Supplementary Information

Tunable Optical Properties of Isoreticular UiO-67 MOFs for Photocatalysis: A Theoretical Study

Manuel A. Treto-Suárez^a*, Yoan Hidalgo-Rosa^b, Mario Saavedra-Torres^c, Bryan D. Koivisto^d, Karel Mena Ulecia^e, Dayán Páez-Hernández^f, Ximena Zarate^g, Eduardo Schott^h.

^aDepartamento de Física y Química, Facultad de Ingeniería, IDETECO, Universidad Autónoma de Chile, Av. Alemania 01090, 4810101-Temuco, Chile. manuel.treto@uautonoma.cl

^bCentro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile, 8580745.

° Millennium Nucleus in Catalytic Processes towards Sustainable Chemistry (CSC), Chile

^d Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada

^e Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Ave. Rudecindo Ortega 02950, Temuco, Chile.

^fDoctorado en Fisicoquímica Molecular, Center of Applied Nanosciences (CANS), Universidad Andres Bello. Ave. República #275, Santiago de Chile, Chile.

g Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile.

^h Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile. <u>edschott@uc.cl</u>

Figure S1. Optimized structures of the studied systems (1, 1A, 1A-bpdc-NH₂, 1A-bpdc-SH, 1A-NH₂ and 1A-SH) in the S₁ and T₁ states via DFT/B3LYP/Def2-TZPP theory level. Atoms are denoted with light green (zirconium), gray (carbon), light gray (hydrogen), red (oxygen), darker blue (nitrogen), blue (zirconium) and yellow (sulfur) spheres.

*Table S1. Structure parameters to the studied models (Node/linkers) in the S₀, S₁, and T₁ states via TDDFT/B3LYP/Def2-TZPP theory level. Where *d* is bond lengths, δ is the angle, and γ is torsion angles (in Å). *Nodo-(bpdc)₂/S₀ (1), Nodo-bpdcbpydc/S₀ (1A). R1 and R2 is H, NH₂ and SH to 1A, 1A-NH₂ and 1A-SH, respectively.

Parameters	1	1A	1A- NH ₂	1A- SH	1	1A	1A- NH ₂	1A- SH	1	1A	1A- NH ₂	1A- SH
			S ₀				S ₁			T ₁		
Nodo												
$d(\operatorname{Zr1-Zr2})$	3.564	3.567	3.568	3.566	3.562	3.563	3.532	3.540	3.565	3.561	3.506	3.563
$d(\operatorname{Zr1-Zr3})$	3.578	3.572	3.427	3.422	3.532	3.429	3.543	3.429	3.577	3.429	3.616	3.559
d(Zr2-Zr3)	3.424	3.426	3.573	3.574	3.502	3.569	3.704	3.587	3.424	3.567	3.373	3.434
$d(\operatorname{Zr1-Zr4})$	3.653	3.653	3.644	3.656	3.703	3.634	3.585	3.669	3.568	3.634	3.583	3.581
<i>d</i> (Zr2-O1)	2.191	2.209	2.194	2.199	2.175	2.206	2.261	2.123	2.190	2.222	2.129	2.196
<i>d</i> (Zr1-O2)	2.288	2.301	2.261	2.274	2.228	2.302	2.279	2.106	2.278	2.303	2.354	2.316
<i>d</i> (Zr4-O3)	2.332	2.321	2.351	2.368	2.262	2.300	2.231	2.448	2.320	2.293	2.168	2.291
δ(Zr1- Zr2- Zr3)	57.3	57.4	57.4	57.3	59.2	57.5	56.8	57.5	57.3	57.5	56.5	57.6
δ(Zr3- Zr1- Zr4)	90.1	90.0	89.8	90.0	90.4	90.0	88.1	89.1	89.0	89.9	89.6	89.9
δ(Zr1- O4- Zr2)	117.3	117.4	117.5	117.5	118.3	116.8	116.2	116.6	117.3	116.9	116.9	116.7
δ(Zr1- O4- Zr3)	109.2	109.1	109.1	109.0	110.2	109.2	110.6	110.1	107.1	109.2	109.6	108.7
γ(Zr1-O1-O2- Zr2)	4.7	4.5	3.9	3.7	4.4	2.1	1.8	1.2	4.8	0.9	-11.0	1.5
γ(Zr4-O3-O5- Zr5)	0.3	1.1	-0.4	0.1	-0.6	-0.4	-0.5	-1.2	0.2	-0.5	-0.8	1.9
bpdc												
d(C-R1)	1.081	1.081	1.369	1.771	1.090	1.088	1.241	1.760	1.081	1.087	1.371	1.770
<i>d</i> (C-R2)	1.080	1.080	1.364	1.771	1.089	1.088	1.362	1.739	1.081	1.088	1.368	1.771
γ(OH-C1-C2-C3)	0.3	-1.7	3.7	13.9	0.1	-0.2	1.8	2.1	0.7	-0.2	-2.6	5.4
γ(C4-C5-C6-C7)	-38.7	-38.2	-37.3	-39.5	-16.3	-35.4	-40.1	-38.2	-0.6	-35.5	-38.5	-36.6
ү(С8-С9-С10-О)	179.6	- 178.1	-177.7	169.3	- 179.9	179.6	-179.7	177.5	- 179.4	179.6	-175.8	176.4
γ(C1-C2-C-R1)	3.5	-0.1	3.7	2.6	0.6	0.7	-1.5	0.9	-0.3	0.7	-3.5	2.4
γ(C10-C9-C-R2)	0.4	4.8	-7.0	-4.2	1.1	0.2	2.1	0.8	3.5	0.2	3.5	-9.2
bpydc												
d(N-N)	-	2.833	2.855	2.847	-	2.452	1.373	2.737	-	2.452	2.691	2.694
d(C-R1)	-	1.081	1.362	1.770	-	1.088	1.362	1.759	-	1.088	1.351	1.757
<i>d</i> (C-R2)	-	1.080	1.373	1.758	-	1.089	1.739	1.770	-	1.088	1.354	1.767
γ(OH-C1-C2-C3)	-	-1.4	-1.4	-2.2	-	-0.1	0.7	0.2	-	-0.1	-0.8	-0.8
γ(N1-C4-C5-N2)	-	-37.7	-39.8	-38.7	-	-0.1	14.5	5.9	-	-0.1	-0.1	0.6
γ(C6-C7-C8-O1)	-	175.6	171.7	173.6	-	179.2	178.9	179.6	-	179.2	177.7	-178.9
γ(C1-C2-C-R1)	-	1.2	2.6	1.4	-	0.0	2.7	-0.4	-	0.0	1.3	0.1
γ(C10-C9-C-R2)	-	-0.5	-6.6	-0.4	-	-0.6	-6.6	-1.6	-	-0.1	-2.9	0.0

