Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

K₂MgMoP₂O₁₀ and K₃Mg₂MoP₃O₁₄: two new molybdophosphates exhibiting different optical anisotropy induced by variable dimensionality of the anion framework

Zhixia Gao,^a Qiuyuan Feng,^a Juanjuan Lu,^b Hong Du*^{a,c}

^aCollege of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, P. R. China.

^bXinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Xinjiang Key Laboratory of Functional Crystal Materials, Urumqi 830011, China.

^cXinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi, 830054, China.

*E-mails: 175790509@qq.com (Hong Du)

Table S1. Crystal data and	d structure refinement for two	new compounds.
Empirical formula	K ₂ MgMoP ₂ O ₁₀	$K_3Mg_2MoP_3O_{14}$
Formula weight	420.39	584.52
Temperature (K)	298	298
Crystal system	Monoclinic	Orthorhombic
Space group	P2 ₁ /n	Pnma
a / Å	8.7629(18)	16.4088(10)
<i>b</i> / Å	9.7379(16)	15.8303(10)
c / Å	10.6366(19)	5.4483(5)
α/°	90	90
6 / °	92.593(9)	90
γ/°	90	90
V / Å ³	906.7(3)	1415.23(18)
Ζ	4	4
Calculated density (g/cm ³)	3.080	2.743
μ (mm⁻¹)	2.828	2.316
F (000)	808	1131
Theta range for data collection	2.837 to 27.544°.	2.482 to 27.525°
Index ranges	$-11 \le h \le 11$	$-20 \le h \le 21$
	$-12 \leq k \leq 12$	$-20 \le k \le 20$
	-13 ≤ <i>l</i> ≤ 13	-7 ≤ <i>l</i> ≤ 6
Reflections collected	13912	10032
Independent reflections	2089 [<i>R</i> _(int) = 0.0831]	1684 [<i>R</i> _(int) = 0.1215]
Completeness (%)	100.0	99.9
Goodness-of-fit on F ²	1.029	1.074
Final <i>R</i> indices [<i>I</i> > 2sigma(I)] ^a	$R_1 = 0.0327$	$R_1 = 0.0466$
	$wR_2 = 0.0620$	$wR_2 = 0.1053$
R indices (all data) ^a	$R_1 = 0.0477$	$R_1 = 0.0710$
