# N-doped $Ti_3C_2$ -reinforced porous $g-C_3N_4$ for photocatalytic

#### contaminants degradation and nitrogen reduction

Ziyang Li<sup>a</sup>, Mingxuan Sun<sup>a\*</sup>, Haohao Chen<sup>a</sup>, Junjie Zhao<sup>a</sup>, Xiangzhi Huang<sup>a</sup>, Yu Gao

<sup>a</sup>, Huanying Teng <sup>a</sup>, Chen Chen <sup>a</sup>

<sup>a</sup> School of Materials Science and Engineering, Shanghai University of Engineering

Science, Shanghai 201620, P. R. China

\*Corresponding author E-mail: mingxuansun@sues.edu.cn; smxalan@163.com

#### **Equations:**

1. The conversion between reversible hydrogen electrode (RHE) and saturated calomel electrode (SCE)

$$E_{(RHE)} = E_{(SCE)} + 0.242 + 0.0591 \times (pH)$$
  
 $E_{(NHE)} = E_{(SCE)} + 0.242$ 

2. Optical band gap  $(E_g)$ 

#### $\alpha h\nu = (h\nu - E_g)^n$

 $\alpha$  and hv are respectively absorption and photon energy. n=2 and 1/2 are respectively corresponded to indirect and direct gap.

3. Turnover frequency (TOF)

$$\frac{jAM}{4Fm}$$

Where j is the current density (mA cm<sup>-2</sup>) at a given overpotential, A is electrode area, n, F m, M are molar concentration of catalyst and Faraday constant (96485 C·mol<sup>-1</sup>), mass loading of the catalyst (mg cm<sup>-2</sup>), and molecular weight of the catalyst, respectively respectively.

## Table S1

| C <sub>3</sub> N <sub>4</sub> -based photocatalysts. |                |                                   |                                       |                |           |
|------------------------------------------------------|----------------|-----------------------------------|---------------------------------------|----------------|-----------|
| Photocatalysts                                       | Amount<br>(mg) | Light source                      | Concentration<br>and volume of<br>RhB | Efficiency (%) | Ref.      |
| Pt/g-C <sub>3</sub> N <sub>4</sub>                   | 10 mg          | 300W ( $\lambda$ > 420 nm)        | 10 mg · L <sup>-1</sup> , 50ml        | 85% (20 min)   | 1         |
| Cu/C /g-C <sub>3</sub> N <sub>4</sub>                | 50 mg          | 250W ( $\lambda$ > 420 nm)        | 10 mg · L-1, 50ml                     | 97% (120 min)  | 2         |
| m-Fe/ g-C <sub>3</sub> N <sub>4</sub>                | 20 mg          | $500W (\lambda > 420 \text{ nm})$ | 5 mg · L <sup>-1</sup> , 40ml         | 88% (2 h)      | 3         |
| $Cu^+/g$ - $C_3N_4$                                  | 0.1 g          | 300/ ( $\lambda$ <420 nm)         | 10 mg · L <sup>-1</sup> , 200ml       | 95.7% (30 min) | 4         |
| GQDs/mpg-C <sub>3</sub> N <sub>4</sub>               | 25 mg          | $300W (\lambda > 420 \text{ nm})$ | 10 mg · L-1, 50ml                     | 97% (120 min)  | 5         |
| Ag/g-C <sub>3</sub> N <sub>4</sub>                   | 10 mg          | 500W ( $\lambda$ < 420 nm)        | 10 mg · L <sup>-1</sup> , 25ml        | ≈99% (100 min) | 6         |
| Ce/g-C <sub>3</sub> N <sub>4</sub>                   | 50 mg          | 250W ( $\lambda$ > 420 nm)        | 10 mg · L <sup>-1</sup> , 200ml       | ≈90% (120 min) | 7         |
| CS@g-C <sub>3</sub> N <sub>4</sub> /MX               | 0.1 g          | 250W ( $\lambda$ > 420 nm)        | 50 mg · L <sup>-1</sup> , 20ml        | ≈99% (180 min) | 8         |
| N-Ti <sub>3</sub> C <sub>2</sub> /porous g-          | 15 mg          | $300W (\lambda > 420 \text{ nm})$ | 20 mg · L <sup>-1</sup> , 30ml        | 97.5% (15 min) | This work |
| $C_3N_4$                                             |                |                                   |                                       |                |           |

Table S1 Photocatalytic performance of TCCN-1 in this paper and other reported g-





Figure S1 The transient photopotential for  $g-C_3N_4$  and TCCN-1

### Reference

- 1 X. Zhang, P. Wang, P. Yang and S. P. Jiang, Int. J. Hydrogen Energy, 2020, 45, 21523–21531.
- 2 T. Zhang, W. Shao, C. Yu, R. Jiang, G. Wu, W. Xing and P. Li, J. Inorg. Organomet P., 2022, 32, 2260–2268.
- 3 J. Luo, Z.-J. Cui and G.-L. Zang, J. Chem-ny, 2013, 2013, 1-6.
- 4 L. Yang, X. Ren, Y. Zhang and Z. Chen, J. Environ. Chem. Eng., 2021, 9, 106596.
- 5 J. Liu, H. Xu, Y. Xu, Y. Song, J. Lian, Y. Zhao, L. Wang, L. Huang, H. Ji and H. Li, *Appl. Catal. B-Environ energy*, 2017, **207**, 429–437.
- 6 K. Qi, Y. Li, Y. Xie, S. Liu, K. Zheng, Z. Chen and R. Wang, *Front. Chem.*, 2019, 7, 91.
- 7 R. Jin, S. Hu, J. Gui and D. Liu, B. Korean Chem. Soc., 2015, 36, 17-23.
- 8 S. Vigneshwaran, P. Karthikeyan, C. M. Park and S. Meenakshi, *J. Environ. Manage.*, 2020, **273**, 111125.