Vinylidene Rearrangements of Internal Borylalkynes via 1,2-Boryl Migration

Takahiro Iwamoto,* Takuya Mitsubo, Kosuke Sakajiri and Youichi Ishii*
Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-26, Kasuga, Bunkyo-ku, Tokyo 112-8551 Japan

E-mail: iwamoto@kc.chuo-u.ac.jp, yo-ishii@kc.chuo-u.ac.jp

Contents

1. Experimental

2. ${ }^{13}$ C-labeling Experiments

3. DFT calculations

4. References

5. NMR Spectra

1. Experimental

Figure S1. Notations of carbon atoms for NMR characterization of complex $2 \mathbf{f}$.

Syntheses of novel Alkynes with B(mida)

4a

To a mixture of 5-iodo-m-xylene ($241.5 \mathrm{mg}, 1.0362 \mathrm{mmol}$), ethynyl mida boronate ($190.5 \mathrm{mg}, 1.0528 \mathrm{mmol}$), $\mathrm{CuI}(8.1 \mathrm{mg}, 0.0426 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(14.1 \mathrm{mg}, 0.0201$ $\mathrm{mmol})$ were added anhydrous DMF $(160 \mu \mathrm{l})$ and $\mathrm{Et}_{3} \mathrm{~N}(150 \mu \mathrm{l})$. The reaction mixture was stirred at room temperature for 1 h . After addition of ethyl acetate, the solution was washed with water and brine, and then dried over MgSO_{4}. The solvent was evaporated under reduced pressure to give a crude product. The crude product was purified by precipitation with ether/hexane $=1: 14$ to afford a desired compound as white powder ($139.0 \mathrm{mg}, 0.4875 \mathrm{mmol}, 47 \%$ yield $)$.
${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 7.10(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 2), 7.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4), 4.32\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=17.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida), $4.17(\mathrm{~d}, 2 \mathrm{H}$, ${ }^{2} J_{\mathrm{HH}}=16.8 \mathrm{~Hz}, \mathrm{CH}_{2}$ of mida), $3.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of mida), $2.26\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ of mida). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $\left.d_{6}\right): ~ \delta$ $168.6\left(\mathrm{CO}\right.$ of mida), $138.8(\mathrm{C} 3), 131.2(\mathrm{C} 4), 130.2(\mathrm{C} 2), 123.7(\mathrm{C} 1), 101.0((m-x y l y l) C \equiv \mathrm{C}), 62.3\left(\mathrm{CH}_{2}\right.$ of mida), 48.4 $\left(\mathrm{CH}_{3}\right.$ of mida), $21.0\left(\mathrm{CH}_{3}\right.$ of m-xylyl). The signal assignable to the (m-xylyl) $\mathrm{C} \equiv C$ could not be found, probably because it is overlapped with another signal. HRMS $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BNO}_{4} \mathrm{Na}^{+}$: 308.10646 ; found 308.10748 .

To a mixture of 3-bromobiphenyl ($112.8 \mathrm{mg}, 0.4839 \mathrm{mmol}$), ethynyl mida
boronate ($95.8 \mathrm{mg}, 0.5294 \mathrm{mmol}$), $\mathrm{CuI}(5.6 \mathrm{mg}, 0.0294 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(8.8 \mathrm{mg}, 0.0125 \mathrm{mmol})$ were added anhydrous DMF $(80 \mu \mathrm{l})$ and $\mathrm{Et}_{3} \mathrm{~N}(75 \mu \mathrm{l})$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 18 h . After addition of ethyl acetate, the solution was washed with water and brine, and then dried over MgSO_{4}. The solvent was evaporated under reduced pressure to give a crude product. The crude product was purified by column chromatography. The alkyne was obtained as brown powder ($27.8 \mathrm{mg}, 0.0842 \mathrm{mmol}, 17 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 7.77$ (m, 1H, H4), 7.67 (m, 3H, H6, H8), 7.75 (m, 4H, H2, H5, H9), 7.39 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 10$), 4.35 $\left(\mathrm{d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=16.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida), $4.20\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=17.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida), $3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of mida). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta 168.6$ (CO of mida), 142.2 (C3), 140.8 (C7), 131.4 (C2), 131.0 (C4), 129.9 (C5), 129.8 (C9), $128.6(\mathrm{C} 10), 128.1(\mathrm{C} 6), 127.8(\mathrm{C} 8), 124.6(\mathrm{C} 1), 100.4\left((\beta\right.$-biphenyl) $\mathrm{C} \equiv \mathrm{C}), 62.3\left(\mathrm{CH}_{2}\right.$ of mida), $48.5\left(\mathrm{CH}_{3}\right.$ of mida). The signal assignable to the (β-biphenyl) $\mathrm{C} \equiv C$ could not be found, probably because it is overlapped with another signal. HRMS $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BNO}_{4} \mathrm{Na}^{+}: 356.10646$; found 356.10669.