	$wR_2 = 0.0671$	$wR_2 = 0.1162$
largest diff. peak∕hole (e·Å⁻³)	0.641 / -0.817	0.783 / -1.301

 $a R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}| \text{ and } wR_{2} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / \Sigma wF_{o}^{4}]^{1/2} \text{ for } F_{o}^{2} > 2\sigma (F_{o}^{2})$

Atoms	x	у	Z	U(eq)	BVS
		K₂Mg	MoP ₂ O ₁₀		
K(1)	-65(1)	6989(1)	6955(1)	22(1)	1.172
K(2)	9551(2)	2868(1)	9008(1)	32(1)	1.060
Mg(1)	3209(2)	5437(2)	8637(1)	10(1)	2.099
Mo(1)	2479(1)	6261(1)	4236(1)	10(1)	6.140
P(1)	7004(1)	5453(1)	8550(1)	10(1)	5.046
P(2)	1643(1)	3775(1)	6138(1)	9(1)	5.120
O(1)	2462(4)	7076(3)	5652(3)	16(1)	2.167
O(2)	4385(4)	6241(4)	4004(3)	20(1)	2.082
O(3)	2330(3)	4380(3)	4918(3)	12(1)	2.117
O(4)	1984(4)	4695(3)	7255(3)	18(1)	2.052
O(5)	-69(4)	3696(3)	5857(3)	19(1)	1.995
O(6)	2330(4)	2361(3)	6313(3)	16(1)	2.011
O(7)	5340(4)	5041(3)	8492(3)	21(1)	1.964
O(8)	7172(4)	6998(3)	8207(3)	16(1)	2.190
O(9)	7920(4)	4679(3)	7573(3)	12(1)	2.085
O(10)	7754(4)	5169(3)	9840(3)	16(1)	1.976
		K ₃ Mg ₂	MoP ₃ O ₁₄		
K(1)	7105(2)	2500	2611(7)	96(1)	0.724
К(2)	4938(1)	1112(1)	2726(2)	22(1)	1.208
Mg(1)	6590(1)	4382(1)	7230(3)	14(1)	2.252
Mo(1)	8955(1)	2500	6802(1)	16(1)	5.876
P(1)	5715(1)	2500	7248(4)	18(1)	4.992
P(2)	8616(1)	4556(1)	7206(3)	15(1)	5.204
O(1)	4897(3)	2500	5765(11)	21(1)	2.225
O(2)	5436(5)	2500	9925(12)	40(2)	1.672
O(3)	6187(2)	3283(2)	6460(9)	27(1)	2.071
O(4)	8070(3)	2500	8352(12)	27(1)	2.007
O(5)	7734(2)	4329(3)	7083(8)	30(1)	2.001
O(6)	8861(2)	4934(2)	9633(8)	26(1)	2.159
O(7)	8865(2)	5152(2)	5150(8)	25(1)	2.076
O(8)	9142(2)	3740(2)	6902(8)	27(1)	2.164
O(9)	8706(4)	2500	3758(12)	35(2)	2.077

