SUPPORTING INFORMATION

Synthesis of Bis(oxazoline)-based Rare-earth Metal Complexes and Their Catalytic Performance in the Polymerization of Isoprene and Polar *ortho*-Methoxystyrene

Shuhao You,^a Wenyu Shi,^a Ruoxue Ouyang ,^a Yang Wang ^a and Xiaochao Shi*

^aDepartment of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Materials Building, Nanchen Street 333, Shanghai 200444, China. Email: xcshi@shu.edu.cn

```
Figure S1 <sup>1</sup>H NMR spectrum of L1-H (400 MHz, CDCl<sub>3</sub>, 25 °C)
Figure S2<sup>13</sup>C NMR spectrum of L1-H (100 MHz, CDCl<sub>3</sub>, 25 °C)
Figure S3 <sup>1</sup>H NMR spectrum of 1-Y (400 MHz, C_6D_6, 25 °C)
Figure S4 <sup>13</sup>C NMR spectrum of 1-Y (100 MHz, C_6D_6, 25 °C)
Figure S5 <sup>1</sup>H NMR spectrum of 1-Lu (400 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C)
Figure S6<sup>13</sup>C NMR spectrum of 1-Lu (100 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C)
Figure S7 <sup>1</sup>H NMR spectrum of 1-Sc (400 MHz, C_6D_6, 25 °C)
Figure S8 <sup>13</sup>C NMR spectrum of 1-Sc (100 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C)
Figure S9 <sup>1</sup>H NMR spectrum of L2-H (400 MHz, CDCl<sub>3</sub>, 25 °C)
Figure S10<sup>13</sup>C NMR spectrum of L2-H (100 MHz, CDCl<sub>3</sub>, 25 °C)
Figure S11 <sup>1</sup>H NMR spectrum of 2-Y (400 MHz, C_6D_6, 25 °C)
Figure S12 <sup>13</sup>C NMR spectrum of 2-Y (100 MHz, C_6D_6, 25 °C)
Figure S13 <sup>1</sup>H NMR spectrum of 2-Lu (400 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C)
Figure S14 <sup>13</sup>C NMR spectrum of 2-Lu (100 MHz, C<sub>6</sub>D<sub>6</sub>, 25 °C)
Figure S15 <sup>1</sup>H NMR spectrum of 2-Sc (400 MHz, C_6D_6, 25 °C)
Figure S16 <sup>13</sup>C NMR spectrum of 2-Sc (100 MHz, C_6D_6, 25 °C)
Figure S17 <sup>1</sup>H NMR spectrum of 1-Y and 1-Y + 1 equiv. TIBA (400 MHz, C_6D_6,
25 °C)
Figure S18 <sup>1</sup>H NMR spectrum of atactic P(oMOS) catalyzed by 1-Y/[Ph<sub>3</sub>C][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]
/TIBA (400 MHz, C<sub>2</sub>Cl<sub>4</sub>D<sub>2</sub>, 120 °C, Entry 3 in Table 2)
Figure S19<sup>13</sup>C NMR spectrum of atactic P(oMOS) catalyzed by 1-Y/
[Ph<sub>3</sub>C][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]/TIBA (100 MHz, C<sub>2</sub>Cl<sub>4</sub>D<sub>2</sub>, 120 °C, Entry 3 in Table 2)
Figure S20 GPC curves of different polymerization time catalyzed by 1-Y. time:
```

```
3min (a), 2.5min (b), 2min (c), 1.5min (d), and 1min (e)
```

Figure S21 GPC curves of different monomer feeds catalyzed by **1-Y**. [IP]/[**1-Y**]: 1500 (a), 1000 (b), 750 (c), 500 (d), and 300 (e)

Table S1 Summary of the crystallographic data for 1-Y, 1-Lu and 2-Sc

Figure S1 ¹H NMR spectrum of L1-H (400 MHz, CDCl₃, 25 °C)

Figure S2 ¹³C NMR spectrum of L1-H (100 MHz, CDCl₃, 25 °C)

Figure S3 ¹H NMR spectrum of **1-Y** (400 MHz, C₆D₆, 25 °C; * *n*-hexane)

Figure S4 ¹³C NMR spectrum of 1-Y (100 MHz, C₆D₆, 25 °C; **n*-hexane; # Ph-C)

Figure S5 ¹H NMR spectrum of 1-Lu (400 MHz, C₆D₆, 25 °C; * *n*-hexane)

Figure S6 ¹³C NMR spectrum of 1-Lu (100 MHz, C₆D₆, 25 °C; **n*-hexane; # Ph-C)

Figure S7 ¹H NMR spectrum of **1-Sc** (400 MHz, C₆D₆, 25 °C)

Figure S8 ¹³C NMR spectrum of **1-Sc** (100 MHz, C₆D₆, 25 °C; **n*-hexane; # Ph-C)