Vinylidene rearrangements

$[\mathrm{Ru}(=\mathrm{C}=\mathrm{C}(\mathrm{Ph})\{\mathrm{B}($ mida $)\})(\mathrm{dppp}) \mathrm{Cp}]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right](2 \mathrm{~b})$

Complex 2b was obtained as yellow crystals ($67.0 \mathrm{mg}, 0.0394 \mathrm{mmol}, 77 \%$ yield) by the reaction of $[\mathrm{CpRuCl}(\mathrm{dppp})](31.6 \mathrm{mg}, 0.0515 \mathrm{mmol}), \mathrm{PhC} \equiv \mathrm{CB}$ (mida) (15.7 $\mathrm{mg}, 0.0611 \mathrm{mmol}$), and $\mathrm{NaBAr}^{\mathrm{F}} \cdot{ }_{4} \cdot 2.6 \mathrm{H}_{2} \mathrm{O}(50.7 \mathrm{mg}, 0.0543 \mathrm{mmol})$.
${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 7.80\left(\mathrm{~s}, 8 \mathrm{H}, o-\mathrm{H}\right.$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $7.68\left(\mathrm{~s}, 4 \mathrm{H}, p-\mathrm{H}\right.$ of $\mathrm{BAr}^{\mathrm{F}} 4$), 7.60 $(\mathrm{m}, 4 \mathrm{H}, o-\mathrm{H}$ of Ph in dppp), $7.40(\mathrm{~m}, 8 \mathrm{H}, m-$ and $p-\mathrm{H} \times 2$ of Ph in dppp), $7.29(\mathrm{~m}, 8 \mathrm{H}$, $o-$ and $m-\mathrm{H}$ of Ph in dppp), $7.24(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{H}$ of $\mathrm{Ru}=\mathrm{C}=\mathrm{CPh}), 7.12(\mathrm{~m}, 3 \mathrm{H}, m-$ and $p-\mathrm{H}$ of $\mathrm{Ru}=\mathrm{C}=\mathrm{CPh}), 5.68(\mathrm{~s}, 5 \mathrm{H}$, $\mathrm{Cp}), 4.16\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=16.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida), $3.54\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=17.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida), $3.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of mida), 2.99 (m, $2 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$ of dppp), 2.61 (br, $3 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}$ and $\mathrm{PCH}_{2} \mathrm{CH}_{2}$ of dppp). The signal assignable to the $\mathrm{PCH}_{2} \mathrm{CH}_{2}$ could not be found, probably because it is overlapped with other signals. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta 34.5$ (br, dppp). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta 341.4$ ($\mathrm{t},{ }^{2} J_{\mathrm{CP}}=16.0 \mathrm{~Hz}, \mathrm{Ru}=C=\mathrm{C}$), 167.8 (s, CO of mida), 162.6 (q, ${ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}$, ipso-C of $\mathrm{BAr}^{\mathrm{F}} 4$), 137.3 (m , ipso-C of Ph in dppp $\times 2$), 135.5 (br, o-C of $\mathrm{BAr}^{\mathrm{F}} 4$), 133.5 (virtual $\mathrm{t}, o-\mathrm{C}$ of Ph in dppp), 133.2 ($\mathrm{m}, o-\mathrm{C}$ of Ph in dppp), 131.43 ($\mathrm{s}, p-\mathrm{C}$ of Ph in dppp), 131.37 ($\mathrm{s}, p-\mathrm{C}$ of Ph in dppp) 131.2 (s , $o-\mathrm{C}$ of $\mathrm{Ru}=\mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{5}$), 130.0 (brq, ${ }^{2} J_{\mathrm{CF}}=31.9 \mathrm{~Hz}, m-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}}$), $129.9\left(\mathrm{~s}, m-\mathrm{C}\right.$ of $\left.\mathrm{Ru}=\mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{5}\right), 129.4(\mathrm{~m}, m-\mathrm{C}$ of Ph in dppp $\times 2$), $127.7\left(\mathrm{~s}, p-\mathrm{C}\right.$ of $\left.\mathrm{Ru}=\mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{5}\right), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $118.5\left(\mathrm{~m}, p-\mathrm{C}\right.$ of $\left.\mathrm{BAr}_{4}\right)$, $93.0(\mathrm{~s}, \mathrm{Cp}), 62.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of mida), $47.7\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of mida), $27.6\left(\mathrm{~m}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 21.1\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)$. The signal assignable to the $\mathrm{Ru}=\mathrm{C}=\mathrm{C}$ and ipso- C of $\mathrm{Ru}=\mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{5}$ could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for $\mathrm{C}_{77} \mathrm{H}_{55} \mathrm{O}_{4} \mathrm{~B}_{2} \mathrm{~F}_{24} \mathrm{P}_{2} \mathrm{NRu}$: C, $54.44 ; \mathrm{H}, 3.26 ; \mathrm{N}, 0.82$. Found: C, 54.30 ; H , 3.51; N, 0.81 .