Table S2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) and bond valence sum (BVS)* calculations for K₂MgMoP₂O₁₀ and K₃Mg₂MoP₃O₁₄ U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

(BVS)^{*}: The bond valence sums were calculated using the formula $V_i = \sum S_{ij} = \sum \exp[(r_0 - r_{ij}) / B]$, where S_{ij} is the bond valence associated with bond length r_{ij} , and r_0 and B (usually 0.37) are empirically determined parameters.

Table S3. Selected bond dist	ances (Å) and angl	es (deg) for K ₂ MgMoP ₂ O ₁₀

K(1)-O(1)	2.667(3)	Mg(1)-O(4)	1.921(3)
K(1)-O(2)#3	2.837(3)	Mg(1)-O(6)#4	1.933(3)
K(1)-O(3)#2	3.054(3)	Mg(1)-O(7)	1.919(4)
K(1)-O(4)	2.875(3)	Mg(1)-O(10)#9	1.952(3)
K(1)-O(5)	3.413(4)	Mo(1)-O(1)	1.704(3)
K(1)-O(5)#2	3.072(3)	Mo(1)-O(2)	1.699(3)
K(1)-O(6)#4	2.978(3)	Mo(1)-O(3)	1.977(3)
K(1)-O(7)#4	3.018(3)	Mo(1)-O(5)#2	2.110(3)
K(1)-O(8)#1	2.815(3)	Mo(1)-O(8)#10	2.029(3)
K(1)-O(9)#1	2.952(3)	Mo(1)-O(9)#11	2.145(3)
K(2)-O(1)#5	2.737(4)	P(1)-O(7)	1.511(3)
K(2)-O(2)#5	2.771(3)	P(1)-O(8)	1.558(3)
K(2)-O(3)#7	3.112(3)	P(1)-O(9)	1.539(3)
K(2)-O(4)#6	3.398(4)	P(1)-O(10)	1.519(3)
K(2)-O(6)#7	3.206(3)	P(2)-O(3)	1.570(3)
K(2)-O(8)#5	2.868(3)	P(2)-O(4)	1.508(3)
K(2)-O(9)	2.699(3)	P(2)-O(5)	1.518(3)
K(2)-O(10)	2.899(3)	P(2)-O(6)	1.511(3)
K(2)-O(10)#8	3.236(4)		
O(1)-K(1)-O(2)#3	123.63(10)	O(2)#5-K(2)-O(10)#8	80.45(9)
O(1)-K(1)-O(3)#2	101.86(9)	O(3)#7-K(2)-O(4)#6	162.86(8)
O(1)-K(1)-O(4)	63.45(10)	O(3)#7-K(2)-O(6)#7	45.86(8)
O(1)-K(1)-O(5)	80.80(9)	O(3)#7-K(2)-O(10)#8	138.90(8)
O(1)-K(1)-O(5)#2	55.37(9)	O(6)#7-K(2)-O(4)#6	150.87(8)
O(1)-K(1)-O(6)#4	69.71(10)	O(6)#7-K(2)-O(10)#8	102.08(8)
O(1)-K(1)-O(7)#4	87.07(9)	O(8)#5-K(2)-O(3)#7	74.60(9)
O(1)-K(1)-O(8)#1	176.32(10)	O(8)#5-K(2)-O(4)#6	91.38(9)
O(1)-K(1)-O(9)#1	131.24(9)	O(8)#5-K(2)-O(6)#7	107.01(10)
O(2)#3-K(1)-O(3)#2	129.67(10)	O(8)#5-K(2)-O(10)	101.89(10)
O(2)#3-K(1)-O(4)	120.91(10)	O(8)#5-K(2)-O(10)#8	146.47(9)
O(2)#3-K(1)-O(5)	146.74(9)	O(9)-K(2)-O(1)#5	137.51(11)
O(2)#3-K(1)-O(5)#2	153.54(10)	O(9)-K(2)-O(2)#5	163.10(10)
O(2)#3-K(1)-O(6)#4	67.11(9)	O(9)-K(2)-O(3)#7	108.25(10)
O(2)#3-K(1)-O(7)#4	60.50(9)	O(9)-K(2)-O(4)#6	71.15(9)
O(2)#3-K(1)-O(9)#1	99.66(9)	O(9)-K(2)-O(6)#7	98.85(9)
O(3)#2-K(1)-O(5)	51.40(8)	O(9)-K(2)-O(8)#5	58.87(9)
O(3)#2-K(1)-O(5)#2	47.35(8)	O(9)-K(2)-O(10)	52.18(8)
O(4)-K(1)-O(3)#2	96.76(9)	O(9)-K(2)-O(10)#8	100.76(9)
O(4)-K(1)-O(5)	45.49(8)	O(10)-K(2)-O(3)#7	95.33(9)
O(4)-K(1)-O(5)#2	83.58(9)	O(10)#8-K(2)-O(4)#6	55.46(8)
O(4)-K(1)-O(6)#4	62.90(9)	О(10)-К(2)-О(4)#6	97.22(9)
O(4)-K(1)-O(7)#4	145.85(10)	O(10)-K(2)-O(6)#7	57.56(8)
O(4)-K(1)-O(9)#1	76.12(9)	О(10)-К(2)-О(10)#8	79.92(10)

