Vinylidene Rearrangements of Internal Borylalkynes via 1,2-Boryl Migration

Takahiro Iwamoto,* Takuya Mitsubo, Kosuke Sakajiri and Youichi Ishii*

Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-26, Kasuga,

Bunkyo-ku, Tokyo 112-8551 Japan

E-mail: iwamoto@kc.chuo-u.ac.jp, yo-ishii@kc.chuo-u.ac.jp

Contents

- 1. Experimental
- 2. ¹³C-labeling Experiments
- **3. DFT calculations**
- 4. References
- 5. NMR Spectra

1. Experimental

Figure S1. Notations of carbon atoms for NMR characterization of complex 2f.

Syntheses of novel Alkynes with B(mida)

To a mixture of 5-iodo-*m*-xylene (241.5 mg, 1.0362 mmol), ethynyl mida boronate (190.5 mg, 1.0528 mmol), CuI (8.1 mg, 0.0426 mmol), $PdCl_2(PPh_3)_2$ (14.1 mg, 0.0201 mmol) were added anhydrous DMF (160 µl) and Et_3N (150 µl). The reaction mixture was stirred at room temperature for 1 h. After addition of ethyl acetate, the solution was

washed with water and brine, and then dried over $MgSO_4$. The solvent was evaporated under reduced pressure to give a crude product. The crude product was purified by precipitation with ether/hexane = 1:14 to afford a desired compound as white powder (139.0 mg, 0.4875 mmol, 47% yield).

¹H NMR (acetone- d_6): δ 7.10 (s, 2H, H2), 7.02 (s, 1H, H4), 4.32 (d, 2H, ² J_{HH} = 17.3 Hz, CH₂ of mida), 4.17 (d, 2H, ² J_{HH} = 16.8 Hz, CH₂ of mida), 3.31 (s, 3H, CH₃ of mida), 2.26 (s, 6H, CH₃ of mida). ¹³C{¹H} NMR (acetone- d_6): δ 168.6 (CO of mida), 138.8 (C3), 131.2 (C4), 130.2 (C2), 123.7 (C1), 101.0 ((*m*-xylyl)C=C), 62.3 (CH₂ of mida), 48.4 (CH₃ of mida), 21.0 (CH₃ of *m*-xylyl). The signal assignable to the (*m*-xylyl)C=C could not be found, probably because it is overlapped with another signal. HRMS *m*/*z*: [M+Na]⁺ calcd for C₁₅H₁₆BNO₄Na⁺: 308.10646; found 308.10748.

To a mixture of 3-bromobiphenyl (112.8 mg, 0.4839 mmol), ethynyl mida

boronate (95.8 mg, 0.5294 mmol), CuI (5.6 mg, 0.0294 mmol), PdCl₂(PPh₃)₂ (8.8 mg, 0.0125 mmol) were added anhydrous DMF (80 µl) and Et₃N (75 µl). The reaction mixture was stirred at 60 °C for 18 h. After addition of ethyl acetate, the solution was washed with water and brine, and then dried over MgSO₄. The solvent was evaporated under reduced pressure to give a crude product. The crude product was purified by column chromatography. The alkyne was obtained as brown powder (27.8 mg, 0.0842 mmol, 17% yield).

¹H NMR (acetone-*d*₆): δ 7.77 (m, 1H, H4), 7.67 (m, 3H, H6, H8), 7.75 (m, 4H, H2, H5, H9), 7.39 (m, 1H, H10), 4.35 (d, 2H, ${}^{2}J_{HH} = 16.8$ Hz, CH₂ of mida), 4.20 (d, 2H, ${}^{2}J_{HH} = 17.3$ Hz, CH₂ of mida), 3.35 (s, 3H, CH₃ of mida). ${}^{13}C{}^{1}H$ NMR (acetone-d₆): δ 168.6 (CO of mida), 142.2 (C3), 140.8 (C7), 131.4 (C2), 131.0 (C4), 129.9 (C5), 129.8 (C9), 128.6 (C10), 128.1 (C6), 127.8 (C8), 124.6 (C1), 100.4((β-biphenyl)C≡C), 62.3 (CH₂ of mida), 48.5 (CH₃ of mida). The signal assignable to the $(\beta$ -biphenyl)C=C could not be found, probably because it is overlapped with another signal. HRMS *m/z*: [M+Na]⁺ calcd for C₁₉H₁₆BNO₄Na⁺: 356.10646; found 356.10669.

Vinylidene rearrangements

$[Ru(=C=C(Ph){B(mida)})(dppp)Cp][BArF_4]$ (2b)

Complex 2b was obtained as yellow crystals (67.0 mg, 0.0394 mmol, 77% yield) by the reaction of [CpRuCl(dppp)] (31.6 mg, 0.0515 mmol), PhC=CB(mida) (15.7 Ph₂P⁽¹⁾, Ru \approx B(mida) mg, 0.0611 mmol), and NaBAr^F₄·2.6H₂O (50.7 mg, 0.0543 mmol).

¹H NMR (acetone- d_6): δ 7.80 (s, 8H, o-H of BAr^F₄), 7.68 (s, 4H, p-H of BAr^F₄), 7.60 (m, 4H, o-H of Ph in dppp), 7.40 (m, 8H, m- and p-H×2 of Ph in dppp), 7.29 (m, 8H,

o- and m-H of Ph in dppp), 7.24 (m, 2H, o-H of Ru=C=CPh), 7.12 (m, 3H, m- and p-H of Ru=C=CPh), 5.68 (s, 5H, Cp), 4.16 (d, 2H, ${}^{2}J_{HH} = 16.8$ Hz, CH₂ of mida), 3.54 (d, 2H, ${}^{2}J_{HH} = 17.3$ Hz, CH₂ of mida), 3.15 (s, 3H, CH₃ of mida), 2.99 (m, 2H, PCH₂CH₂ of dppp), 2.61 (br, 3H, PCH₂CH₂ and PCH₂CH₂ of dppp). The signal assignable to the PCH₂CH₂ could not be found, probably because it is overlapped with other signals. ${}^{31}P{}^{1}H{}$ NMR (acetone-d₆): δ 34.5 (br, dppp). ¹³C{¹H} NMR (acetone- d_6): δ 341.4 (t, ² J_{CP} = 16.0 Hz, Ru=C=C), 167.8 (s, CO of mida), 162.6 (q, ${}^{1}J_{CB} = 50.0 \text{ Hz}, ipso-C \text{ of BAr}_{4}$, 137.3 (m, ipso-C of Ph in dppp×2), 135.5 (br, o-C of BAr ${}^{F}_{4}$), 133.5 (virtual t, o-C of Ph in dppp), 133.2 (m, o-C of Ph in dppp), 131.43 (s, p-C of Ph in dppp), 131.37 (s, p-C of Ph in dppp) 131.2 (s, *o*-C of Ru=C=CC₆H₅), 130.0 (brq, ${}^{2}J_{CF}$ = 31.9 Hz, *m*-C of BAr^F₄), 129.9 (s, *m*-C of Ru=C=CC₆H₅), 129.4 (m, *m*-C of Ph in dppp×2), 127.7 (s, *p*-C of Ru=C=C C_6 H₅), 125.4 (q, ${}^{1}J_{CF}$ = 272.8 Hz, CF₃ of BAr^F₄), 118.5 (m, *p*-C of BAr^F₄), 93.0 (s, Cp), 62.8 (s, CH₂ of mida), 47.7 (s, CH₃ of mida), 27.6 (m, PCH₂CH₂), 21.1 (s, PCH₂CH₂). The signal assignable to the Ru=C=C and *ipso*-C of Ru= $C=CC_6H_5$ could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for C₇₇H₅₅O₄B₂F₂₄P₂NRu: C, 54.44; H, 3.26; N, 0.82. Found: C, 54.30; H, 3.51; N, 0.81.

$[Ru(=C=C(Ph){B(mida)})(dppb)Cp][BAr^{F_4}]$ (2c)

Complex 2c was obtained as yellow crystals (24.7 mg, 0.0144 mmol, 28% yield) by the reaction of [CpRuCl(dppb)] (31.8 mg, 0.0506 mmol), PhC=CB(mida) (15.4 mg, 0.0599 mmol), and NaBAr^F₄·2.6H₂O (51.5 mg, 0.0551 mmol). ¹H NMR (acetone- d_6): δ 7.79 (s, 8H, o-H of BAr^F₄), 7.68 (s, 4H, p-H of BAr^F₄), 7.61