$[\mathrm{Ru}(=\mathbf{C}=\mathbf{C}(\mathbf{P h})\{\mathrm{B}($ mida $)\})(\mathrm{dppb}) \mathrm{Cp}]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right](2 \mathrm{c})$

Complex 2c was obtained as yellow crystals ($24.7 \mathrm{mg}, 0.0144 \mathrm{mmol}, 28 \%$ yield) by the reaction of $[\mathrm{CpRuCl}(\mathrm{dppb})](31.8 \mathrm{mg}, 0.0506 \mathrm{mmol}), \mathrm{PhC} \equiv \mathrm{CB}$ (mida) (15.4 $\mathrm{mg}, 0.0599 \mathrm{mmol})$, and $\mathrm{NaBAr}^{\mathrm{F}} \cdot{ }_{4} \cdot 2.6 \mathrm{H}_{2} \mathrm{O}(51.5 \mathrm{mg}, 0.0551 \mathrm{mmol})$.
${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 7.79\left(\mathrm{~s}, 8 \mathrm{H}, o-\mathrm{H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.68\left(\mathrm{~s}, 4 \mathrm{H}, p-\mathrm{H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.61$
$(\mathrm{m}, 6 \mathrm{H}, o-$ and $p-\mathrm{H}$ of Ph in dppb), $7.50(\mathrm{~m}, 10 \mathrm{H}, m-\times 2$ and $p-\mathrm{H}$ of Ph in dppb$), 7.36(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}$ of Ph in dppb), 7.14 $(\mathrm{m}, 3 \mathrm{H}, m$ - and $p-\mathrm{H}$ of $\mathrm{Ru}=\mathrm{C}=\mathrm{CPh}), 6.95(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{H}$ of $\mathrm{Ru}=\mathrm{C}=\mathrm{CPh}), 5.23(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 4.23\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=16.8 \mathrm{~Hz}\right.$, CH_{2} of MIDA), $3.59\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=16.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida), $3.23\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right.$ of dppb and CH_{3} of mida), 2.51 (m, 2H, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$ of dppb), $1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right.$ of dppb), $1.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right.$ of dppb). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (acetone- d_{6}): $\delta 43.5(\mathrm{~s}, \mathrm{dppb}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta 345.6\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=15.6 \mathrm{~Hz}, \mathrm{Ru}=C=\mathrm{C}\right), 168.0(\mathrm{~s}, \mathrm{CO}$ of mida), $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}\right.$, ipso-C of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 139.0(\mathrm{~m}$, ipso-C of Ph in dppb), $135.9(\mathrm{~m}$, ipso-C of Ph in dppb), 135.5 ($\mathrm{br}, o-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}}$), 133.1 (virtual $\mathrm{t}, o-\mathrm{C}$ of Ph in $\mathrm{dppb} \times 2$), 131.9 ($\mathrm{s}, p-\mathrm{C}$ of Ph in dppb), 131.4 ($\mathrm{s}, p-\mathrm{C}$ of Ph in dppb), $131.0\left(\mathrm{~s}, o-\mathrm{C}\right.$ of $\left.\mathrm{Ru}=\mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{5}\right), 130.04\left(m-\mathrm{C}\right.$ of $\left.\mathrm{Ru}=\mathrm{C}=\mathrm{C}_{6} \mathrm{H}_{5}\right), 130.01\left(\mathrm{brq},{ }^{2} J_{\mathrm{CF}}=34.5 \mathrm{~Hz}, m-\mathrm{C}\right.$ of $\left.\mathrm{BAr}{ }^{\mathrm{F}} 4\right)$, $129.89\left(\mathrm{~m}, m\right.$-C of Ph in dppb), 129.5 (m, m - C of Ph in dppb), $127.7\left(\mathrm{~s}, p-\mathrm{C}\right.$ of $\mathrm{Ru}=\mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{5}$), 125.3 ($\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272.9$ $\mathrm{Hz}, \mathrm{CF}_{3}$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $118.4\left(\mathrm{~m}, p-\mathrm{C}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $92.8(\mathrm{~s}, \mathrm{Cp}), 62.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of mida), $47.4\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of MIDA), $30.2(\mathrm{~m}$, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 23.5\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)$. The signal assignable to the $\mathrm{Ru}=\mathrm{C}=C$ and ipso- C of $\mathrm{Ru}=\mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{5}$ could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for $\mathrm{C}_{78} \mathrm{H}_{57} \mathrm{O}_{4} \mathrm{~B}_{2} \mathrm{~F}_{24} \mathrm{P}_{2} \mathrm{NRu} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 53.71; H, 3.27; N, 0.80. Found: C, 53.41; H, 3.21; N, 0.71 .