O(5)#2-K(1)-O(5)	57.47(10)	O(4)-Mg(1)-O(6)#4	104.86(15)
O(6)#4-K(1)-O(3)#2	159.65(9)	O(4)-Mg(1)-O(7)	112.01(16)
O(6)#4-K(1)-O(5)	108.31(8)	O(4)-Mg(1)-O(10)#9	105.86(15)
O(6)#4-K(1)-O(5)#2	124.29(9)	O(6)#4-Mg(1)-O(10)#9	98.90(14)
O(6)#4-K(1)-O(7)#4	91.94(9)	O(7)-Mg(1)-O(6)#4	115.91(15)
O(7)#4-K(1)-O(3)#2	106.40(9)	O(7)-Mg(1)-O(10)#9	117.69(16)
O(7)#4-K(1)-O(5)	150.77(9)	O(1)-Mo(1)-O(3)	95.95(13)
O(7)#4-K(1)-O(5)#2	93.83(9)	O(1)-Mo(1)-O(5)#2	89.06(14)
O(8)#1-K(1)-O(2)#3	56.99(9)	O(1)-Mo(1)-O(8)#10	94.69(13)
O(8)#1-K(1)-O(3)#2	76.26(9)	O(1)-Mo(1)-O(9)#11	169.91(14)
O(8)#1-K(1)-O(4)	119.74(10)	O(2)-Mo(1)-O(1)	100.48(16)
O(8)#1-K(1)-O(5)	100.21(9)	O(2)-Mo(1)-O(3)	97.14(15)
O(8)#1-K(1)-O(5)#2	122.20(10)	O(2)-Mo(1)-O(5)#2	168.96(13)
O(8)#1-K(1)-O(6)#4	113.10(10)	O(2)-Mo(1)-O(8)#10	92.21(15)
O(8)#1-K(1)-O(7)#4	90.42(9)	O(2)-Mo(1)-O(9)#11	89.21(13)
O(8)#1-K(1)-O(9)#1	50.30(8)	O(3)-Mo(1)-O(5)#2	87.30(13)
O(9)#1-K(1)-O(3)#2	55.61(8)	O(3)-Mo(1)-O(8)#10	164.32(13)
O(9)#1-K(1)-O(5)	50.86(8)	O(3)-Mo(1)-O(9)#11	85.57(11)
O(9)#1-K(1)-O(5)#2	95.80(9)	O(5)#2-Mo(1)-O(9)#11	81.03(12)
O(9)#1-K(1)-O(6)#4	115.31(9)	O(8)#10-Mo(1)-O(5)#2	81.38(13)
O(9)#1-K(1)-O(7)#4	137.85(10)	O(8)#10-Mo(1)-O(9)#11	81.99(11)
O(1)#5-K(2)-O(2)#5	56.71(9)	O(7)-P(1)-O(8)	110.36(19)
O(1)#5-K(2)-O(3)#7	111.62(9)	O(7)-P(1)-O(9)	112.02(18)
O(1)#5-K(2)-O(4)#6	66.41(9)	O(7)-P(1)-O(10)	111.48(19)
O(1)#5-K(2)-O(6)#7	119.30(9)	O(9)-P(1)-O(8)	104.85(17)
O(1)#5-K(2)-O(8)#5	119.34(10)	O(10)-P(1)-O(8)	110.25(18)
O(1)#5-K(2)-O(10)	134.96(10)	O(10)-P(1)-O(9)	107.65(17)
O(1)#5-K(2)-O(10)#8	55.90(9)	O(4)-P(2)-O(3)	111.00(18)
O(2)#5-K(2)-O(3)#7	63.51(9)	O(4)-P(2)-O(5)	110.14(19)
O(2)#5-K(2)-O(4)#6	121.35(10)	O(4)-P(2)-O(6)	112.38(18)
O(2)#5-K(2)-O(6)#7	64.63(9)	O(5)-P(2)-O(3)	105.59(17)
O(2)#5-K(2)-O(8)#5	127.21(10)	O(6)-P(2)-O(3)	106.15(17)
O(2)#5-K(2)-O(10)	112.19(10)	O(6)-P(2)-O(5)	111.30(19)

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z	#2 -x,-y+1,-z+1	#3 x-1/2,-y+3/2,z+1/2
#4 -x+1/2,y+1/2,-z+3/2	#5 -x+3/2,y-1/2,-z+3/2	#6 x+1,y,z
#7 x+1/2,-y+1/2,z+1/2	#8 -x+2,-y+1,-z+2	#9 -x+1,-y+1,-z+2
#10 x-1/2,-y+3/2,z-1/2	#11 -x+1,-y+1,-z+1	#12 -x+1/2,y-1/2,-z+3/2
#13 -x+3/2,y+1/2,-z+3/2	#14 x+1/2,-y+3/2,z-1/2	#15 x-1/2,-y+1/2,z-1/2
#16 x+1/2,-y+3/2,z+1/2		

Table S4. Selected bond	lengths (Å) and	angles (deg.) for	^r K ₃ Mg ₂ MoP ₃ O ₁₄ .