(m, 6H, *o*- and *p*- H of Ph in dppb), 7.50 (m, 10H, *m*-×2 and *p*-H of Ph in dppb), 7.36 (m, 4H, *o*-H of Ph in dppb), 7.14 (m, 3H, *m*- and *p*-H of Ru=C=CPh), 6.95 (m, 2H, *o*-H of Ru=C=CPh), 5.23 (s, 5H, Cp), 4.23 (d, 2H, ${}^{2}J_{HH} = 16.8$ Hz, CH₂ of MIDA), 3.59 (d, 2H, ${}^{2}J_{HH} = 16.8$ Hz, CH₂ of mida), 3.23 (m, 5H, PCH₂CH₂ of dppb and CH₃ of mida), 2.51 (m, 2H, PCH₂CH₂ of dppb), 1.62 (m, 2H, PCH₂CH₂ of dppb), 1.44 (m, 2H, PCH₂CH₂ of dppb). ${}^{31}P{}^{1}H{}$ NMR (acetone-*d*₆): δ 43.5 (s, dppb). ${}^{13}C{}^{1}H{}$ NMR (acetone-*d*₆): δ 345.6 (t, ${}^{2}J_{CP} = 15.6$ Hz, Ru=*C*=C), 168.0 (s, CO of mida), 162.6 (q, ${}^{1}J_{CB} = 50.0$ Hz, *ipso*-C of BAr^F₄), 139.0 (m, *ipso*-C of Ph in dppb), 135.9 (m, *ipso*-C of Ph in dppb), 135.5 (br, *o*-C of BAr^F₄), 133.1 (virtual t, *o*-C of Ph in dppb×2), 131.9 (s, *p*-C of Ph in dppb), 131.4 (s, *p*-C of Ph in dppb), 129.5 (m, *m*-C of Ph in dppb), 127.7 (s, *p*-C of Ru=C=CC₆H₅), 125.3 (q, ${}^{1}J_{CF} = 272.9$ Hz, CF₃ of BAr^F₄), 118.4 (m, *p*-C of BAr^F₄), 92.8 (s, Cp), 62.9 (s, CH₂ of mida), 47.4 (s, CH₃ of MIDA), 30.2 (m, PCH₂CH₂), 23.5 (s, PCH₂CH₂). The signal assignable to the Ru=C=C and *ipso*-C of Ru=C=CC₆H₅ could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for C₇₈H₃₇₀A_{B2}F₂₄P₂NRu·0.5CH₂Cl₂: C, 53.71; H, 3.27; N, 0.80. Found: C, 53.41; H, 3.21; N, 0.71.

$[Ru(=C=C(Ph)\{B(mida)\})\{(p-tol)_2PC_2H_4P(p-tol)_2)\}Cp][BAr^{F_4}] (2d)$

Complex **2d** was obtained as yellow crystals (59.4 mg, 0.0340 mmol, 67% yield) by the reaction of $[CpRuCl(p-tol)_2PC_2H_4P(p-tol)_2)]$ (33.2 mg, 0.0506 mmol), PhC=C B(mida) (15.8 mg, 0.0615 mmol), and NaBAr^F₄·2.6H₂O (50.6 mg, 0.0542 mmol).

¹H NMR (acetone- d_6): δ 7.80 (s, 8H, *o*-H of BAr^F₄), 7.68 (s, 4H, *p*-H of BAr^F₄), 7.60 (m, 4H, H2), 7.13 (m, 12H, H3×2 and H2), 7.00 (m, 3H, *m*- and *p*-H of Ru=C=CPh), 6.86 (m, 2H, *o*-H of Ru=C=CPh), 5.63 (s, 5H, Cp), 3.98 (d, 2H, ² J_{HH} = 16.8 Hz, CH₂ of mida), 3.30 (m, 2H, CH₂ of PCH₂), 3.18 (d, 2H, ² J_{HH} = 17.3Hz, CH₂ of mida), 3.03

(m, 2H, CH₂ of PCH₂), 2.62 (s, 3H, CH₃ of mida) 2.34 (s, 6H, CH₃ of *p*-tol), 2.31 (s, 6H, CH₃ of *p*-tol). ³¹P{¹H} NMR (acetone- d_6): δ 77.7 (s). ¹³C{¹H} NMR (acetone- d_6): δ 338.5 (t, ² J_{CP} = 15.8 Hz, Ru=*C*=C), 167.7 (s, CO of mida), 162.6 (q, ¹ J_{CB} = 50.0 Hz, *ipso*-C of BAr^F₄), 142.2 (s, C4), 141.8 (s, C4), 135.5 (br, *o*-C of BAr^F₄), 135.0 (m, C1), 133.8 (virtual t, C2), 132.0 (m, C1, C2), 130.8 (s, *o*-C of Ru=C=CC₆H₅), 130.2 (m, C3×2), 130.0 (brq, ² J_{CF} = 32.4 Hz, *m*-C of BAr^F₄), 129.4 (s, *m*-C of Ru=C=CC₆H₅), 128.9 (s, *ipso*-C of Ru=C=CC₆H₅), 126.9 (s, *p*-C of Ru=C=CC₆H₅), 125.4 (q, ¹ J_{CF} = 272.9 Hz, CF₃ of BAr^F₄), 118.5 (m, *p*-C of BAr^F₄), 92.0 (s, Cp), 62.8 (s, CH₂ of mida), 47.1 (s, CH₃ of mida), 28.6 (m, *PC*H₂), 21.4 (s, CH₃ of *p*-tol), 21.1 (s, CH₃ of *p*-tol). The signal assignable to the Ru=C=C could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for C₈₀H₆₁O₄B₂F₂₄P₂NRu: C, 55.19; H, 3.53; N, 0.80. Found: C, 54.99; H, 3.58; N, 0.80.

$[Ru(=C=C(Ph)\{B(mida)\})\{(p-CF_{3}C_{6}H_{4})_{2}PC_{2}H_{4}P(p-CF_{3}C_{6}H_{4})_{2}\}Cp][BAr^{F}_{4}] (2e)$

Complex **2e** was obtained as yellow crystals (71.1 mg, 0.0363 mmol, 72% yield) by the reaction of $[RuCl(p-CF_3C_6H_4)_2PC_2H_4P(p-CF_3C_6H_4)_2Cp]$ (43.8 mg, 0.0523 mmol), PhC=CB(mida) (15.7 mg, 0.0611 mmol), and NaBAr^F₄·2.6H₂O (50.5 mg, 0.0541 mmol).

¹H NMR (acetone- d_6): δ 7.97 (m, 4H, H2), 7.81 (s, 8H, *o*-H of BAr^F₄), 7.68 (s, 4H,

p-H of BAr^F₄), 7.66 (m, 4H, H3), 7.55 (m, 8H, H2, H3)), 7.02 (m, 5H, *o*- and *m*- and *p*-H of Ru=C=CPh), 6.12 (s, 5H, Cp), 4.05 (d, 2H, ${}^{2}J_{HH} = 16.8$ Hz, CH₂ of mida), 3.72 (m, 2H, CH₂ of PCH₂), 3.38 (d, 2H, ${}^{2}J_{HH} = 17.3$ Hz, CH₂ of mida), 3.34 (m, 2H, CH₂ of PCH₂), 3.03 (s, 3H, CH₃ of mida). ${}^{31}P{}^{1}H$ NMR (acetone-*d*₆): δ 82.4 (s). ${}^{13}C{}^{1}H$ NMR (acetone-*d*₆): δ 337.3 (t, ${}^{2}J_{CP} = 15.6$ Hz, Ru=*C*=C), 167.5 (s, CO of mida), 162.6 (q, ${}^{1}J_{CB} = 50.0$ Hz, *ipso*-C of BAr^F₄), 140.0 (m, C1),139.5 (m, C1), 135.5 (br, *o*-C of BAr^F₄), 134.4 (virtual t, C2), 133.2 (virtual t, C2), 132.9 (m, C4×2), 130.6 (s, *o*-C of Ru=C=CC₆H₅), 130.0 (brq, ${}^{2}J_{CF} = 34.3$ Hz, *m*-C of BAr^F₄), 129.8 (s, *m*-C of Ru=C=CC₆H₅), 128.1 (s, *ipso*-C of Ru=C=CC₆H₅), 127.7 (s, *p*-C of Ru=C=CC₆H₅), 126.6 (m, C3), 126.4 (m, C3), 125.4 (q, ${}^{1}J_{CF} = 273.0$ Hz, CF₃ of BAr^F₄), 124.8 (q, ${}^{1}J_{CF} = 273.0$ Hz, CF₃ of *p*-CF₃C₆H₄), 124.5 (q, ${}^{1}J_{CF} = 273.0$, CF₃ of *p*-CF₃C₆H₄), 118.5 (m, *p*-C of BAr^F₄), 92.6 (s, Cp), 62.7 (s, CH₂ of mida), 47.4 (s, CH₃ of mida), 27.8 (m, PCH₂). The signal assignable to the Ru=C=C could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for C₈₀H₄₉O₄B₂F₃₆P₂NRu: C, 49.10; H, 2.52; N, 0.72. Found: C, 49.09; H, 2.43; N, 0.71.

$[Ru(=C=C(p-CF_{3}C_{6}H_{4})\{B(mida)\})(dppe)Cp][BArF_{4}] (2h)$

Complex **2h** was obtained as yellow crystals (29.4 mg, 0.0168 mmol, 33% yield) by using [CpRuCl(dppe)] (30.8 mg, 0.0513 mmol), (*p*-CF₃C₆H₄)C=CB(mida) (18.5 mg, 0.0569 mmol), and NaBAr^F₄·2.6H₂O (51.8 mg, 0.0555 mmol).