Table S2. Most intense singlet \rightarrow singlet absorption transitions and $S_1 \rightarrow S_0$ deactivation data to the studied systems via TDDFT/B3LYP/ Def2-TZPP theory level. Where λ_a and λ_e is the theoretical absorption and emission wavelength in nm, respectively (& experimental values); *f* is the oscillator strength, H (HOMO), and L (LUMO); A is assignment transitions; k_{rad} and τ_{rad} are the radiative transition rate (in s⁻¹) and lifetime (in seconds).

			Absorption (S	S ₀)			Deactiv	vation (S ₁)	
Systems	λ_{a}	f	Active MOs	$\mathbf{A}\left(\mathbf{S}_{0}\rightarrow\mathbf{S}_{n}\right)$	λ _e	f	k _{rad}	$ au_{rad}$	$\mathbf{A}\left(\mathbf{S}_{1} \rightarrow \mathbf{S}_{0}\right)$
	295 (365)&	0.394	H→L	$\pi \rightarrow \pi^* (bpdc)$	339				
1	292	0.302	H-1→L	$\pi \rightarrow \pi^*$ (bpdc)	398&	1.278	1.8*10 ⁹	5.3*10 ⁻¹⁰	$\pi^* \rightarrow \pi \text{ (bpdc)}$
	283	1.563	$H \rightarrow L+1$	$\pi \rightarrow \pi^*$ (bpdc)					
	290	0.923	$H \rightarrow L+1$	$\pi \rightarrow \pi^* (bpdc)$	605	0.4*10-5	0.2*106	4 3*10-6	$\pi^* \rightarrow n$ (bpvdc)
1A	282	0.783	H-1→L	$\pi \rightarrow \pi^*$ (bpydc)	467&	0.4 10	0.2 10	4.5 10	<i>n</i> / n (opydd)
	280	0.695	H-3→L	$n \rightarrow \pi^*$ (bpydc)	318 398&	1.171	0.2*1010	5.1*10-10	$\pi^* \rightarrow \pi \text{ (bpdc)}$
1A-(bpdc-NH ₂)	357	0.208	H→L+1	$n \rightarrow \pi^* (bpdc-NH_2)$	404	0.039	1.0*105	9.8*10-6	$\pi^* \rightarrow n$ (bpydc)
	281	0.569	H-3→L	$\pi \rightarrow \pi^*$ (bpydc)					
	276	0.467	H-6→L	$n \rightarrow \pi^*$ (bpydc)	386	0.707	$0.1*10^{10}$	9.0*10 ⁻¹⁰	$\pi^* \rightarrow \pi \text{ (bpdc-NH_2)}$
	358	0.044	$H \rightarrow L+1$	$n \rightarrow \pi^* \text{ (bpdc-SH)}$	420	0 5*10-4	4 1*104	2.4*10-5	$\pi^* \rightarrow n$ (bryde)
1A_(hndc_SH)	287	0.334	H-1→L+1	$n \rightarrow \pi^* \text{ (bpdc-SH)}$	439	0.3 * 10 *	4.1*10*		$\pi^{*} \rightarrow \Pi^{*}$ (bpydc)
IA-(opuc-SII)	283	0.371	H-2→L+1	$\pi \rightarrow \pi^* \text{ (bpdc-SH)}$	378	0.059	$7.0*10^{7}$	1 4*10 ⁻⁸	$\pi^* \rightarrow \pi$ (bpdc-SH)
	281	0.355	H-3→L	$\pi \rightarrow \pi^*$ (bpydc)	570	0.057	7.0 10	1.1 10	$n \rightarrow n (opac-311)$
	362	0.135	H→L	$n \rightarrow \pi^* (bpdc-NH_2)$	414	0.002	2 6*10 ⁶	3 8*10-8	$\pi^* \rightarrow n$ (bnydc)
1A-(NH ₂)	290	0.186	H-4→L	$\pi \rightarrow \pi^* \text{ (bpdc-NH}_2)$	717	0.002	2.0 10	5.0 10	<i>n</i> / n (opyde)
IA-(ΝΠ ₂)	275	0.531	H- 2→L+6	$n \rightarrow \pi^*$ (bpydc-NH ₂)	392	0.024	2.6*107	3.9*10 ⁻⁸	$\pi^* \rightarrow \pi \text{ (bpdc-NH_2)}$
	378	0.061	$H \rightarrow L+3$	$n \rightarrow \pi^* \text{ (bpdc-SH)}$	404	0.040	0.1*109	8.4*10-9	$\pi^* \rightarrow n \text{ (bpydc-SH)}$
1A-(SH)	348	0.140	H-9→L	$\pi \rightarrow \pi^* \text{ (bpydc-SH)}$					
	283	0.350	$H \rightarrow L+10$	$n \rightarrow \pi^* \text{ (bpdc-SH} \rightarrow \text{O)}$	396	0.070	$7.5^{*}10^{7}$	1.3*10-8	$\pi^* \rightarrow \pi \text{ (bpdc-SH)}$