		-07 - 3 02 - 3 14	
K(1)-O(2)#2	3.105(8)	Mg(1)-O(5)	1.880(4)
K(1)-O(3)	2.865(5)	Mg(1)-O(6)#7	1.929(4)
K(1)-O(3)#1	2.865(5)	Mg(1)-O(7)#8	1.906(4)
K(1)-O(4)#2	2.809(7)	Mo(1)-O(1)#9	2.035(5)
K(1)-O(9)	2.700(7)	Mo(1)-O(4)	1.679(6)
K(2)-O(1)	2.752(4)	Mo(1)-O(8)	1.987(4)
K(2)-O(2)#2	2.797(4)	Mo(1)-O(8)#1	1.987(4)
K(2)-O(3)#1	3.042(5)	Mo(1)-O(9)	1.708(6)
K(2)-O(6)#3	2.906(4)	P(1)-O(1)	1.567(5)
K(2)-O(6)#4	2.816(4)	P(1)-O(2)	1.529(6)
K(2)-O(7)#3	2.853(4)	P(1)-O(3)	1.523(4)
K(2)-O(7)#5	3.092(4)	P(1)-O(3)#1	1.523(4)
K(2)-O(8)#4	3.213(5)	P(2)-O(5)	1.493(4)
K(2)-O(8)#5	2.849(5)	P(2)-O(6)	1.506(4)
K(2)-O(9)#6	3.093(5)	P(2)-O(7)	1.520(4)
Mg(1)-O(3)	1.909(4)	P(2)-O(8)	1.562(4)
O(3)-K(1)-O(2)#2	83.16(15)	O(7)#3-K(2)-O(6)#3	50.72(11)
O(3)#1-K(1)-O(2)#2	83.16(15)	O(7)#3-K(2)-O(7)#5	78.35(12)
O(3)-K(1)-O(3)#1	51.28(16)	O(7)#3-K(2)-O(8)#4	140.07(11)
O(4)#2-K(1)-O(2)#2	96.2(2)	O(7)#5-K(2)-O(8)#4	106.12(11)
O(4)#2-K(1)-O(3)	154.32(8)	O(7)#3-K(2)-O(9)#6	134.41(15)
O(4)#2-K(1)-O(3)#1	154.32(8)	O(7)#5-K(2)-O(9)#6	87.42(12)
O(9)-K(1)-O(2)#2	165.3(2)	O(8)#5-K(2)-O(3)#1	150.99(11)
O(9)-K(1)-O(3)	110.02(19)	O(8)#5-K(2)-O(6)#3	132.85(12)
O(9)-K(1)-O(3)#1	110.02(19)	O(8)#5-K(2)-O(7)#3	85.64(12)
O(9)-K(1)-O(4)#2	69.1(2)	O(8)#5-K(2)-O(7)#5	48.99(10)
O(1)-K(2)-O(2)#2	73.04(14)	O(8)#5-K(2)-O(8)#4	127.88(14)
O(1)-K(2)-O(3)#1	50.43(12)	O(8)#5-K(2)-O(9)#6	53.89(14)
O(1)-K(2)-O(6)#3	108.31(14)	O(9)#6-K(2)-O(8)#4	85.45(14)
O(1)-K(2)-O(6)#4	98.42(13)	O(3)-Mg(1)-O(6)#7	102.6(2)
O(1)-K(2)-O(7)#3	137.58(14)	O(5)-Mg(1)-O(3)	107.23(19)
O(1)-K(2)-O(7)#5	143.86(13)	O(5)-Mg(1)-O(6)#7	112.2(2)
O(1)-K(2)-O(8)#4	51.95(12)	O(5)-Mg(1)-O(7)#8	116.4(2)
O(1)-K(2)-O(8)#5	117.09(13)	O(7)#8-Mg(1)-O(3)	113.6(2)
O(1)-K(2)-O(9)#6	64.79(15)	O(7)#8-Mg(1)-O(6)#7	104.16(19)
O(2)#2-K(2)-O(3)#1	85.45(17)	O(4)-Mo(1)-O(1)#9	109.2(3)
O(2)#2-K(2)-O(6)#3	120.07(17)	O(4)-Mo(1)-O(8)	96.89(11)
O(2)#2-K(2)-O(6)#4	157.47(18)	O(4)-Mo(1)-O(8)#1	96.89(11)
O(2)#2-K(2)-O(7)#3	87.06(14)	O(4)-Mo(1)-O(9)	106.3(3)
O(2)#2-K(2)-O(7)#5	113.47(16)	O(8)-Mo(1)-O(1)#9	82.23(12)
O(2)#2-K(2)-O(8)#4	123.93(13)	O(8)#1-Mo(1)-O(1)#9	82.23(12)
O(2)#2-K(2)-O(8)#5	65.56(16)	O(8)-Mo(1)-O(8)#1	161.9(2)
O(2)#2-K(2)-O(9)#6	59.36(17)	O(9)-Mo(1)-O(1)#9	144.5(3)