¹H NMR (acetone- d_6): δ 7.80 (s, 8H, *o*-H of BAr^F₄), 7.76 (m, 4H, *o*-H of Ph in dppe), 7.68 (s, 4H, *p*-H of BAr^F₄), 7.43 (m, 4H, *p*-H of Ph in dppe ×2), 7.33 (m, 8H, *m*-H of Ph in dppe×2), 7.27 (d, 2H, ³J_{HH} = 8.4 Hz, H3), 7.21 (m, 4H, *o*-H of Ph in

dppe), 7.09 (d, 2H, ${}^{3}J_{HH} = 7.9$ Hz, H2), 5.79 (s, 5H, Cp), 4.03 (d, 2H, ${}^{2}J_{HH} = 17.3$ Hz, CH₂ of mida), 3.47 (m, 2H, CH₂ of dppe), 3.31 (d, 2H, ${}^{2}J_{HH} = 16.8$ Hz, CH₂ of mida), 3.20 (m, 2H, CH₂ of dppe), 2.70 (s, 3H, CH₃ of mida). ${}^{31}P{}^{1}H{}$ NMR (acetone- d_{6}): δ 79.7 (s, dppe). ${}^{13}C{}^{1}H{}$ NMR (acetone- d_{6}): δ 337.5 (t, ${}^{2}J_{CP} = 16.0$ Hz, Ru=C=C), 167.6 (s, CO of mida), 162.6 (q, ${}^{1}J_{CB} = 50.0$ Hz, *ipso*-C of BAr^F₄), 137.7 (m, *ipso*-C of Ph in dppe), 135.5 (br, *o*-C of BAr^F₄), 135.0 (m, *ipso*-C of Ph in dppe), 133.8 (virtual t, *o*-C of Ph in dppe), 135.5 (s, C1), 132.2 (s, *p*-C of Ph in dppe), 132.0 (virtual t, *o*-C of Ph in dppe), 131.5 (s, *p*-C of Ph in dppe), 131.2 (s, C2), 130.0 (brq, ${}^{2}J_{CF} = 29.1$ Hz, *m*-C of BAr^F₄), 129.7 (m, *m*-C of Ph in dppe×2), 128.4 (s, C4), 126.2 (s, C3), 125.4 (q, ${}^{1}J_{CF} = 272.9$ Hz, CF₃ of BAr^F₄), 125.2 (q, ${}^{1}J_{CF} = 264.9$ Hz, CF₃ of *p*-CF₃C₆H₄), 118.4 (m, *p*-C of BAr^F₄), 92.4 (s, Cp), 62.9 (s, CH₂ of mida), 47.5 (s, CH₃ of mida), 28.2 (m, *PC*H₂). The signal assignable to the Ru=C=*C* and C4 could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for C₇₇H₅₂O₄B₂F₂₇P₂NRu·0.5CH₂Cl₂: C, 51.85; H, 2.92; N, 0.78. Found: C, 51.59; H, 2.83; N, 0.71.

$[Ru(=C=C(p-Ans){B(mida)})(dppe)Cp][BArF_4] (2i)$

Complex 2i was obtained as yellow crystals (70.9 mg, 0.041.3 mmol, 84% yield) by the reaction of [RuCl(dppe)Cp] (29.4 mg, 0.0490 mmol), (*p*-Ans)C=CB(mida) (17.5 mg, 0.0610 mmol), and NaBAr^F₄·2.6H₂O (51.0 mg, 0.0547 mmol).

¹H NMR (acetone- d_6): δ 7.81 (s, 8H, *o*-H of BAr^F₄), 7.76 (m, 4H, *o*-H of Ph in dppe), 7.69 (s, 4H, *p*-H of BAr^F₄), 7.48 (m, 2H, *p*-H of Ph in dppe), 7.40 (m, 6H,

p- and *m*-H of Ph in dppe), 7.32 (m, 4H, *m*-H of Ph in dppe), 7.23 (m, 4H, *o*-H of Ph in dppe), 6.77 (d, 2H, ${}^{3}J_{HH} = 8.4 \text{ Hz}$, H2), 6.55 (d, 2H, ${}^{3}J_{HH} = 7.9 \text{ Hz}$, H3), 5.69 (s, 5H, Cp), 3.99 (d, 2H, ${}^{2}J_{HH} = 17.3 \text{ Hz}$, CH₂ of mida), 3.70 (s, 3H, OCH₃) 3.41 (m, 2H, CH₂ of dppe), 3.24 (d, 2H, ${}^{2}J_{HH} = 17.3 \text{ Hz}$, CH₂ of mida), 3.08 (m, 2H, CH₂ of dppe), 2.64 (s, 3H, CH₃ of mida). ${}^{31}P{}^{1}H$ NMR (acetone-*d*₆): δ 79.7 (s, dppe). ${}^{13}C{}^{1}H$ NMR (acetone-*d*₆): δ 339.4 (t, ${}^{2}J_{CP} = 15.9 \text{ Hz}$, Ru=*C*=C), 167.8 (s, CO of mida), 162.6 (q, ${}^{1}J_{CB} = 50.0 \text{ Hz}$, *ipso*-C of BAr^F₄), 159.3 (s, C4) 138.1 (m, *ipso*-C of Ph in dppe), 135.5 (br, *o*-C of BAr^F₄), 135.1 (m, *ipso*-C of Ph in dppe), 133.9 (virtual t, *o*-C of Ph in dppe), 131.8 (s, C2), 131.4 (s, *p*-C of Ph in dppe), 130.0 (brq, ${}^{2}J_{CF} = 31.9 \text{ Hz}$, *m*-C of BAr^F₄), 129.6 (m, *m*-C of Ph in dppe×2), 125.4 (q, ${}^{1}J_{CF} = 273.0 \text{ Hz}$, CF₃ of BAr^F₄), 119.9 (s, C1), 118.4 (m, *p*-C of BAr^F₄), 115.1 (s, C3), 91.9 (s, Cp), 62.8 (s, CH₂ of mida), 55.3 (s, OCH₃), 47.2 (s, CH₃ of mida), 28.4 (m, PCH₂). The signal assignable to the Ru=C=C could not be found, probably because it is overlapped with other signals. HRMS *m/z*: [M+Na]⁺ calcd for RuP₂C₄₅H₄₃BNO₅⁺: 852.17530; found 852.17586.

$[Ru(=C=C(p-CF_{3}C_{6}H_{4})\{B(dan)\})(dppe)Cp][BArF_{4}] (2j)$

Complex **2j** was obtained by using [RuCl(dppe)Cp] (30.2 mg, 0.0503 mmol), (*p*-CF₃C₆H₄)C=CB(dan) (17.0 mg, 0.0506 mmol), and NaBAr^F₄·6THF (recrystallized THF/hexane) (68.2 mg, 0.0517 mmol). The complex was characterized by ¹H NMR spectrum of the crude product (0.0486 mmol, 97% yield).

¹H NMR (CDCl₃): δ 7.76 (s, 8H, *o*-H of BAr^F₄), 7.55 (s, 4H, *p*-H

of BAr^F₄), 7.39 (m, 12H, *p*-×2 and *m*- and *o*-H of Ph in dppe), 7.19 (d, 2H, ${}^{3}J_{HH} = 7.9$ Hz, H3), 7.04 (m, 12H, *m*- and *o*-H of Ph in dppe and H6, H7), 6.71 (d, 2H, ${}^{3}J_{HH} = 7.9$ Hz, H2), 5.95 (br, 2H, H5), 5.47 (s, 5H, Cp), 4.84 (br, 2H, NH of dan), 3.10 (m, 2H, CH₂ of dppe), 2.92 (m, 2H, CH₂ of dppe). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃): δ 77.5 (s, dppe). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃): δ 334.1 (t, ${}^{2}J_{CP} = 15.4$ Hz, Ru=*C*=C), 161.9 (q, ${}^{1}J_{CB} = 50.0$ Hz, *ipso*-C of BAr^F₄), 139.9 (s, C10), 136.1 (br, C8), 134.9 (m, *o*-C of BAr^F₄ and *ipso*-C of Ph in dppe), 133.2 (m, *ipso*-C of Ph in dppe), 132.1 (m, *p*-C of Ph in dppe), 132.0 (m, *p*-C of Ph in dppe), 131.8 (virtual t, *o*-C of Ph in dppe), 131.4 (virtual t, *o*-C of Ph in dppe), 129.0 (m, *m*-C of Ph in dppe), 123.9 (q, ${}^{1}J_{CF} = 273.1$ Hz, CF₃ of *p*-CF₃C₆H₄), 119.7 (s, C9), 118.7 (s, C7), 117.6 (s, *p*-C of BAr^F₄), 106.6 (s, C5), 91.5 (s, Cp), 27.6 (m, *PC*H₂). The signal assignable to the Ru=C=*C* could not be found, probably because it is overlapped with other signals. High resolution mass measurement and elemental analysis have failed due to the high susceptibility toward hydrolysis.

$[Ru(=C=C(p-Ans)\{B(dan)\})(dppe)Cp][BAr^{F_{4}}] (2k)$

Complex **2k** was obtained by using [RuCl(dppe)Cp] (30.3 mg, 0.0505 mmol), (*p*-Ans)C=CB(dan) (15.4 mg, 0.0517 mmol), and NaBAr^F₄·6THF (recrystallized THF/hexane) (67.5 mg, 0.0512 mmol). The complex was characterized by ¹H NMR spectrum of the crude product (0.0426 mmol, 84 % yield).