Figure S9 ¹H NMR spectrum of L2-H (400 MHz, CDCl₃, 25 °C)

Figure S10 ¹³C NMR spectrum of L2-H (100 MHz, CDCl₃, 25 °C)

Figure S11 ¹H NMR spectrum of **2-Y** (400 MHz, C₆D₆, 25 °C)

Figure S12 ¹³C NMR spectrum of **2-Y** (100 MHz, C₆D₆, 25 °C; * *n*-hexane)

Figure S13 ¹H NMR spectrum of 2-Lu (400 MHz, C₆D₆, 25 °C)

Figure S14 ¹³C NMR spectrum of **2-Lu** (100 MHz, C₆D₆, 25 °C; * *n*-hexane)

Figure S16 ¹³C NMR spectrum of **2-Sc** (100 MHz, C₆D₆, 25 °C; * *n*-hexane)

Figure S17 ¹H NMR spectrum of 1-Y and 1-Y + 1 equiv TIBA (400 MHz, C_6D_6 , 25 °C)

Figure S18 ¹H NMR spectrum of atactic P(*o*MOS) catalyzed by **1-Y**/[Ph₃C][B(C₆F₅)₄] /TIBA (400 MHz, C₂Cl₄D₂, 120 °C, Entry 3 in Table 2)

Figure S19 ¹³C NMR spectrum of atactic P(oMOS) catalyzed by **1-Y**/ [Ph₃C][B(C₆F₅)₄]/TIBA (100 MHz, C₂Cl₄D₂, 120 °C, Entry 3 in Table 2)

Figure S20 GPC curves of different polymerization time catalyzed by **1-Y**. time: 3min (a), 2.5min (b), 2min (c), 1.5min (d), and 1min (e)

Figure S21 GPC curves of different monomer feeds catalyzed by **1-Y**. [IP]/[**1-Y**]: 1500 (a), 1000 (b), 750 (c), 500 (d), and 300 (e)

	1-Y	1-Lu	2-Sc
Empirical formula	$C_{29}H_{51}N_2O_3Si_2Y$	$C_{29}H_{51}LuN_2O_3Si_2Y$	$C_{41}H_{55}N_2O_2ScSi_2$
Formula weight	620.80	707.87	741.01
Temperature/K	150.00	150.00	150.00
Crystal system	triclinic	triclinic	orthorhombic
Space group	$P\overline{1}(2)$	$P\overline{1}(2)$	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (19)
a/Å	10.3675(12)	10.3467(4)	10.8048(16)
b/Å	11.7613(12)	11.7319(4)	12.4139(17)
c/Å	14.9863(10)	14.9386(5)	30.850(6)
$\alpha/^{\circ}$	92.529(3)	92.6780(10)	90
β/°	100.532(3)	100.7490(10)	90
$\gamma/^{\circ}$	112.138(2)	112.1510(10)	90
Volume/Å ³	1651.3(3)	1636.33(10)	4137.9(11)
Ζ	2	2	4
$D_c/Mg m^{-3}$	1.249	1.437	1.189
μ/mm^{-1}	1.868	3.119	0.276
F(000)	660	726	1584
Crystal size/mm ³	0.23×0.19×0.18	0.3×0.1×0.1	$0.1 \times 0.08 \times 0.05$
2θ range for data collection/°	4.34 to 55.06	4.40 to 55.01	3.99 to 55.04
	$-13 \leq h \leq 13$	$-13 \leq h \leq 13$	$-14 \leq h \leq 14$
Index ranges	$-15 \leq k \leq 15$	$-15 \leq k \leq 15$	$-16 \leq k \leq 15$
	$-19 \le 1 \le 18$	$-19 \le 1 \le 19$	$-37 \le 1 \le 40$
Reflections	55689	17958	16106
collected	55087	T750	-0170
Independent	7598	7444	9493
reflections	Rint = 0.0988	R(int) = 0.0483	R(int) = 0.1436
Completeness to $\theta/^{\circ}$	25.242(99.9 %)	25.242(98.5 %)	25.242(100.0 %)
Data/Restraints/Par	7598/0/344	7444/0/344	9493/0/457
ameters		7111101311	5 15 57 67 15 7
Goodness-of-fit on F ²	1.033	0.963	1.025
Final R indexes	R1 = 0.0319	R1 = 0.0176	R1 = 0.0612
[I≥2σ(I)]	wR2 = 0.0725	wR2 = 0.0521	wR2 = 0.1308
Final R indexes [all	R1 = 0.0454	R1 = 0.0181	R1 = 0.1082
data]	wR2 = 0.0768	wR2 = 0.0524	wR2 = 0.1532
Largest	0.53/-0.41	0.86/-0.82	0.49/-0.29
peak/11010/CA			

Table S1 Summary of the crystallographic data for 1-Y, 1-Lu and 2-Sc

 $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|; \ wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (Fo^2)^2]^{1/2}$