	Absorption (S ₀)						Deac	tivation (S	ı)	
Systems	λ_{a}	f	Active MOs	Α	λ_{e}	f	$k_{\rm rad^*} 10^{10}$	$ au_{rad} * 10^{-10}$	Α	
	264	0.881	H→L	$\pi \rightarrow \pi^*$						
1	259	2.016	$H \rightarrow L+1$	$\pi \rightarrow \pi^*$	313	1.660	$0.3*10^{10}$	3.5*10-10	$\pi^* \rightarrow \pi \text{ (bpdc)}$	
	208	0.010	H-3→L	$\pi \rightarrow \pi^*$						
	264	0.893	$H \rightarrow L+1$	$\pi \rightarrow \pi^*$ (bpdc)	480	0.010	0.3×10 ⁵	3.1*10-5	$\pi^* \rightarrow n$ (bpydc)	
1A	257	1.747	H-1→L	$\pi \rightarrow \pi^*$ (bpydc)						
	229	0.259	H-3→L	$n \rightarrow \pi^*$ (bpydc)	297	1.550	$0.3*10^{10}$	3.4*10-10	$\pi^* \rightarrow \pi \text{ (bpdc)}$	
1A-(bpdc-NH ₂)	299	0.133	$H \rightarrow L+1$	$n \rightarrow \pi^*$ (bpdc)	413	0.003	$1.6*10^{5}$	5.1*10-6	$\pi^* \rightarrow n$ (bpydc)	
	259	0.421	H-2→L+1	$\pi \rightarrow \pi^*$ (bpydc)						
	255	1.533	H-3→L	$n \rightarrow \pi^*$ (bpydc)	240	0.004	$0.57*10^{10}$	$1.7*10^{-10}$	$\pi^* \rightarrow \pi \text{ (bpdc-NH}_2)$	
	297	0.139	$H\rightarrow L+5$	$\pi \rightarrow \pi^* (\text{bpdc})$	362	0.004	$4.9*10^{6}$	2.5*10-7	$\pi^* \rightarrow n$ (bpydc)	
1A-(bpdc-SH)	260	0.504	H-2→L+1	$\pi \rightarrow \pi^*$ (bpydc)						
	256	1.668	H-2→L+5	$n \rightarrow \pi^*$ (bpdc)	308	1.392	$0.25*10^{10}$	4.0	$\pi^* \rightarrow \pi \text{ (bpdc-SH)}$	
	324	0.259	$H\rightarrow L+5$	$\pi \rightarrow \pi^* \text{ (bpdc)}$	210	0.054	Q Q*106	1 2*10-7	$\pi^* \rightarrow n$ (brude)	
1A-(NH-)	293	1.589	H-7→L	$\pi \rightarrow \pi^*$ (bpydc)	519	0.034	0.0 10	1.2 10	$n \rightarrow n$ (opyde)	
III-(1112)	251	0.362	H-9→L	$\pi \rightarrow \pi^*$ (bpdc)	324	0 260	3 9*10 ⁷	2 5*10 ⁻⁸	$\pi^* \rightarrow \pi$ (bndc-NH ₂)	
	244	0.243	H-2→L+6	$n \rightarrow \pi^*$ (bpydc)	521	0.200	5.5 10	2.5 10		
	317	0.163	H-4→L	$n \rightarrow \pi^*$ (bpdc)	330	0.104	$0.2*10^{9}$	6.2*10-9	$\pi^* \rightarrow n \text{ (bpydc-SH)}$	
1A-(SH)	306	0.262	$H\rightarrow L+2$	$n \rightarrow \pi^*$ (bpdc)						
	299	1.352	H-5→L	$n \rightarrow \pi^*$ (bpvdc)	306	0.206	$0.5*10^9$	2.1×10^{-9}	$\pi^* \rightarrow \pi$ (bpdc-SH)	