¹H NMR (CDCl₃): δ 7.77 (s, 8H, *o*-H of BAr^F₄), 7.56 (s, 4H, *p*-H

of BAr^F₄), 7.43 (m, 6H, *o*- and *p*-H of Ph in dppe), 7.38 (m, 4H, *m*-H of Ph in dppe), 7.07 (m, 14H, *o*-, *m*- and *p*-H of Ph in dppe, H6, H7), 6.55 (d, 2H, ${}^{3}J_{HH} = 8.9$ Hz, H2), 6.51 (d, 2H, ${}^{3}J_{HH} = 8.9$ Hz, H3), 5.92 (br, 2H, H5), 5.45 (s, 5H, Cp), 4.80 (br, 2H, NH of dan), 3.72 (s, 3H, CH₃ of *p*-Ans), 3.08 (m, 2H, CH₂ of dppe), 2.90 (m, 2H, CH₂ of dppe). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃): δ 78.2 (s, dppe). ${}^{12}C{}^{1}H{}$ NMR (CDCl₃): δ 336.3 (m, Ru=*C*=*C*), 161.8 (q, ${}^{1}J_{CB} = 50.0$ Hz, *ipso*-C of BAr^F₄), 158.8 (s, C4), 140.2 (s, C10), 136.1 (br, C8), 134.9 (m, *o*-C of BAr^F₄ and *ipso*-C of Ph in dppe), 131.9 (m, *o*- and *p*-C of Ph in dppe), 131.7 (m, *p*-C of Ph in dppe), 131.4 (m, *o*-C of Ph in dppe), 130.0 (s, C2), 129.2 (m, *m*-C of Ph in dppe×2), 128.9 (brq, ${}^{2}J_{CF} = 34.1$ Hz, *m*-C of BAr^F₄), 127.3 (m, C6), 124.7 (q, ${}^{1}J_{CF} = 273.6$ Hz, CF₃ of BAr^F₄), 119.6 (s, C9), 118.3 (s, C7), 118.1 (s, C1), 117.6 (s, *p*-C of BAr^F₄), 114.7 (s, C3), 106.5 (s, C5), 91.2 (s, Cp), 55.2 (s, OCH₃), 27.7 (m, PCH₂). The signal assignable to the Ru=C=*C* could not be found, probably because it is overlapped with other signals. High resolution mass measurement and elemental analysis have failed due to the high susceptibility toward hydrolysis.

$[Ru(=C=C(p-tol)\{B(mida)\})(dppe)Cp][BArF_{4}] (2l)$

Complex **21** was obtained as yellow crystals (68.3 mg, 0.0402 mmol, 78% yield) by using [RuCl(dppe)Cp] (30.9 mg, 0.0515 mmol), (*p*-tol)C \equiv CB(mida) (15.9 mg, 0.0587 mmol), and NaBAr^F₄·2.6H₂O (50.8 mg, 0.0544 mmol).

¹H NMR (acetone-*d*₆): δ 7.80 (s, 8H, *o*-H of BAr^F₄), 7.74 (m, 4H, *o*-H of Ph in dppe), 7.68 (s, 4H, *p*-H of BAr^F₄), 7.47 (m, 2H, *p*-H of Ph in dppe), 7.42 (m, 2H, *p*-H of Ph in dppe), 7.34 (m, 8H, *m*-H of Ph in dppe×2), 7.23 (m, 4H, *o*-H of Ph in

dppe), 6.79 (d, 2H, ${}^{3}J_{HH} = 8.4$ Hz, H3), 6.75 (d, 2H, ${}^{3}J_{HH} = 8.4$ Hz, H2), 5.69 (s, 5H, Cp), 3.99 (d, 2H, ${}^{2}J_{HH} = 16.8$ Hz, CH₂ of mida), 3.41 (m, 2H, CH₂ of dppe), 3.22 (d, 2H, ${}^{2}J_{HH} = 17.3$ Hz, CH₂ of mida), 3.07 (m, 2H, CH₂ of dppe), 2.63 (s, 3H, CH₃ of mida), 2.17 (s, 3H, CH₃ of *p*-tol). ${}^{31}P{}^{1}H{}$ NMR (acetone-*d*₆): δ 79.6 (s, dppe). ${}^{13}C{}^{1}H{}$ NMR (acetone-*d*₆): δ 338.8 (t, ${}^{2}J_{CP} = 15.4$ Hz, Ru=*C*=C), 167.8 (s, CO of mida), 162.6 (q, ${}^{1}J_{CB} = 50.0$ Hz, *ipso*-C of BAr^F₄), 138.1 (m, *ipso*-C of Ph in dppe), 136.8 (s, C4) 135.5 (br, *o*-C of BAr^F₄), 135.1 (m, *ipso*-C of Ph in dppe), 133.9 (virtual t, *o*-C of Ph in dppe), 132.0 (m, *o*-C of Ph in dppe), 131.8 (s, *p*-C of Ph in dppe) 131.4 (s, *p*-C of Ph in dppe), 130.6 (s, C2), 130.3 (s, C3), 130.0 (brq, ${}^{2}J_{CF} = 32.0$ Hz, *m*-C of BAr^F₄), 129.6 (m, *m*-C of Ph in dppe×2), 125.4 (q, ${}^{1}J_{CF} = 272.9$ Hz, CF₃ of BAr^F₄), 125.3 (s, C1), 118.4 (m, *p*-C of BAr^F₄), 92.0 (s, Cp), 62.8 (s, CH₂ of mida), 47.1 (s, CH₃ of mida), 28.4 (m, *PC*₂), 20.9 (s, CH₃ of *p*-tol). The signal assignable to the Ru=C=*C* could not be found, probably because it is overlapped with other signals. HRMS *m*/*z*: [M+Na]⁺ calcd for RuP₂C₄₅H₄₃BNO₄⁺: 836.18039; found 836.18234.

$[Ru(=C=C(p-FC_6H_4)\{B(mida)\})(dppe)Cp][BAr^{F_4}] (2m)$

 $\square BArF_4 \qquad \begin{array}{l} \text{Complex } \mathbf{2m} \text{ was obtained as yellow crystals } (62.0 \text{ mg}, 0.0364 \text{ mmol}, 71\% \text{ yield}) \\ \text{by using } [RuCl(dppe)Cp] (30.7 \text{ mg}, 0.0512 \text{ mmol}), (p-FC_6H_4)C \equiv CB(\text{mida}) (15.9 \text{ mg}, 0.0578 \text{ mmol}), \text{ and } \text{NaBAr}F_4 \cdot 2.6H_2O (50.7 \text{ mg}, 0.0543 \text{ mmol}). \end{array}$

¹H NMR (acetone- d_6): δ 7.80 (s, 8H, *o*-H of BAr^F₄), 7.77 (m, 4H, *o*-H of Ph in dppe), 7.68 (s, 4H, *p*-H of BAr^F₄), 7.49 (m, 2H, *p*-H of Ph in dppe), 7.40 (m, 6H, *m*- and *p*-H of Ph in dppe), 7.33 (m, 4H, *m*-H of Ph in dppe) 7.23 (m, 4H, *o*-H of Ph in dppe)

6.88 (m, 2H, H2), 6.73 (m, 2H, H3), 5.72 (s, 5H, Cp), 4.01 (d, 2H, ${}^{2}J_{HH} = 17.3$ Hz, CH₂ of MIDA), 3.43 (m, 2H, CH₂ of dppe), 3.29 (d, 2H, ${}^{2}J_{HH} = 16.8$ Hz, CH₂ of mida), 3.11 (m, 2H, CH₂ of dppe), 2.69 (s, 3H, CH₃ of mida). ${}^{31}P{}^{1}H$ NMR (acetone- d_{6}): δ 79.7 (s, dppe). ${}^{13}C{}^{1}H$ NMR (acetone- d_{6}): δ 338.7 (t, ${}^{2}J_{CP} = 16.0$ Hz, Ru=C=C), 167.7 (s, CO of mida) 162.6 (q, ${}^{1}J_{CB} = 50.0$ Hz, *ipso*-C of BAr^F₄), 162.3 (d, ${}^{1}J_{CF} = 245.0$ Hz, C4) 137.9 (m, *ipso*-C of Ph in dppe), 135.6 (br, *o*-C of BAr^F₄), 135.2 (m, *ipso*-C of Ph in dppe), 133.9 (virtual t, *o*-C of Ph in dppe), 132.5 (d, ${}^{3}J_{CF} = 8.1$ Hz, C2), 132.02 (m, *o*-C of Ph in dppe), 131.97 (s, *p*-C of Ph in dppe) 131.5 (s, *p*-C of Ph in dppe), 130.0 (brq, ${}^{2}J_{CF} = 31.8$ Hz, *m*-C of BAr^F₄), 129.8 (m, *m*-C of Ph in dppe), 129.7 (m, *m*-C of Ph in dppe), 125.4 (q, ${}^{1}J_{CF} = 273.0$ Hz, CF₃ of BAr^F₄), 124.6 (s, C1), 118.5 (m, *p*-C of BAr^F₄), 116.3 (d, ${}^{2}J_{CF} = 21.5$ Hz, C3), 92.1 (s, Cp), 62.9 (s, CH₂ of mida), 47.3 (s, CH₃ of mida), 28.4 (m, PCH₂). The signal assignable to the Ru=C=C could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for C₇₆H₅₂O₄B₂F₂₅P₂NRu·0.5CH₂Cl₂: C, 52.65; H, 3.00; N, 0.80. Found: C, 52.41; H, 2.83; N, 0.75.