$\left[\mathrm{Ru}(=\mathrm{C}=\mathbf{C}(\mathrm{Ph})\{\mathrm{B}(\right.$ mida $\left.\left.)\})\left\{(p-\text { tol })_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{P}(p-\text { tol })_{2}\right)\right\} \mathrm{Cp}\right]\left[\mathrm{BAr}^{\mathrm{F}} 4\right]$ (2d)

$\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of $\left.\mathrm{PCH}_{2}\right), 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of mida) $2.34\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ of p-tol), $2.31\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ of p-tol). ${ }^{31 \mathrm{P}}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (acetone- d_{6}): $\delta 77.7(\mathrm{~s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta 338.5\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=15.8 \mathrm{~Hz}, \mathrm{Ru}=C=\mathrm{C}\right.$), 167.7 (s, CO of mida), $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}\right.$, ipso-C of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 142.2(\mathrm{~s}, \mathrm{C} 4), 141.8(\mathrm{~s}, \mathrm{C} 4), 135.5\left(\mathrm{br}, o-\mathrm{C}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 135.0(\mathrm{~m}, \mathrm{C} 1)$, 133.8 (virtual t, C2), $132.0(\mathrm{~m}, \mathrm{C} 1, \mathrm{C} 2), 130.8\left(\mathrm{~s}, o-\mathrm{C}\right.$ of $\left.\mathrm{Ru}=\mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{5}\right), 130.2(\mathrm{~m}, \mathrm{C} 3 \times 2), 130.0\left(\mathrm{brq},{ }^{2} J_{\mathrm{CF}}=32.4\right.$ $\mathrm{Hz}, m-\mathrm{C}$ of BAr_{4}), 129.4 ($\mathrm{s}, m-\mathrm{C}$ of $\mathrm{Ru}=\mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{5}$), 128.9 (s , ipso- C of $\mathrm{Ru}=\mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{5}$), 126.9 (s , $p-\mathrm{C}$ of $\mathrm{Ru}=\mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{5}$), $125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $118.5\left(\mathrm{~m}, p-\mathrm{C}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 92.0(\mathrm{~s}, \mathrm{Cp}), 62.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of mida), $47.1\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of mida), $28.6\left(\mathrm{~m}, \mathrm{PCH}_{2}\right), 21.4\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of p-tol), $21.1\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of p-tol). The signal assignable to the $\mathrm{Ru}=\mathrm{C}=C$ could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for $\mathrm{C}_{80} \mathrm{H}_{61} \mathrm{O}_{4} \mathrm{~B}_{2} \mathrm{~F}_{24} \mathrm{P}_{2} \mathrm{NRu}: ~ \mathrm{C}, 55.19 ; \mathrm{H}, 3.53 ; \mathrm{N}, 0.80$. Found: C, 54.99; H, 3.58; N, 0.80 .

$\left[\mathrm{Ru}(=\mathrm{C}=\mathrm{C}(\mathrm{Ph})\{\mathrm{B}(\right.$ mida $\left.)\})\left\{\left(p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{P}\left(p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right\} \mathrm{Cp}\right]\left[\mathrm{BAr}^{\mathrm{F}} 4\right](2 \mathrm{e})$