Table S3. Most intense singlet \rightarrow singlet absorption transitions and $S_1 \rightarrow S_0$ deactivation data to the studied systems via TDDFT/CAM-B3LYP/ Def2-TZPP theory level.

2991.352H-5 \rightarrow Ln $\rightarrow \pi^*$ (bpydc)3060.2060.5*1092.1*10-9 $\pi^* \rightarrow \pi$ (bpdc-SH)*Where λ_a is the theoretical absorption wavelength in nm (& experimental emission wavelength), f is the oscillator strength, H (HOMO), and L (LUMO). Methanol Solutions, $\mathcal{E}=32.63$ and refraction=1.329. & Experimental absorption wavelength.

B3LYP	λ_{e}	f	Assignment
1	346	1.089	$\pi^* \rightarrow \pi (bpdc)$
1.4	572	2.1*10-6	$\pi^* \rightarrow \pi$ (bpydc)
IA	317	0.926	$\pi^* \rightarrow \pi \text{ (bpdc)}$
14 (bpdc NH)	419	0.290	$\pi^* \rightarrow \pi \text{ (bpdc)}$
1A-(0put-1112)	336	0.0001	$\pi^* \rightarrow \pi$ (bpydc)
14 (bpda SH)	411	0.114	$\pi^* \rightarrow \pi \text{ (bpdc)}$
IA-(bput-SII)	332	0.081	$\pi^* \rightarrow \pi$ (bpydc)
1A_(NH_)	419	0.258	$\pi^* \rightarrow \pi \text{ (bpdc)}$
111-(1112)	327	0.063	$\pi^* \rightarrow \pi$ (bpydc)
1A (SH)	388	0.018	$\pi^* \rightarrow \pi \text{ (bpdc)}$
	303	0.007	$\pi^* \rightarrow \pi$ (bpydc)
CAM-B3LYP			
1	329	1.631	$\pi^* \rightarrow \pi \text{ (bpdc)}$
14	461	1.2*10-6	$\pi^* \rightarrow \pi$ (bpydc)
IA	298	1.548	$\pi^* \rightarrow \pi \text{ (bpdc)}$
14_(bpdc-NH_)	365	0.452	$\pi^* \rightarrow \pi \text{ (bpdc)}$
1A-(bpuc-1(112)	290	0.001	$\pi^* \rightarrow \pi$ (bpydc)
1A-(bpdc-SH)	347	0.364	$\pi^* \rightarrow \pi \text{ (bpdc)}$
1A-(0put-511)	307	1.094	$\pi^* \rightarrow \pi$ (bpydc)
1 A-(NH -)	434	0.001	$\pi^* \rightarrow \pi \text{ (bpdc)}$
III-(1112)	288	0.002	$\pi^* \rightarrow \pi$ (bpydc)
1 4 -(SH)	321	0.593	$\pi^* \rightarrow \pi \text{ (bpdc)}$
17-(511)	308	0.599	$\pi^* \rightarrow \pi$ (bpydc)

*Table S4. $T_1 \rightarrow S_0$ deactivation data to the systems via TDDFT/CAM-B3LYP and B3LYP/ Def2-TZPP theory level.

*Where λ_e is the theoretical emission wavelength in nm (& experimental emission wavelength), *f* is the oscillator strength, k_{rad} and τ_{rad} are the radiative transition rate (in s⁻¹) and lifetime (in seconds).