$[Ru(=C=C(m-xylyl)\{B(mida)\})(dppe)Cp][BArF_4] (2n)$

Complex **2n** was obtained as yellow crystals (66.0 mg, 0.0385 mmol, 75% yield) by using [CpRuCl(dppe)] (30.7 mg, 0.0512 mmol), (*m*-xylyl)C≡CB(mida) (17.2 mg, 0.0603 mmol), and NaBAr^F₄·2.6H₂O (51.5 mg, 0.0552 mmol). ¹H NMR (acetone- d_6): δ 7.80 (s, 8H, *o*-H of BAr^F₄), 7.78 (m, 4H, *o*-H of Ph in dppe), 7.68 (s, 4H, *p*-H of BAr^F₄), 7.44 (m, 4H, *p*-H of Ph in dppe×2), 7.31 (m,

8H, m-H of Ph in dppe×2), 7.23 (m, 4H, o-H of Ph in dppe), 6.60 (m, 1H, H4),

6.47 (s, 2H, H2), 5.66 (s, 5H, Cp), 3.98 (d, 2H, ${}^{2}J_{HH}$ =16.8 Hz, mida), 3.43 (m, 2H, CH₂ of dppe), 3.19 (d, 2H, ${}^{2}J_{HH}$ =17.3 Hz, mida), 3.09 (m, 2H, CH₂ of dppe), 2.61 (s, 3H, CH₃ of mida), 2.07 (s, 6H, CH₃ of *m*-xylyl). ${}^{31}P{}^{1}H$ } NMR (acetone-*d*₆): δ 79.9 (s, dppe). ${}^{13}C{}^{1}H$ } NMR (acetone-*d*₆): δ 339.3 (t, ${}^{2}J_{CP}$ = 15.9 Hz, Ru=*C*=C), 167.8 (s, CO of mida), 162.6 (q, ${}^{1}J_{CB}$ = 50.0 Hz, *ipso*-C of BAr^F₄),138.8 (s, C3), 138.2 (m, *ipso*-C of Ph in dppe), 135.5 (br, *o*-C of BAr^F₄), 135.0 (m, *ipso*-C of Ph in dppe), 134.0 (m, *o*-C of Ph in dppe), 131.9 (s, *o*- and *p*-C of Ph in dppe), 131.4 (s, *p*-C of Ph in dppe), 130.0 (brq, ${}^{2}J_{CF}$ = 31.9 Hz, *m*-C of BAr^F₄), 129.6 (br, *m*-C of Ph in dppe×2), 129.1 (s, C4), 128.5(s, C2), 128.1 (s, C1), 125.4 (q, ${}^{1}J_{CF}$ = 273.0 Hz, CF₃ of BAr^F₄), 118.4 (m, *p*-C of BAr^F₄), 92.0 (s, Cp), 62.8 (s, CH₂ of mida), 47.0 (s, CH₃ of mida), 28.5 (m, *PC*H₂) 20.5 (s, CH₃ of *m*-xylyl). The signal assignable to the Ru=C=*C* could not be found, probably because it is overlapped with other signals. HRMS *m*/*z*: [M+Na]⁺calcd for RuP₂C₄₆H₄₅BNO₄⁺: 850.19604; found 850.19657.

$[Ru(=C=C(o-tol)\{B(mida)\})(dppe)Cp][BAr^{F_{4}}] (2o)$

Complex **20** was obtained as yellow crystals (18.3 mg, 0.0108 mmol, 21% yield) by using [CpRuCl(dppe)] (30.6 mg, 0.0510 mmol), (*o*-tol)C=CB(mida) (16.2 mg, 0.0600 mmol), and NaBAr^F₄·2.6H₂O (51.2 mg, 0.0549 mmol).

¹H NMR (acetone- d_6): δ 7.79 (s, 8H, *o*-H of BAr^F₄), 7.75 (m, 2H, *o*-H of Ph in dppe), 7.68 (s, 4H, *p*-H of BAr^F₄), 7.51 (m, 3H, *p*- and *o*-H of Ph in dppe), 7.34 (m, 11H, *p*- ×3 and *m*-×3 and *o*-H of Ph in dppe), 7.21 (m, 2H, *m*-H of Ph in dppe), 7.05 (m, 3H,

o-H of Ph in dppe and H6), 6.95 (m, 2H, H4, H5)) 6.87 (m, 1H, H3), 5.84 (s, 5H, Cp), 4.05 (d, 2H, ²J_{HH} = 17.8 Hz,

CH₂ of mida), 3.88 (d, 2H, ${}^{2}J_{HH} = 16.8$ Hz, CH₂ of mida), 3.63 (m, 1H, CH₂ of dppe), 3.37 (m, 2H, CH₂ of mida and CH₂ of dppe), 3.23 (m, 1H, CH₂ of dppe), 3.14 (d, 1H, ${}^{2}J_{HH} = 16.3$ Hz, CH₂ of mida), 3.07 (m, 1H, CH₂ of dppe), 2.54 (s, 3H, CH₃ of mida), 2.13 (s, 3H, CH₃ of *o*-tol). ${}^{31}P{}^{1}H{}$ NMR (acetone-*d*₆): δ 79.3 (d, ${}^{2}J_{PP} = 15.1$ Hz, dppe), 78.2 (d, ${}^{2}J_{PP} = 15.1$ Hz, dppe). ${}^{13}C{}^{1}H{}$ NMR (acetone-*d*₆): δ 333.1 (t, ${}^{2}J_{CP} = 12.4$ Hz, Ru=*C*=C), 168.7 (s, CO of mida), 166.5 (s, CO of mida), 162.6 (q, ${}^{1}J_{CB} = 50.0$ Hz, *ipso*-C of BAr^F₄), 138.5 (s, C2), 138.1 (m, *ipso*-C of Ph in dppe), 137.6 (m, *ipso*-C of Ph in dppe), 135.5 (br, *o*-C of BAr^F₄), 135.1 (m, *ipso*-C of Ph in dppe) 133.9 (d, ${}^{3}J_{CP} = 11.5$ Hz, *o*-C of Ph in dppe), 132.8 (m, *o*- and *ipso*-C of Ph in dppe), 132.3 (s, C3), 132.1 (s, *p*-C of Ph in dppe), 132.0 (d, ${}^{3}J_{CP} = 11.0$ Hz, *o*-C of Ph in dppe), 131.7 (m-, *o*- and *p*-C of Ph in dppe), 131.35 (s, *p*-C of Ph in dppe), 131.26 (s, *p*-C of Ph in dppe), 130.8 (s, C6), 129.9 (m, *m*-C of BAr^F₄ and *m*-C of Ph in dppe×4), 128.3 (s, C1), 128.1 (s, C 4), 126.6 (s, C5), 125.4 (q, ${}^{1}J_{CF} = 272.9$ Hz, CF₃ of BAr^F₄), 118.4 (m, *p*-C of BAr^F₄), 92.2 (s, Cp), 62.9 (s, CH₂ of mida), 62.4 (s, CH₂ of mida), 46.5 (s, CH₃ of mida), 28.4 (m, PCH₂), 27.7 (m, PCH₂), 21.5 (s, CH₃ of *o*-tol). The signal assignable to the Ru=C=C could not be found, probably because it is overlapped with other signals. HRMS *m/z*: [M+Na]⁺ calcd for RuP₂C₄SH₄₃BNO₄⁺: 836.18039; found 836.18161.

$[Ru(=C=C(\beta-biphenyl)\{B(mida)\})(dppe)Cp][BAr_{4}] (2p)$

Complex **2p** was obtained as yellow crystals (26.7 mg, 0.0152 mmol, 51% yield) by using [RuCl(dppe)Cp] (17.8 mg, 0.0297 mmol), (β -biphenyl)C=CB(mida) (11.1 mg, 0.0333 mmol), and NaBAr^F₄·2.6H₂O (29.2 mg, 0.0313 mmol).

