)	Yield ^b [%]	Yield ^c [%]	
1	MeOH	None	0	N.D.	0	
2	MeOH	CH ₃ CO ₂ H	0.7	>99	94	
3	IPA	None	0	N.D.	2	
4	IPA	CH ₃ CO ₂ H	0.7	>99	99	

A dditi .. id fo .. alaahal a -1-1- C1 r COLL DOGG

^aReaction conditions: 8H-POSS / alcohol / Zn(OAc)₂ molar ratio was 1:100:0.030. THF (40 mmol/L for 8H-POSS). ^bNMR yield. ^cIsolated yield

6. Solubility

.

Table S2. Solubility test results of POSS.

Solvent	8 <i>1</i> Bu-POSS ^a	8EtO-POSS	8 <i>1</i> PrO-POSS
<i>n</i> -Hexane	Р	Р	Р
Diethyl ether	Р	Р	Р
Toluene	Р-	Р	P-
Ethyl acetate	F	Р	Р-
Chloroform	Р	Р	Р
THF	Р	Р	Р
Acetone	F+	Р	Р
Acetonitrile	F	Р	F
DMF	F	Р	F+
DMSO	F	F	F

a) A. J. Guenthner et al., Ind. Eng. Chem. Res. 2012, 51, 12282-12293. Test concentration: 1 mg/mL

P: Complete dissolution within 2 min.

P-: Complete dissolution within 1 h but not within 2 min.

F+: Significant but incomplete dissolution occurred.

F: Little or no dissolution was observed.