 $1A/S_0$

Figure S2. Frontier Molecular Orbitals (FMOs) are involved in the most intense singlet \rightarrow singlet absorption transitions to the studied systems 1 and 1A via TDDFT/B3LYP/Def2-TZPP theory level. Atoms are denoted with gray (carbon), light gray (hydrogen), red (oxygen), darker blue (nitrogen), and blue (zirconium) spheres. Isosurface contour values are set as 0.03.

states via IDDI I/DJL		I theory level. w		guis and y is t	orsion angles (in a	n).
Parameters	bpdc/S ₀	bpdc-NH ₂ /S ₀	bpdc-SH/S ₀	bpydc/S ₀	bpydc-NH ₂ /S ₀	bpydc-SH/S ₀
d(N-N)	-	-	-	2.676	2.846	2.814
d(C-R1)	1.081	1.361	1.769	1.081	1.350	1.760
<i>d</i> (C-R2)	1.081	1.369	1.770	1.081	1.356	1.761
γ(HO -C1-C2-C3)	3.9	-1.9	0.9	3.9	-2.0	0.6
γ(C4-C5-C6-C7)	-1.7	-40.0	-38.8	-	-	-
γ(N2-C4-C7-N2)	-	-	-	-1.7	-44.2	-38.6
γ(C8-C9-C10-OH)	177.2	-176.4	-172.3	-177.2	-178.3	-170.6
γ(C1-C2-C-R1)	2.6	-2.4	0.4	0.0	-0.6	0.3
γ(C10-C9-C-R2)	-3.0	3.8	2.1	-0.1	2.2	1.3
	bpdc/S ₁	bpdc-NH ₂ /S ₁	bpdc-SH /S ₁	bpydc/S ₁	bpydc-NH ₂ /S ₁	bpydc-SH/S ₁
d(N-N)	-	-	-	2.408	2.374	2.403
<i>d</i> (C-R1)	1.081	1.351	1.757	1.081	1.350	1.761
<i>d</i> (C-R2)	1.081	1.376	1.775	1.081	1.355	1.762
γ(HO-C1-C2-C3)	0.2	-0.3	0.5	-0.1	0.4	0.3
γ(C4-C5-C6-C7)	-1.1	-9.6	-8.0	-	-	-
γ(N2-C4-C7-N2)	-	-	-	-1.7	0.2	0.1
ү(С6-С7-С8-ОН)	179.8	177.3	180.0	179.8	-179.4	179.8
γ(C1-C2-C3-R1)	-0.4	0.1	1.2	2.6	0.1	0.1
<u>γ(R2-C9-C7-C8)</u>	-0.8	4.3	0.7	-3.6	0.7	0.0
	bpdc/T ₁	bpdc-NH ₂ /T ₁	bpdc-SH /T ₁	bpydc/T ₁	bpydc-NH ₂ /T ₁	bpydc-SH/T ₁
d(N-N)	-	-	-	2.367	2.344	2.362
d(C-R1)	1.081	1.348	1.764	1.081	1.352	1.762
<i>d</i> (C-R2)	1.080	1.365	1.760	1.080	1.358	1.764
γ(HO -C1-C2-C3)	1.0	-1.0	-1.3	0.0	0.7	0.6
γ(C4-C5-C6-C7)	-0.2	-4.6	-4.3	-	-	-
γ(N2-C4-C7-N2)	-	-	-	0.3	0.4	0.1
ү(С6-С7-С8-ОН)	-179.5	-179.2	-174.1	-178.5	-178.9	177.5
γ(C1-C2-C3-R1)	-0.2	0.7	0.5	-0.2	0.5	0.2
γ (R2-C9-C7-C8)	-0.4	3.2	9.3	-0.3	0.8	-0.7

***Table S5.** Structure parameters to the **bpdc**, **bpydc**, and proposed substituents (with -NH₂ and -SH) in the S₀, S₁, and T₁ states via TDDFT/B3LYP/Def2-TZPP theory level. Where *d* is bond lengths and γ is torsion angles (in Å).

Figure S3. Computed spectral overlap to a) 1A and b) free ligands.

1A-bpdc-NH₂/S₀

Figure S4. Schematic representation of the Frontier Molecular Orbitals (FMOs) involved in the most intense singlet \rightarrow singlet absorption transitions to the proposed systems **1A-bpdc-NH**₂ and **1A-bpdc-SH** via TDDFT/B3LYP/Def2-TZPP theory level. Atoms are denoted with gray (carbon), light gray (hydrogen), red (oxygen), darker blue (nitrogen), and blue (zirconium), and yellow (sulfur) spheres. Isosurface contour values are set as 0.03.

Figure S5. Optimized structures of the free linkers bpdc and bpydc in two perspectives to the S_1 and T_1 states via DFT/B3LYP/Def2-TZPP theory level. Atoms are denoted with gray (carbon), light gray (hydrogen), red (oxygen), blue (nitrogen), and yellow (sulfur) spheres.

***Table S6.** Structure parameters to the **bpdc**, **bpydc**, and proposed ligands (with -NH₂ and -SH) in the S₀, S₁, and T₁ states via TDDFT/B3LYP/Def2-TZPP theory level. Where *d* is bond lengths and γ is torsion angles (in Å).