¹H NMR (acetone- d_6): δ 7.79 (s, 8H, *o*-H of BAr^F₄), 7.75 (m, 4H, *o*-H of Ph in dppe), 7.68 (s, 4H, *p*-H of BAr^F₄), 7.55 (m, 2H, H8), 7.47 (m, 2H, H9), 7.43 (m, 2H, *p*-H of Ph in dppe), 7.39 (m, 1H, H10), 7.30 (m, 11H, *m*-×2 and *p*-H of Ph in dppe and H4), 7.23 (m, 4H, *o*-H of Ph in dppe), 7.09 (m, 2H, H2, H5), 6.94 (br d, 1H, 6), 5.70 (s, 5H, Cp), 4.04 (d, 2H, ²J_{HH} = 16.8 Hz, CH₂ of mida), 3.44 (m, 2H, CH₂ of dppe), 3.28

(d, 2H, ${}^{2}J_{HH} = 16.8$ Hz, CH₂ of mida), 3.13 (m, 2H, CH₂ of dppe), 2.71 (s, 3H, CH₃ of mida). ${}^{31}P{}^{1}H$ NMR (acetone*d*₆): δ 79.8 (s, dppe). ${}^{13}C{}^{1}H$ NMR (acetone-*d*₆): δ 338.8 (t, ${}^{2}J_{CP} = 16.5$ Hz, Ru=*C*=C), 167.8 (s, CO of mida), 162.6 (q, ${}^{1}J_{CB} = 50.0$ Hz, *ipso*-C of BAr^F₄), 142.5 (s, C3), 141.6 (s, C7), 138.1 (m, *ipso*-C of Ph in dppe), 135.5 (br, *o*-C of BAr^F₄), 135.0 (m, *ipso*-C of Ph in dppe), 133.9 (virtual t, *o*-C of Ph in dppe), 132.0 (d, *o*- and *p*-C of Ph in dppe), 131.5 (s, *p*-C of Ph in dppe), 130.1 (s, C5), 129.98 (brq, ${}^{2}J_{CF} = 31.3$ Hz, *m*-C of BAr^F₄), 129.97 (s, C6), 129.6 (m, *m*-C of Ph in dppe×2 and C9), 129.3 (s, C1), 129.2 (s, C2), 128.3 (s, C10), 128.0 (s, C8), 126.1 (s, C4), 125.4 (q, ${}^{1}J_{CF} = 272.9$ Hz, CF₃ of BAr^F₄), 118.4 (m, *p*-C of BAr^F₄), 92.1 (s, Cp), 62.9 (s, CH₂ of mida), 47.3 (s, CH₃ of mida), 28.5 (m, *PC*H₂). The signal assignable to the Ru=C=*C* could not be found, probably because it is overlapped with other signals. HRMS *m/z*: [M+Na]⁺calcd for RuP₂C₅₀H₄₅BNO₄⁺: 898.19604; found 898.20034.

$[Ru(=C=C(\beta-naphthyl)\{B(mida)\})(dppe)Cp][BArF_4] (2q)$

Complex **2q** was obtained as yellow crystals (41.9 mg, 0.0242 mmol, 47% yield) by using [RuCl(dppe)Cp] (30.6 mg, 0.0510 mmol), (β -naphthyl)C=CB(mida) (18.4 mg, 0.0599 mmol), and NaBAr^F₄·2.6H₂O (50.9 mg, 0.0556 mmol).

¹H NMR (acetone-*d*₆): δ 7.80 (s, 8H, *o*-H of BAF^F₄), 7.73 (m, 5H, *o*-H of Ph in dppe and H10), 7.68 (s, 4H, *p*-H of BAr^F₄), 7.59 (m, 1 H, H7), 7.54 (m, 1H, H5), 7.43 (m, 4H, *p*-H of Ph in dppe and H8, H9), 7.32 (m, 5H, *m*-H of Ph in dppe and H2), 7.20 (m, 10H, *o*- and *m*- and *p*- H of Ph in dppe), 7.05 (dd, 1H, ³*J*_{HH} = 8.4 Hz, ⁴*J*_{HH} = 1.5 Hz, H6), 5.72 (s, 5H, Cp), 4.00 (d, 2H, ²*J*_{HH} = 17.3 Hz, CH₂ of mida), 3.45 (m, 2H, CH₂ of dppe), 3.28 (d, 2H, ²*J*_{HH} = 16.8 Hz, CH₂ of mida), 3.17 (m, 2H, CH₂ of dppe), 2.69 (s, 3H, CH₃ of mida). ³¹P {¹H} NMR (acetone-*d*₆): δ 79.6 (s, dppe). ¹³C {¹H} NMR (acetone-*d*₆): δ 338.7 (t, ²*J*_{CP} = 16.5 Hz, Ru=*C*=C), 167.8 (s, CO of MIDA), 162.6 (q, ¹*J*_{CB} = 50.0 Hz, *ipso*-C of BAr^F₄), 138.1 (m, *ipso*-C of Ph in dppe), 135.5 (br, *o*-C of BAr^F₄), 135.0 (m, *ipso*-C of Ph in dppe), 134.4 (s, C3), 133.7 (virtual t, *o*-C of Ph in dppe), 132.9 (s C4), 131.9 (virtual t, *o*-C of Ph in dppe and C2), 129.5 (m, *m*-C of Ph in dppe), 129.4 (s, C5), 128.9 (s, C6), 128.7 (s, C7), 128.2 (s, C10), 126.7 (m, C8, C9), 126.1 (s, C1), 125.4 (q, ¹*J*_{CF} = 273.0 Hz, CF₃ of BAr^F₄), 118.4 (m, *p*-C of BAr^F₄), 92.2 (s, Cp), 62.9 (s, CH₂ of mida), 47.3 (s, CH₃ of mida), 28.4 (m, PCH₂). The signal assignable to the Ru=C=C could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for C₈₀H₅₅O₄B₂F₂₄P₂NRu·0.5CH₂Cl₂: C, 54.40; H, 3.12; N, 0.79. Found: C, 54.09; H, 2.96; N, 0.74.

$[Ru(=C=C(\alpha-thiophene)\{B(mida)\})(dppe)Cp][BArF_4] (2r)$

 $\square BArF_4 \qquad Complex$ **2r**was obtained as yellow crystals (56.2 mg, 0.0332 mmol, 65% yield)by using [CpRuCl(dppe)] (30.7 mg, 0.0512 mmol), (*a* $-thiophene)C=CB(mida) (14.9 mg, 0.0612 mmol), and NaBArF_4·2.6H_2O (50.9 mg, 0.0546 mmol).$ $<math display="block">\square S \qquad \square H NMP (acatons d) \le 7.76 (a - 150)$

¹H NMR (acetone- d_6): δ 7.78 (m, 12H, s, 8H, *o*-H of BAr^F₄ and *o*-H of Ph in dppe), 7.68 (s, 4H, *p*-H of BAr^F₄), 7.46 (m, 4H, *p*-H of Ph in dppe×2), 7.39 (m, 8H, *m*-H of Ph in dppe×2), 7.26 (m, 4H, *o*-H of Ph in dppe), 7.05 (dd, 1H, ³J_{HH} = 5.9 Hz, ⁴J_{HH} =

1.0 Hz, H2), 6.80 (dd, 1H, ${}^{3}J_{HH}$ = 5.4 Hz, ${}^{3}J_{HH}$ = 3.5 Hz, H3), 6.35 (m, 1H, H4), 5.70 (s, 5H, Cp), 4.07 (d, 2H, ${}^{2}J_{HH}$ = 17.3 Hz, mida), 3.47 (m, 2H, CH₂ of dppe), 3.31 (d, 2H, ${}^{2}J_{HH}$ = 17.3 Hz, mida), 3.15 (m, 2H, CH₂ of dppe), 2.54 (s, 3H, mida). ${}^{31}P{}^{1}H{}$ NMR (acetone-*d*₆): δ 79.5 (s, dppe). ${}^{13}C{}^{1}H{}$ NMR (acetone-*d*₆): δ 340.4 (t, ${}^{2}J_{CP}$ = 15.7 Hz, Ru=*C*=C), 167.8 (s, CO of mida), 162.6 (q, ${}^{1}J_{CB}$ = 50.0 Hz, *ipso*-C of BAr^F₄), 137.8 (m, *ipso*-C of Ph in dppe), 135.5 (br, *o*-C of BAr^F₄), 135.0 (m, *ipso*-C of Ph in dppe), 134.0 (virtual t, *o*-C of Ph in dppe), 132.1 (m, *o*- and *p*-C of Ph in dppe), 131.6 (s, *p*-C of Ph in dppe), 130.0 (brq, ${}^{2}J_{CF}$ = 31.8 Hz, *m*-C of BAr^F₄), 129.7 (m, *m*-C of Ph in dppe×2), 128.7 (s, C3), 128.1 (s, C1), 126.5 (s, C4), 126.4 (s, C2), 125.3 (q, ${}^{1}J_{CF}$ = 272.9 Hz, CF₃ of BAr^F₄), 118.4 (m, *p*-C of BAr^F₄), 92.7 (s, Cp), 63.2 (s, CH₂ of mida), 47.4 (s, CH₃ of mida), 28.6 (m, PCH₂). The signal assignable to the Ru=C=C could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for C₇₄H₅₁O₄B₂F₂₄P₂NSRu: C, 52.56; H, 3.04; N, 0.83. Found: C, 52.43; H, 2.79; N, 0.79.

[Ru(=C=C(β -thiophene){B(mida)})(dppe)Cp][BAr^F₄] (2s)

Complex **2s** was obtained as red crystals (48.3 mg, 0.0286 mmol, 58% yield) by using [RuCl(dppe)Cp] (29.6 mg, 0.0493 mmol), (β -thiophene)C=CB(mida) (14.4 mg, 0.0592 mmol), and NaBAr^F₄·2.6H₂O (50.9 mg, 0.0546 mmol).