Complex 2e was obtained as yellow crystals ($71.1 \mathrm{mg}, 0.0363 \mathrm{mmol}, 72 \%$ yield) by the reaction of $\left[\mathrm{RuCl}\left(p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{PC}_{2} \mathrm{H}_{4} \mathrm{P}\left(p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{Cp}\right](43.8 \mathrm{mg}, 0.0523$ $\mathrm{mmol}), \mathrm{PhC} \equiv \mathrm{CB}($ mida $)(15.7 \mathrm{mg}, 0.0611 \mathrm{mmol})$, and $\mathrm{NaBAr}^{\mathrm{F}} \cdot 2 \cdot 6 \mathrm{H}_{2} \mathrm{O}(50.5 \mathrm{mg}$, 0.0541 mmol).
${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 7.97(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 2), 7.81\left(\mathrm{~s}, 8 \mathrm{H}, o-\mathrm{H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.68(\mathrm{~s}, 4 \mathrm{H}$,
$p-\mathrm{H}$ of $\left.\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.66(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 3), 7.55(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 3)\right), 7.02(\mathrm{~m}, 5 \mathrm{H}, o-$ and $m-$ and $p-\mathrm{H}$ of $\mathrm{Ru}=\mathrm{C}=\mathrm{CPh}), 6.12(\mathrm{~s}$, $5 \mathrm{H}, \mathrm{Cp}), 4.05\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=16.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida $), 3.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of $\left.\mathrm{PCH}_{2}\right), 3.38\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=17.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida), $3.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of $\left.\mathrm{PCH}_{2}\right), 3.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of mida). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $\left.d_{6}\right): \delta 82.4(\mathrm{~s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (acetone- d_{6}): $\delta 337.3\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=15.6 \mathrm{~Hz}, \mathrm{Ru}=C=\mathrm{C}\right.$), 167.5 (s, CO of mida), $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}\right.$, ipso-C of $\mathrm{BAr}^{\mathrm{F}} 4$), $140.0(\mathrm{~m}, \mathrm{C} 1), 139.5(\mathrm{~m}, \mathrm{C} 1), 135.5\left(\mathrm{br}, o-\mathrm{C}\right.$ of $\mathrm{BAr}^{\mathrm{F}} 4$), 134.4 (virtual $\mathrm{t}, \mathrm{C} 2$), 133.2 (virtual $\mathrm{t}, \mathrm{C} 2$), 132.9 ($\mathrm{m}, \mathrm{C} 4 \times 2$), $130.6\left(\mathrm{~s}, o-\mathrm{C}\right.$ of $\left.\mathrm{Ru}=\mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{5}\right), 130.0\left(\mathrm{brq},{ }^{2} J_{\mathrm{CF}}=34.3 \mathrm{~Hz}, m-\mathrm{C}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 129.8\left(\mathrm{~s}, m-\mathrm{C}\right.$ of $\left.\mathrm{Ru}=\mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{5}\right), 128.1$ (s , ipso- C of $\mathrm{Ru}=\mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{5}$), $127.7\left(\mathrm{~s}, p-\mathrm{C}\right.$ of $\left.\mathrm{Ru}=\mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{5}\right), 126.6(\mathrm{~m}, \mathrm{C} 3), 126.4(\mathrm{~m}, \mathrm{C} 3), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=273.0\right.$ $\mathrm{Hz}, \mathrm{CF}_{3}$ of $\mathrm{BAr}^{\mathrm{F}}$), $124.8\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=273.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of $\left.p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 124.5\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=273.0, \mathrm{CF}_{3}\right.$ of $\left.p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 118.5$ ($\mathrm{m}, p-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}}$) , $92.6(\mathrm{~s}, \mathrm{Cp}), 62.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of mida), $47.4\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of mida), $27.8\left(\mathrm{~m}, \mathrm{PCH}_{2}\right)$. The signal assignable to the $\mathrm{Ru}=\mathrm{C}=C$ could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for $\mathrm{C}_{80} \mathrm{H}_{49} \mathrm{O}_{4} \mathrm{~B}_{2} \mathrm{~F}_{36} \mathrm{P}_{2} \mathrm{NRu}$: C, 49.10; H, 2.52; N, 0.72. Found: C, 49.09; H, 2.43; $\mathrm{N}, 0.71$.
$\left[\mathrm{Ru}\left(=\mathrm{C}=\mathrm{C}\left(\boldsymbol{p}-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)\{\mathrm{B}(\right.\right.$ mida $\left.)\}\right)($ dppe $\left.) \mathrm{Cp}\right]\left[\mathrm{BAr}^{\mathrm{F}} 4\right]$ (2h)