Parameters	bpdc/S ₀	bpdc-NH ₂ /S ₀	bpdc-SH/S ₀	bpydc/S ₀	bpydc-NH ₂ /S ₀	bpydc-SH/S ₀
d(N-N)	-	-	-	2.676	2.846	2.814
d(C-R1)	1.081	1.361	1.769	1.081	1.350	1.760
<i>d</i> (C-R2)	1.081	1.369	1.770	1.081	1.356	1.761
γ(HO -C1-C2-C3)	3.9	-1.9	0.9	3.9	-2.0	0.6
γ(C4-C5-C6-C7)	-1.7	-40.0	-38.8	-	-	-
γ(N2-C4-C7-N2)	-	-	-	-1.7	-44.2	-38.6
γ(C8-C9-C10-OH)	177.2	-176.4	-172.3	-177.2	-178.3	-170.6
γ(C1-C2-C-R1)	2.6	-2.4	0.4	0.0	-0.6	0.3
γ(C10-C9-C-R2)	-3.0	3.8	2.1	-0.1	2.2	1.3
	bpdc/S ₁	bpdc-NH ₂ /S ₁	bpdc-SH /S ₁	bpydc/S ₁	bpydc-NH ₂ /S ₁	bpydc-SH/S ₁
d(N-N)	-	-	-	2.408	2.374	2.403
<i>d</i> (C-R1)	1.081	1.351	1.757	1.081	1.350	1.761
<i>d</i> (C-R2)	1.081	1.376	1.775	1.081	1.355	1.762
γ(HO-C1-C2-C3)	0.2	-0.3	0.5	-0.1	0.4	0.3
γ(C4-C5-C6-C7)	-1.1	-9.6	-8.0	-	-	-
γ(N2-C4-C7-N2)	-	-	-	-1.7	0.2	0.1
γ(C6-C7-C8-OH)	179.8	177.3	180.0	179.8	-179.4	179.8
γ(C1-C2-C3-R1)	-0.4	0.1	1.2	2.6	0.1	0.1
γ(R2-C9-C7-C8)	-0.8	4.3	0.7	-3.6	0.7	0.0
	bpdc/T ₁	bpdc-NH ₂ /T ₁	bpdc-SH /T ₁	bpydc/T ₁	bpydc-NH ₂ /T ₁	bpydc-SH/T ₁
d(N-N)	-	-	-	2.367	2.344	2.362
d(C-R1)	1.081	1.348	1.764	1.081	1.352	1.762
<i>d</i> (C-R2)	1.080	1.365	1.760	1.080	1.358	1.764
γ(HO -C1-C2-C3)	1.0	-1.0	-1.3	0.0	0.7	0.6
γ(C4-C5-C6-C7)	-0.2	-4.6	-4.3	-	-	-
γ(N2-C4-C7-N2)	-	-	-	0.3	0.4	0.1
γ(C6-C7-C8-OH)	-179.5	-179.2	-174.1	-178.5	-178.9	177.5
γ(C1-C2-C3-R1)	-0.2	0.7	0.5	-0.2	0.5	0.2
γ(R2-C9-C7-C8)	-0.4	3.2	9.3	-0.3	0.8	-0.7

*Experimental reported data to MIL125-NH₂ system obtained via powder diffraction⁶⁶.

		B31	ТУР		C	AM-B3LYP	
Systems	λ_{a}	f	Active MOs	λ_{a}	f	Active MOs	Α
bnda	288	1.043	H→L	267	1.059	H→L	$\pi \rightarrow \pi^*$
opue	203	0.291	$H-1 \rightarrow L+1$	180	1.030	$H-1 \rightarrow L+1$	$\pi{\rightarrow}\pi^*$
	347	0.128	H→L	304	0.237	H→L	$\pi \rightarrow \pi^*$
boda NH	271	0.773	H-2→L	297	0.131	H-1→L	$\pi{\rightarrow}\pi^*$
opuc-mi2	220	0.266	$H-1\rightarrow L+3$	251	0.634	H-2→L	$\pi{\rightarrow}\pi^*$
	201	0.334	H-6→L	209	0.773	$H \rightarrow L+2$	$\pi{\rightarrow}\pi^*$
	347	0.045	H→L	294	0.079	H→L	$\pi{\rightarrow}\pi^*$
	340	0.061	H-1→L	291	0.117	H-1→L	$\pi{\rightarrow}\pi^*$
bpdc-SH	281	0.431	H-2→L	255	0.754	H-2→L	$\pi{\rightarrow}\pi^*$
	240	0.450	$H-1\rightarrow L+3$	225	0.773	$H \rightarrow L+2$	$\pi{\rightarrow}\pi^*$
	212	0.108	$H-2\rightarrow L+3$	192	0.204	$H-2\rightarrow L+3$	$\pi{\rightarrow}\pi^*$
	385	0.002	H→L	328	0.004	H→L	$\pi \rightarrow \pi^*$
bpydc	287	0.727	H-1→L	268	0.920	H-1→L	$\pi \rightarrow \pi^*$
	258	0.200	H-1 \rightarrow L+1	239	0.186	$H-1 \rightarrow L+1$	$\pi{\rightarrow}\pi^*$
	323	0.046	H→L	281	0.065	H→L	$\pi \rightarrow \pi^*$
boyda NH	267	0.401	H-3→L	276	0.034	H-1→L	$\pi{\rightarrow}\pi^*$
bpyuc-mi	209	0.177	$H-3\rightarrow L+2$	240	0.867	H-2→L	$\pi{\rightarrow}\pi^*$
	195	0.238	$H\rightarrow L+3$	198	0.734	$H-1\rightarrow L+2$	$\pi{\rightarrow}\pi^*$
	334	0.042	H→L	288	0.042	H→L	$\pi \rightarrow \pi^*$
boyde_SU	274	0.691	H-3→L	272	0.113	H-1→L	$\pi{\rightarrow}\pi^*$
opyue-on	236	0.316	$H-1\rightarrow L+3$	249	0.767	H-2→L	$\pi{\rightarrow}\pi^*$
	197	0.233	$H-6\rightarrow L+1$	220	0.850	H-1→L+2	$\pi{\rightarrow}\pi^*$