¹H NMR (acetone-*d*₆): δ 7.79 (m, 12H, *o*-H of BAr^F₄ and *o*-H of Ph in dppe), 7.68 (s, 4H, *p*-H of BAr^F₄), 7.44 (m, 8H, *p*-×2 and *m*-H of Ph in dppe), 7.35 (m, 4H, *m*-H of Ph in dppe), 7.25 (m, 4H, *o*-H of Ph in dppe), 7.17 (dd, 1H, ³*J*_{HH} = 5.0 Hz, ⁴*J*_{HH} = 3.0 Hz, H2), 6.72 (m, 1H, H4), 6.52 (m, 1H, H3), 5.67 (s, 5H, Cp), 4.02 (d, 2H, ²*J*_{HH} = 16.8 Hz, mida), 3.41 (m, 2H, dppe), 3.24 (d, 2H, ²*J*_{HH} = 17.3 Hz, mida), 3.06 (m, 2H, dppe), 2.62 (s, 3H, mida). ³¹P {¹H} NMR (acetone-*d*₆): δ 79.6 (s, dppe). ¹³C {¹H} NMR (acetone-*d*₆): δ 339.3 (t, ²*J*_{CP} = 15.7 Hz, Ru=*C*=C), 167.8 (s, CO of mida), 162.6 (q, ¹*J*_{CB} = 50.0 Hz, *ipso*-C of BAr^F₄), 137.9 (m, *ipso*-C of Ph in dppe), 135.5 (br, *o*-C of BAr^F₄), 135.0 (m, *ipso*-C of Ph in dppe), 134.0 (virtual t, *o*-C of Ph in dppe), 132.0 (m, *o* and *p*-C of Ph in dppe), 131.5 (s, *p*-C of Ph in dppe), 130.0 (brq, ²*J*_{CF} = 34.8 Hz, *m*-C of BAr^F₄), 129.7 (m, *m*-C of Ph in dppe×2), 129.5 (s, C3), 127.1 (s, C2), 126.5 (s, C1), 125.4 (q, ¹*J*_{CF} = 272.8 Hz, CF₃ of BAr^F₄), 123.1 (s, C4), 118.5 (m, *p*-C of BAr^F₄), 92.2 (s, Cp), 62.8 (s, CH₂ of mida), 47.2 (s, CH₃ of mida), 28.6 (m, PCH₂). The signal assignable to the Ru=C=*C* could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for C₇₄H₅₁O₄B₂F₂₄P₂NSRu·0.5CH₂Cl₂: C, 51.62; H, 2.97; N, 0.81. Found: C, 51.52; H, 2.96; N, 0.76.

[Ru(=C=CH(*p*-Ans))(dppe)Cp][BAr^F₄] (3b)

To characterize byproducts in the vinylidene rearrangement, we performed synthesis of the protodeboronated complex.

A mixture of [RuCl(dppe)Cp] (60.3 mg, 0.1005 mmol), (*p*-Ans)C=CB(dan) (30.2 mg, 0.1013 mmol), H₂O (5.2 mg, 0.2885 mmol), and NaBAr^F₄·2.6H₂O (101.9 mg, 0.1092 mmol) in 1,2-dichloroethane (2 mL) was heated at 70 °C for 1 h. The resulting brown suspension was filtered through a short pad of Celite

and rinsed with 1,2-dichloroethane (ca. 1 mL). The filtrate was dried in vacuo, and the residue was purified by column chromatography on silica gel (dichloromethane/hexane = 1:1). Complex **3b** was obtained as a red oil (118.4 mg, 0.0759 mmol).

¹H NMR (CDCl₃): δ 7.76 (s, 8H, *o*-H of BAr^F₄), 7.53 (s, 4H, *p*-H of BAr^F₄), 7.42 (m, 16H, *p*-×2 and *m*-×2 and *o*-H of Ph in dppe), 7.14 (m, 4H, *o*-H of Ph in dppe), 6.42 (d, 2H, ³J_{HH} = 8.9 Hz, H3), 6.15 (d, 2H, ³J_{HH} = 8.4 Hz, H2), 5.50 (s, 5H, Cp), 4.68 (s, 1H, Ru=C=CH), 3.71 (s, 3H, CH₃ of *p*-Ans), 2.99 (m, 2H, CH₂ of dppe), 2.70 (m, 2H, CH₂ of dppe). ³¹P{¹H} NMR (CDCl₃): δ 77.5 (s, dppe). ¹³C{¹H} NMR (CDCl₃): δ 356.7 (t, ²J_{CP} = 16.5 Hz, Ru=*C*=C), 161.9 (q, ¹J_{CB} = 50.0 Hz, *ipso*-C of BAr^F₄), 158.6 (s, C4), 135.0 (br, *o*-C of BAr^F₄ and *ipso*-C of Ph in dppe), 133.8 (m, *ipso*-C of Ph in dppe), 132.1 (virtual t, *o*-C of Ph in dppe), 132.0 (s, *p*-C of Ph in dppe), 131.9 (s, *p*-C of Ph in dppe), 131.4 (virtual t, *o*-C of Ph in dppe), 129.3 (m, *m*-C of Ph in dppe×2), 129.0 (brq, ²J_{CF} = 31.4 Hz, *m*-C of BAr^F₄), 127.0 (s, C2), 124.7 (q, ¹J_{CF} = 273.5 Hz, CF₃ of BAr^F₄), 117.6 (m, *p*-C of BAr^F₄), 117.5 (s, Ru=C=C), 117.5 (s, C1), 114.4 (s, C3), 91.9 (s, Cp), 55.3 (s, CH₃ of Ru=C=C(*p*-Ans)), 27.1 (m, PCH₂). HRMS *m*/*z*: [M+Na]⁺ calcd for RuP₂OC₄₀H₃₇⁺: 697.13632; found 697.13633.

[Ru(=C=CH(*p*-CF₃C₆H₄))(dppe)Cp][BAr^F₄] (3c)

To characterize byproducts in the vinylidene rearrangement, we performed synthesis of the protodeboronated complex .

A mixture of [RuCl(dppe)Cp] (59.7 mg, 0.0995 mmol), (p-

 $CF_3C_6H_4$)C=CB(dan) (34.0 mg, 0.1012 mmol), H₂O (6.1 mg, 0.3385 mmol), and NaBAr^F_4·2.6H₂O (101.7 mg, 0.1090 mmol) in 1,2-dichloroethane (2 mL) was heated at 70 °C for 1 h. The resulting brown suspension was filtered through a short pad of Celite and rinsed with 1,2-dichloroethane (ca. 1 mL). The filtrate was dried in vacuo, and the residue was purified by column chromatography on silica gel (dichloromethane/hexane = 1:1). Complex was obtained as a red oil (142.5 mg, 0.0892 mmol).

¹H NMR (CDCl₃): δ 7.79 (s, 8H, *o*-H of BAr^F₄), 7.55 (s, 4H, *p*-H of BAr^F₄), 7.46 (m, 12H, *p*-×2 and *m*- and *o*-H of Ph in dppe), 7.38 (m, *m*-H of Ph in dppe), 7.17 (m, 4H, *o*-H of Ph in dppe), 7.08 (d, 2H, ³J_{HH} = 7.9 Hz, H3), 6.33 (d, 2H, ³J_{HH} = 7.9 Hz, H2), 5.53 (s, 5H, Cp), 4.76 (s, 1H, Ru=C=CH), 3.00 (m, 2H, CH₂ of dppe), 2.71 (m, 2H, CH₂ of dppe). ³¹P{¹H} NMR (CDCl₃): δ 76.6 (s, dppe). ¹³C{¹H} NMR (CDCl₃): δ 350.9 (t, ²J_{CP} = 16.3 Hz, Ru=*C*=C), 161.9 (q, ¹J_{CB} = 50.0 Hz, *ipso*-C of BAr^F₄), 135.0 (br, *o*-C of BAr^F₄), 134.3 (m, *ipso*-C of Ph in dppe), 133.5 (m, *ipso*-C of Ph in dppe), 132.2 (m, *p*-C of Ph in dppe×2), 132.0 (virtual t, *o*-C of Ph in dppe), 131.4 (virtual t, *o*-C of Ph in dppe), 130.0 (s, C1), 129.4 (m, *m*-C of Ph in dppe×2), 129.1 (brq, ²J_{CF} = 31.5 Hz, *m*-C of BAr^F₄), 128.0 (m, C4), 125.5 (m, C3) 125.4 (s, C2), 124.7 (q, ¹J_{CF} = 273.8 Hz, CF₃ of BAr^F₄), 124.0 (q, ¹J_{CF} = 272.9 Hz, CF₃ of Ru=C=C(*p*-CF₃C₆H₄)), 117.6 (m, *p*-C of BAr^F₄), 117.1 (s, Ru=C=C), 92.2 (s, Cp), 27.0 (m, PCH₂). HRMS *m*/*z*: [M+Na]⁺ calcd for RuP₂F₃C₄₀H₃₄⁺: 735.11313; found 735.11372.

2. ¹³C-labeling Experiments

According to the general procedure, a reaction was performed using complex **1a** (31.4 mg, 0.0523 mmol), an isotopic labeling alkyne, PhC \equiv ¹³CB(mida) (14.6 mg, 0.0568 mmol), and NaBAr^F₄·2.6H₂O (51.2 mg, 0.0549 mmol). The ratio of **2-**¹³C α and **2-**¹³C $_{\beta}$ was estimated from the ¹³C{¹H} NMR as follows:

The relative integration ratio of the C_{β} signals in the ¹³C-labeling and non-labeling experiments based on the Cp signals is 1.58:0.07 (${}^{13}C_{\beta}$ in labeling experiment: ${}^{13}C_{\beta}$ in non-labeling experiment). Taking into account that the alkyne reagent is 25% ${}^{13}C$ -enriched, and the natural abundance of ${}^{13}C$ is 1.1%, the ratio of C_{β} signals between the two experiments can be calculated as:

 ${}^{13}C_{\beta}$ in ${}^{13}C$ -labeling experiment: ${}^{13}C_{\beta}$ in non-labeling experiment = 0.25t + 0.011(1 - t): 0.011,

where t = the migration ratio of the B(mida) group.