O(3)#1-K(2)-O(7)#5	157.86(11)	O(9)-Mo(1)-O(8)	93.64(14)
O(3)#1-K(2)-O(8)#4	68.99(11)	O(9)-Mo(1)-O(8)#1	93.64(14)
O(3)#1-K(2)-O(9)#6	113.05(12)	O(2)-P(1)-O(1)	103.6(4)
O(6)#3-K(2)-O(3)#1	60.41(11)	O(3)-P(1)-O(1)	106.8(2)
O(6)#4-K(2)-O(3)#1	105.42(12)	O(3)#1-P(1)-O(1)	106.8(2)
O(6)#4-K(2)-O(6)#3	82.27(12)	O(3)-P(1)-O(2)	114.9(2)
O(6)#3-K(2)-O(7)#5	98.74(11)	O(3)#1-P(1)-O(2)	114.9(2)
O(6)#4-K(2)-O(7)#3	111.73(11)	O(3)#1-P(1)-O(3)	109.0(3)
O(6)#4-K(2)-O(7)#5	61.40(11)	O(5)-P(2)-O(6)	113.1(2)
O(6)#3-K(2)-O(8)#4	89.82(11)	O(5)-P(2)-O(7)	112.1(2)
O(6)#4-K(2)-O(8)#4	47.37(10)	O(5)-P(2)-O(8)	109.4(2)
O(6)#4-K(2)-O(8)#5	102.31(12)	O(6)-P(2)-O(7)	109.2(2)
O(6)#3-K(2)-O(9)#6	173.10(14)	O(6)-P(2)-O(8)	105.9(2)
O(6)#4-K(2)-O(9)#6	98.11(13)	O(7)-P(2)-O(8)	106.7(2)
O(7)#3-K(2)-O(3)#1	91.88(12)		

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z	#2 x,y,z-1	#3 -x+3/2,y-1/2,z-1/2
#4 x-1/2,-y+1/2,-z+3/2	#5 x-1/2,-y+1/2,-z+1/2	#6 x-1/2,y,-z+1/2
#7 -x+3/2,-y+1,z-1/2	#8 -x+3/2,-y+1,z+1/2	#9 x+1/2,γ,-z+3/2
#10 x,y,z+1	#11 x,-y+1/2,z+1	#12 -x+1,y+1/2,-z+1
#13 x+1/2,-y+1/2,-z+3/2	#14 x+1/2,y,-z+1/2	#15 x+1/2,-y+1/2,-z+1/2
#16 x-1/2,y,-z+3/2	#17 -x+3/2,y+1/2,z+1/2	

	K ₂ MgMoP ₂ O ₁₀	K ₃ Mg ₂ MoP ₃ O ₁₄
P(1)O ₄	2.181933635	1.239185939
P(2)O ₄	0.928486315	1.33783995
MoO ₆ /MoO ₅	27.00898028	3.701073885

Table S5. The polarization anisotropy of $K_2MgMoP_2O_{10}$ and $K_3Mg_2MoP_3O_{14}.$

Fig. S1. The PXRD patterns of (a) $K_2MgMoP_2O_{10}$, (b) $K_3Mg_2MoP_3O_{14}$

Fig. S2. The IR spectra of (a) $K_2MgMoP_2O_{10}$, (b) $K_3Mg_2MoP_3O_{14}$.

Fig. S3. TG and DSC data for (a) $K_2MgMoP_2O_{10}$, (b) $K_3Mg_2MoP_3O_{14}$.

Fig. S4. Calculated band structures of the GGA method, (a) $K_2MgMoP_2O_{10}$, (b) $K_3Mg_2MoP_3O_{14}$.

Fig. S5. (a) Original view of the crystal; (b,c) Extinction views of the crystal by negative and positive rotational compensators; (d) View of the crystal thickness; and (e) Orientation of the $K_2MgMoP_2O_{10}$ crystal determined by X-ray single-crystal diffraction

Fig. S6. REDA index (ζ) is used to analyze the contribution of K₂MgMoP₂O₁₀ birefringence.