Complex $\mathbf{2 h}$ was obtained as yellow crystals ($29.4 \mathrm{mg}, 0.0168 \mathrm{mmol}, 33 \%$ yield) by using $[\mathrm{CpRuCl}(\mathrm{dppe})](30.8 \mathrm{mg}, 0.0513 \mathrm{mmol}),\left(p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C} \equiv \mathrm{CB}$ (mida) (18.5 $\mathrm{mg}, 0.0569 \mathrm{mmol})$, and $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4} \cdot 2.6 \mathrm{H}_{2} \mathrm{O}(51.8 \mathrm{mg}, 0.0555 \mathrm{mmol})$.
${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 7.80\left(\mathrm{~s}, 8 \mathrm{H}, o-\mathrm{H}\right.$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $7.76(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}$ of Ph in dppe), $7.68\left(\mathrm{~s}, 4 \mathrm{H}, p-\mathrm{H}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.43(\mathrm{~m}, 4 \mathrm{H}, p-\mathrm{H}$ of Ph in dppe $\times 2), 7.33(\mathrm{~m}, 8 \mathrm{H}$, $m-\mathrm{H}$ of Ph in dppe $\times 2$), $7.27\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, \mathrm{H} 3\right), 7.21(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}$ of Ph in dppe), $7.09\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, \mathrm{H} 2\right), 5.79(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 4.03\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=17.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida), $3.47(\mathrm{~m}, 2 \mathrm{H}$, CH_{2} of dppe), $3.31\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=16.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida), $3.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $2.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of mida). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta 79.7$ (s, dppe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta 337.5\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=16.0 \mathrm{~Hz}, \mathrm{Ru}=C=\mathrm{C}\right.$), 167.6 (s, CO of mida), $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}\right.$, ipso-C of $\mathrm{BAr}^{\mathrm{F}} 4$), $137.7\left(\mathrm{~m}\right.$, ipso-C of Ph in dppe), $135.5\left(\mathrm{br}, o-\mathrm{C}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right)$, 135.0 (m , ipso-C of Ph in dppe), 133.8 (virtual t, o - C of Ph in dppe), 135.5 ($\mathrm{s}, \mathrm{C} 1$), 132.2 ($\mathrm{s}, p-\mathrm{C}$ of Ph in dppe), 132.0 (virtual $\mathrm{t}, o-\mathrm{C}$ of Ph in dppe), 131.5 ($\mathrm{s}, p-\mathrm{C}$ of Ph in dppe), 131.2 (s, C2), 130.0 (brq, ${ }^{2} J_{\mathrm{CF}}=29.1 \mathrm{~Hz}, m-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}}$), $129.7\left(\mathrm{~m}, m-\mathrm{C}\right.$ of Ph in dppe $\times 2$), $128.4(\mathrm{~s}, \mathrm{C} 4), 126.2(\mathrm{~s}, \mathrm{C} 3), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of BAr $\left.{ }_{4}\right), 125.2$ ($\mathrm{q},{ }^{1} J_{\mathrm{CF}}=264.9 \mathrm{~Hz}, \mathrm{CF}_{3}$ of $p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$), $118.4\left(\mathrm{~m}, p-\mathrm{C}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $92.4(\mathrm{~s}, \mathrm{Cp}), 62.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of mida), $47.5\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of mida), $28.2\left(\mathrm{~m}, \mathrm{PCH}_{2}\right)$. The signal assignable to the $\mathrm{Ru}=\mathrm{C}=C$ and C 4 could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for $\mathrm{C}_{77} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{~B}_{2} \mathrm{~F}_{27} \mathrm{P}_{2} \mathrm{NRu} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{C}, 51.85 ; \mathrm{H}, 2.92$; N, 0.78 . Found: C, 51.59 ; H, 2.83; N, 0.71 .

$\left[\mathrm{Ru}(=\mathrm{C}=\mathbf{C}(\boldsymbol{p}\right.$-Ans) $\{\mathrm{B}($ mida $)\})($ dppe $) \mathrm{Cp}]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right]$ (2i)

Complex $2 \mathbf{i}$ was obtained as yellow crystals $(70.9 \mathrm{mg}, 0.041 .3 \mathrm{mmol}, 84 \%$ yield) by the reaction of $[\mathrm{RuCl}(\mathrm{dppe}) \mathrm{Cp}](29.4 \mathrm{mg}, 0.0490 \mathrm{mmol})$, $(p-$ Ans) $\mathrm{C} \equiv \mathrm{CB}$ (mida) $(17.5 \mathrm{mg}, 0.0610 \mathrm{mmol})$, and $\mathrm{NaBAr}^{\mathrm{F}} 4^{2} \cdot 2.6 \mathrm{H}_{2} \mathrm{O}(51.0 \mathrm{mg}$, 0.0547 mmol).
${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 7.81\left(\mathrm{~s}, 8 \mathrm{H}, o-\mathrm{H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.76(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}$ of Ph in dppe), $7.69\left(\mathrm{~s}, 4 \mathrm{H}, p-\mathrm{H}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.48(\mathrm{~m}, 2 \mathrm{H}, p-\mathrm{H}$ of Ph in dppe), $7.40(\mathrm{~m}, 6 \mathrm{H}$,
p - and m-H of Ph in dppe), $7.32\left(\mathrm{~m}, 4 \mathrm{H}, m-\mathrm{H}\right.$ of Ph in dppe), $7.23\left(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}\right.$ of Ph in dppe), $6.77\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=\right.$ $8.4 \mathrm{~Hz}, \mathrm{H} 2), 6.55\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, \mathrm{H} 3\right), 5.69(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 3.99\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=17.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida), $3.70(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right) 3.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $3.24\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=17.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida), $3.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), 2.64 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ of mida). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta 79.7$ (s, dppe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $\left.d_{6}\right): \delta 339.4\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=\right.$ $15.9 \mathrm{~Hz}, \mathrm{Ru}=C=\mathrm{C}$), 167.8 (s, CO of mida), $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}\right.$, ipso-C of $\mathrm{BAr}^{\mathrm{F}} 4$), 159.3 ($\mathrm{s}, \mathrm{C} 4$) 138.1 (m , ipsoC of Ph in dppe), 135.5 ($\mathrm{br}, o-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}}$ 4), 135.1 (m , ipso-C of Ph in dppe), 133.9 (virtual $\mathrm{t}, o-\mathrm{C}$ of Ph in dppe), 131.9 (m, $o-$ and $p-\mathrm{C}$ of Ph in dppe), $131.8(\mathrm{~s}, \mathrm{C} 2), 131.4\left(\mathrm{~s}, p-\mathrm{C}\right.$ of Ph in dppe), $130.0\left(\mathrm{brq},{ }^{2} J_{\mathrm{CF}}=31.9 \mathrm{~Hz}, m-\mathrm{C}^{2}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right)$, $129.6\left(\mathrm{~m}, m-\mathrm{C}\right.$ of Ph in dppe $\times 2$), $125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=273.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $119.9(\mathrm{~s}, \mathrm{C} 1), 118.4\left(\mathrm{~m}, p-\mathrm{C}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right)$, $115.1(\mathrm{~s}, \mathrm{C} 3), 91.9(\mathrm{~s}, \mathrm{Cp}), 62.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of mida), $55.3\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 47.2\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of mida), $28.4(\mathrm{~m}, \mathrm{PCH})$. The signal assignable to the $\mathrm{Ru}=\mathrm{C}=C$ could not be found, probably because it is overlapped with other signals. HRMS m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{RuP}_{2} \mathrm{C}_{45} \mathrm{H}_{43} \mathrm{BNO}_{5}{ }^{+}$: 852.17530; found 852.17586.
$\left[\mathrm{Ru}\left(=\mathrm{C}=\mathrm{C}\left(p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)\{\mathrm{B}(\right.\right.$ dan $\left.)\}\right)($ dppe $\left.) \mathrm{Cp}\right]\left[\mathrm{BAr}^{\mathrm{F}} 4\right](2 \mathrm{j})$