Thus, it is calculated to be 1.10 by solving the following equation:

$$\{0.25t + 0.011(1 - t)\} \times 0.07 = 0.011 \times 1.58$$

$$t = 0.99$$

Figure S2. ¹³C{¹H} NMR spectra of ¹³C-labeled (upper) and non-labeled (lower) vinylidene complexes 2.

A reaction was performed according to the general procedure using complex **1a** (30.5 mg, 0.0508 mmol), an isotopic labeling alkyne, Ph¹³C=CB(dan) (13.7 mg, 0.0511 mmol), and anhydrous NaBAr^F₄·6THF (66.0 mg, 0.0500 mmol). The ratio of **3-**¹³C α and **3-**¹³C β was estimated from the ¹³C{¹H} NMR as follows:

The relative integration ratio of the C_{β} signals in the ¹³C-labeling and non-labeling experiments based on the Cp signals is 2.81:0.016 (${}^{13}C_{\beta}$ in labeling experiment: ${}^{13}C_{\beta}$ in non-labeling experiment). Taking into account that the alkyne reagent is 19.5% 13 C-enriched, and the natural abundance of 13 C is 1.1%, the ratio of C_{β} signals between the two experiments can be calculated as:

 ${}^{13}C_{\beta}$ in ${}^{13}C$ -labeling experiment: ${}^{13}C_{\beta}$ in non-labeling experiment = 0.195t + 0.011(1 - t): 0.011,

where t = the migration ratio of the B(dan) group.

Thus, it is calculated to be 1.10 by solving the following equation:

 $\{0.195t + 0.011(1 - t)\} \times 0.16 = 0.011 \times 2.81$

t = 0.99

Figure S3. ¹³C{¹H} NMR spectra of ¹³C-labeled (upper) and non-labeled (lower) vinylidene complexes 3.

3. DFT calculations

All calculations were carried out by using the Gaussian 16 program packages.^{S1} Geometry optimizations were performed at B3LYP with GD3BJ empirical dispersion^{S2} along with a combined basis set: 6-311G* for C, H, P, N, and B and SDD for Ru. Vibrational frequencies were calculated at the same level to characterize each stationary points to confirm no imaginary frequencies except for the transition state with one imaginary frequency. NBO analyses were performed HF/6-311G(d)+SDD.

Table S1. Gibbs free energy (G) at 298.150 K and 1.0000 atm.

	ΔG (kcal/mol)	ΔH (kcal/mol)	ΔS (cal/mol)
complex $A(R = B(dan))$	0.0	0.0	0.0
TS $(R = B(dan))$	9.2	11.3	7.1
Complex B ($R = B(dan)$)	-10.1	-8.0	7.0
complex $A (R = B(mida))$	0.0	0.0	0.0
TS $(R = B(mida))$	21.5	21.7	0.7
Complex B ($R = B(mida)$)	-10.1	-10.1	3.5

4. References

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F.

Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16 Rev. C.01, Wallingford, CT, 2016.

S2. (a) S. Grimme, J. Comp. Chem. 2006, 27, 1787; (b) S. Grimme, S. Ehrlich and L. Goerigk, J. Comp. Chem. 2011, 32, 1456.

5. NMR Spectra

Figure S4. ¹H NMR spectrum of 2a in acetone-d6

Figure S5. ¹³C{¹H} NMR spectrum of 2a in acetone-d6

Figure S6. ³¹P{¹H} NMR spectrum of 2a in acetone-d6

Figure S7. ¹H NMR spectrum of 2b in acetone-d6

Figure S8. ¹³C{¹H} NMR spectrum of 2b in acetone-d6

Figure S9. ³¹P{¹H} NMR spectrum of **2b** in acetone-*d*6

Figure S10. ¹H NMR spectrum of 2c in acetone-d6

Figure S11. ¹³C{¹H} NMR spectrum of 2c in acetone-d6

Figure S12. ³¹P{¹H} NMR spectrum of 2c in acetone-d6

Figure S13. ¹H NMR spectrum of 2d in acetone-d6

Figure S14. $^{13}C{^{1}H}$ NMR spectrum of 2d in acetone-d6

Figure S15. ³¹P{¹H} NMR spectrum of 2d in acetone-d6

Figure S16. ¹H NMR spectrum of 2e in acetone-d6

Figure S17. ¹³C{¹H} NMR spectrum of 2e in acetone-d6

Figure S18. ³¹P{¹H} NMR spectrum of 2e in acetone-d6

Figure S19. ¹H NMR spectrum of 2f in CDCl₃

Figure S20. ¹³C{¹H} NMR spectrum of 2f in CDCl₃

Figure S21. ³¹P{¹H} NMR spectrum of 2f in CDCl₃

Figure S22. ¹H NMR spectrum of 2g in CDCl₃

Figure S23. ¹³C{¹H} NMR spectrum of 2g in CDCl₃

Figure S24. ³¹P{¹H} NMR spectrum of 2g in CDCl₃

Figure S25. ¹H NMR spectrum of 2h in acetone-d6

Figure S26. ¹³C{¹H} NMR spectrum of 2h in acetone-d6

Figure S27. ³¹P{¹H} NMR spectrum of **2h** in acetone-*d*6

Figure S28. ¹H NMR spectrum of 2i in acetone-d6

Figure S29. ¹³C{¹H} NMR spectrum of 2i in acetone-d6

Figure S30. ³¹P{¹H} NMR spectrum of 2i in acetone-d6

Figure S31. ¹H NMR spectrum of 2j in CDCl₃

Figure S32. ¹³C{¹H} NMR spectrum of 2j in CDCl₃

Figure S33. ³¹P{¹H} NMR spectrum of 2j in CDCl₃

Figure S34. ¹H NMR spectrum of 2k in CDCl₃

Figure S35. ¹³C{¹H} NMR spectrum of 2k in CDCl₃

Figure S36. ³¹P{¹H} NMR spectrum of 2k in CDCl₃

Figure S37. ¹H NMR spectrum of 2l in acetone-d6

Figure S38. ¹³C{¹H} NMR spectrum of 2l in acetone-d6

Figure S39. ³¹P{¹H} NMR spectrum of 2l in acetone-d6

Figure S40. ¹H NMR spectrum of 2m in acetone-d6

Figure S41. ¹³C{¹H} NMR spectrum of 2m in acetone-d6

Figure S42. ³¹P{¹H} NMR spectrum of 2m in acetone-d6

Figure S43. ¹H NMR spectrum of 2n in acetone-d6

Figure S44. ¹³C{¹H} NMR spectrum of **2n** in acetone-*d*6

Figure S45. ³¹P{¹H} NMR spectrum of **2n** in acetone-*d*6

Figure S46. ¹H NMR spectrum of 20 in acetone-d6

Figure S47. ¹³C{¹H} NMR spectrum of 20 in acetone-d6

Figure S48. ³¹P{¹H} NMR spectrum of 20 in acetone-d6

Figure S49. ¹H NMR spectrum of 2p in acetone-*d*6

Figure S50. ¹³C{¹H} NMR spectrum of 2p in acetone-d6

Figure S51. ³¹P{¹H} NMR spectrum of **2p** in acetone-*d*6

Figure S52. ¹H NMR spectrum of 2q in acetone-d6

Figure S53. ¹³C{¹H} NMR spectrum of 2q in acetone-*d*6

Figure S54. ³¹P{¹H} NMR spectrum of 2q in acetone-d6

Figure S55. ¹H NMR spectrum of 2r in acetone-d6

Figure S56. ¹³C{¹H} NMR spectrum of **2r** in acetone-*d*6

Figure S57. ³¹P{¹H} NMR spectrum of **2r** in acetone-*d*6

Figure S58. ¹H NMR spectrum of 2s in acetone-d6

Figure S59. ¹³C{¹H} NMR spectrum of 2s in acetone-*d*6

Figure S60. ³¹P{¹H} NMR spectrum of 2s in acetone-d6

Figure S61. ¹H NMR spectrum of 3a in CDCl₃

Figure S62. ¹³C{¹H} NMR spectrum of 3a in CDCl₃

Figure S63. ³¹P{¹H} NMR spectrum of **3a** in CDCl₃

Figure S64. ¹H NMR spectrum of 3b in CDCl₃

Figure S65. ¹³C{¹H} NMR spectrum of **3b** in CDCl₃

Figure S66. ³¹P{¹H} NMR spectrum of **3b** in CDCl₃

Figure S67. ¹H NMR spectrum of 3c in CDCl₃

Figure S68. ¹³C{¹H} NMR spectrum of 3c in CDCl₃

Figure S69. ³¹P{¹H} NMR spectrum of **3c** in CDCl₃

Figure S70. ¹H NMR spectrum of 4a in acetone-d6

Figure S71. ¹³C{¹H} NMR spectrum of 4a in acetone-d6

Figure S72. ¹H NMR spectrum of 4b in acetone-d6

Figure S73. ¹³C{¹H} NMR spectrum of 4b in acetone-d6