Table S7. Most intense singlet \rightarrow singlet absorption transitions data to **bpdc**, **bpydc**, and proposed substituents (with -NH₂ and -SH) via TDDFT theory level.

***Table S8.** $S_1 \rightarrow S_0$ emission data to the systems via TDDFT theory level

B3	LYP			CAM-B3LYP	
Linkers	λ	f	λ_{e}	f	Assignment
bpdc	317	1.350	301	1.276	$\pi^* \rightarrow \pi$
bpdc- NH ₂	404	0.115	348	0.207	$\pi^* \rightarrow \pi$
bpdc-SH	402	0.030	332	0.067	$\pi^* \rightarrow \pi$
bpydc	600	0.1*10-2	480	0.4*10-5	$\pi^* \rightarrow \pi$
bpydc- NH ₂	621	0.1*10-4	494	0.2*10-5	$\pi^* \rightarrow \pi$
bpydc-SH	603	0.2*10-5	480	0.4*10-6	$\pi^* \rightarrow \pi$

*Where λ_e is the theoretical emission wavelength in nm (experimental emission wavelength is XXX nm), *f* is the oscillator strength, k_{rad} and τ_{rad} are the radiative transition rate (in s⁻¹) and lifetime (in seconds).

Figure S6. Schematic representation of the photophysical mechanism based on FMOs analysis on the S₀ (absorption) and S₁ states to free bpdc and bpydc linkers. Where, λ_a and λ_e are the computed wavelength of absorption (black and dark blue) and deactivation (light blue and gray), respectively; *f* is the oscillator strength; τ_{rad} is the radiative transition lifetime and ET is energy transfer. The spectral overlap (emission bpdc/absorption at bpydc) is represented. Isosurface contour values are set as 0.03 with TDDFT/Def2-TZPP/ B3LYP theory level.

Figure S7. Optimized structures of the free linkers bpdc and bpydc in two perspectives to the S_1 and T_1 states via DFT/B3LYP/Def2-TZPP theory level. Atoms are denoted with gray (carbon), light gray (hydrogen), red (oxygen), blue (nitrogen), and yellow (sulfur) spheres.

Figure S8. Schematic representation of the photophysical mechanism based on FMOs analysis on the S₀ (absorption) and S₁ states to **bpdc-NH₂** and **bpydc-NH₂** systems. Where, λ_a and λ_e are the computed wavelength of absorption (black) and deactivation (blue), respectively; *f* is the oscillator strength; τ_{rad} is the radiative transition lifetime and ET is energy transfer. The spectral overlap (emission bpdc/absorption at bpydc) is represented. Isosurface contour values are set as 0.03 with TDDFT/Def2-TZPP/ B3LYP theory level.

Figure S9. Schematic representation of the photophysical mechanism based on FMOs analysis on the S₀ (absorption) and S₁ states to **bpdc-SH** and **bpydc-SH** systems. Where, λ_a and λ_e are the computed wavelength of absorption (black) and deactivation (blue), respectively; *f* is the oscillator strength; τ_{rad} is the radiative transition lifetime and ET is energy transfer. The spectral overlap (emission bpdc/absorption at bpydc) is represented. Isosurface contour values are set as 0.03 with TDDFT/Def2-TZPP/ B3LYP theory level.