Complex $\mathbf{2 j}$ was obtained by using [$\mathrm{RuCl}(\mathrm{dppe}) \mathrm{Cp}](30.2 \mathrm{mg}$, $0.0503 \mathrm{mmol}),\left(p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C} \equiv \mathrm{CB}(\mathrm{dan})(17.0 \mathrm{mg}, 0.0506 \mathrm{mmol})$, and $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4} \cdot 6 \mathrm{THF}$ (recrystallized THF/hexane) ($68.2 \mathrm{mg}, 0.0517$ mmol). The complex was characterized by ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product ($0.0486 \mathrm{mmol}, 97 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.76\left(\mathrm{~s}, 8 \mathrm{H}, o-\mathrm{H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.55(\mathrm{~s}, 4 \mathrm{H}, p-\mathrm{H}$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.39\left(\mathrm{~m}, 12 \mathrm{H}, p-\times 2\right.$ and m - and $o-\mathrm{H}$ of Ph in dppe), $7.19\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, \mathrm{H} 3\right), 7.04(\mathrm{~m}, 12 \mathrm{H}, m$ - and $o-\mathrm{H}$ of Ph in dppe and H6, H7), $6.71\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, \mathrm{H} 2\right), 5.95(\mathrm{br}, 2 \mathrm{H}, \mathrm{H} 5), 5.47(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 4.84(\mathrm{br}, 2 \mathrm{H}$, NH of dan), $3.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $2.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 77.5\left(\mathrm{~s}\right.$, dppe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 334.1\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=15.4 \mathrm{~Hz}, \mathrm{Ru}=C=\mathrm{C}\right), 161.9\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}\right.$, ipso-C of BAr$\left.{ }_{4}\right), 139.9(\mathrm{~s}, \mathrm{C} 10)$, 136.1 (br, C8), 134.9 ($\mathrm{m}, o-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$ and ipso-C of Ph in dppe), 133.2 (m, ipso-C of Ph in dppe), 132.1 (m, $p-\mathrm{C}$ of Ph in dppe), 132.0 ($\mathrm{m}, p-\mathrm{C}$ of Ph in dppe), 131.8 (virtual $\mathrm{t}, o-\mathrm{C}$ of Ph in dppe), 131.4 (virtual $\mathrm{t}, o-\mathrm{C}$ of Ph in dppe), 129.0 ($\mathrm{m}, m-\mathrm{C}$ of Ph in dppe $\times 2$ and $\mathrm{C} 2, \mathrm{C} 4$ and $m-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}} 4$)), 127.4 (m, C6), 125.9 ($\mathrm{s}, \mathrm{C} 3$), 125.3 (s, C1), 124.7 $\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=273.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 123.9\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=273.1 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of $\left.p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 119.7(\mathrm{~s}, \mathrm{C} 9), 118.7(\mathrm{~s}, \mathrm{C} 7), 117.6$ (s, $p-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}}$) , $106.6(\mathrm{~s}, \mathrm{C} 5), 91.5(\mathrm{~s}, \mathrm{Cp}), 27.6\left(\mathrm{~m}, \mathrm{PCH}_{2}\right)$. The signal assignable to the $\mathrm{Ru}=\mathrm{C}=C$ could not be found, probably because it is overlapped with other signals. High resolution mass measurement and elemental analysis have failed due to the high susceptibility toward hydrolysis.
$[\mathrm{Ru}(=\mathbf{C}=\mathbf{C}(\boldsymbol{p}$-Ans $)\{\mathbf{B}($ dan $)\})($ dppe $) \mathbf{C p}]\left[\mathrm{BAr}^{\mathrm{F}} 4\right](2 \mathrm{k})$