Systems	Linker	State	CASSCF /NEVPT2	Weight	Configuration
1 4	h a d a	\mathbf{S}_1	31085	89 %	$\pi^2 \pi^2 \pi^2 n^1 \pi^1 \pi^0 \pi^0 \pi^0$
	opue	T_1	28242	91 %	$\pi^2 \pi^2 \pi^2 n^1 \pi^1 \pi^0 \pi^0 \pi^0$
IA	bnyde	\mathbf{S}_1	27205	91%	$\pi^2 n^2 n^1 \pi^2 \pi^1 \pi^0 \pi^0 \pi^0$
	opyde	T_1	26867	93 %	$\pi^2 n^2 n^1 \pi^2 \pi^1 \pi^0 \pi^0 \pi^0$
	bpdc-SH	\mathbf{S}_1	17721	86 %	$n^{1}\pi^{2}\pi^{2}\pi^{2} \pi^{1}\pi^{0}\pi^{0}\pi^{0}$
1A-SH	opue om	T_1	17102	87 %	$n^1 \pi^2 \pi^2 \pi^2 \pi^1 \pi^0 \pi^0 \pi^0$
14-511	bpydc-SH	\mathbf{S}_1	24392	91 %	$n^2\pi^2\pi^1\pi^2 \ \pi^1\pi^0 \ \pi^0 \ \pi^0$
	opyde-SH	T_1	24076	91 %	$n^2 \pi^2 \pi^1 \pi^2 \ \pi^1 \pi^0 \ \pi^0 \ \pi^0$

Table S10. Morokuma-Ziegler EDA for the systems **1A**, **1A**-(NH₂) and **1A**-(SH), in the S₀. The contribution of the NOCV to the total orbital interaction (k) is shown. All values are in kcal mol⁻¹.

Systems	14	1	1A-	(NH ₂)	1A-(SH)		
	Node-bpdc	Node-bpydc	Node-bpdc-NH ₂	Node-bpydc-NH ₂	Node-bpdc-SH	Node-bpydc-SH	
ΔE _{Int}	-168.9	-166.37	-170.28	-167.7	-181.75	-188.76	
ΔE_{Pauli}	110.0	121.3	112.28	135.4	116.09	167.07	
ΔE_{Elect}	-192.8 (69%)	-196.4 (68%)	-197.0 (67%)	-201.6 (67%)	-180.9 (68%)	-228.0 (65%)	
ΔE_{Orb}	-78.0 (31%)	-83.32 (32%)	-96.6 (33%)	-101.5 (33%)	-75.6 (32%)	-111.7 (35%)	
k	-20.20	-23.10	-20.53	-23.79	-15.30	-23.4	

Figure S10. Optimized structures of UiO-67 via gradient generalized Perdew-Burke-Ernzerhof (PBE) functional, sampling the first Brillouin zone with a 3x3x3 Monkhorst-Pack k-point scheme. Moreover, a 5x5x5 k-point grid scheme was employed for final single energy calculations (including the density of state and bands calculations) with a hybrid HSE06 functional.

Figure S11: Projected Density of States (PDOS), categorized as Zr6-Node and BPDC, BPYDC. (Zr6-Node definition includes COO-)

Figure S12: Projected Density of States (PDOS), categorized as elements.

Structure	Band Gap (eV)	CB (eV)	VB (eV)
UiO-67 (1)	3.418	1.705	-1.713
UiO-67-BPYDC	3.540	1.626	-1.913
UiO-67-BPDC-BPYDC (1A)	3.310	1.584	-1.726

Table S11. Band Gap (experimental data: UiO-67*: 3.68 eV; UiO-67-BPYDC**: 3.36 eV) and Chemical Potential

*S. Chavan, J. G. Vitillo, D. Gianolio, O. Zavorotynska, B. Civalleri, S. Jakobsen, M. H. Nilsen, L. Valenzano, C. Lamberti, K. P. Lillerud and S. Bordiga, Phys. Chem Chem. Phys., 2012, 14, 1614

Deming, D. A.; Hurlock, M. J.; Li, X.; Kriegsman, K. W.; Ding, G.; Guo, X.; Zhang, Q. A Facile Method to Introduce Iron Secondary Metal Centers into Metal–Organic Frameworks. *J. Organomet. Chem.* **2019, *897*, 114–119. https://doi.org/10.1016/j.jorganchem.2019.06.037.

Table S12. Description of the optimized structures.

Name	PRIMITIVE CELL_a PBE (Å)	CONVENTIONAL CELL_a (Å)	CELL_angle_ PBE (°)	COD ID_based
UiO-67 with BPDC (1)	19.23	27.19	59.94	4512073
UiO-67-BPYDC UiO-67 with bipyridines. (BPYDC)	19.03	26.91	60.00	7112002
UiO-67-BPDC-BPYDC (1A) UiO-67 alternating BPDC and BPYDC linkers	19.08	26.98	60.12	7112002

*Data values from the experimental crystal structure of UiO-67-bpdc: a=b=c=19.01A (26.88 Å)

**Data values from the experimental crystal structure of UiO-67-bpydc: a=b=c=18.77A (26.54 Å)