Complex $\mathbf{2 k}$ was obtained by using $[\mathrm{RuCl}(\mathrm{dppe}) \mathrm{Cp}](30.3 \mathrm{mg}$, $0.0505 \mathrm{mmol}),(p-\mathrm{Ans}) \mathrm{C} \equiv \mathrm{CB}($ dan $)(15.4 \mathrm{mg}, 0.0517 \mathrm{mmol})$, and $\mathrm{NaBAr}^{\mathrm{F}} \mathbf{4}^{2} \cdot 6 \mathrm{THF}$ (recrystallized THF/hexane) ($67.5 \mathrm{mg}, 0.0512$ mmol). The complex was characterized by ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product ($0.0426 \mathrm{mmol}, 84 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.77\left(\mathrm{~s}, 8 \mathrm{H}, o-\mathrm{H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.56(\mathrm{~s}, 4 \mathrm{H}, p-\mathrm{H}$
of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.43(\mathrm{~m}, 6 \mathrm{H}, o-$ and $p-\mathrm{H}$ of Ph in dppe), $7.38(\mathrm{~m}, 4 \mathrm{H}, m-\mathrm{H}$ of Ph in dppe $), 7.07(\mathrm{~m}, 14 \mathrm{H}, o-, m-$ and $p-\mathrm{H}$ of Ph in dppe, H6, H7), $6.55\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.9 \mathrm{~Hz}, \mathrm{H} 2\right), 6.51\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.9 \mathrm{~Hz}, \mathrm{H} 3\right), 5.92(\mathrm{br}, 2 \mathrm{H}, \mathrm{H} 5), 5.45(\mathrm{~s}$, $5 \mathrm{H}, \mathrm{Cp}), 4.80\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}\right.$ of dan), $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of p-Ans), $3.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $2.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 78.2(\mathrm{~s}$, dppe $) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 336.3(\mathrm{~m}, \mathrm{Ru}=\mathrm{C}=\mathrm{C}), 161.8\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0\right.$ Hz , ipso-C of $\mathrm{BAr}_{4}{ }_{4}$, $158.8(\mathrm{~s}, \mathrm{C} 4), 140.2(\mathrm{~s}, \mathrm{C} 10), 136.1$ (br, C8), 134.9 (m,o-C of BAr_{4} and ipso-C of Ph in dppe), 133.3 (m , ipso-C of Ph in dppe), 131.9 (m, o - and p - C of Ph in dppe), 131.7 ($\mathrm{m}, p-\mathrm{C}$ of Ph in dppe), 131.4 ($\mathrm{m}, o-\mathrm{C}$ of Ph in dppe), $130.0(\mathrm{~s}, \mathrm{C} 2), 129.2\left(\mathrm{~m}, m-\mathrm{C}\right.$ of Ph in dppe $\times 2$), $128.9\left(\mathrm{brq},{ }^{2} J_{\mathrm{CF}}=34.1 \mathrm{~Hz}, m-\mathrm{C}\right.$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $127.3(\mathrm{~m}$, C6), $124.7\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=273.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $119.6(\mathrm{~s}, \mathrm{C} 9), 118.3(\mathrm{~s}, \mathrm{C} 7), 118.1(\mathrm{~s}, \mathrm{C} 1), 117.6\left(\mathrm{~s}, p-\mathrm{C}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right)$, 114.7 (s, C3), $106.5(\mathrm{~s}, \mathrm{C} 5), 91.2(\mathrm{~s}, \mathrm{Cp}), 55.2\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 27.7(\mathrm{~m}, \mathrm{PCH})$. The signal assignable to the $\mathrm{Ru}=\mathrm{C}=C$ could not be found, probably because it is overlapped with other signals. High resolution mass measurement and elemental analysis have failed due to the high susceptibility toward hydrolysis.

$\left[\mathrm{Ru}(=\mathrm{C}=\mathbf{C}(\boldsymbol{p}\right.$-tol)$\{\mathbf{B}($ mida $)\})($ dppe $) \mathrm{Cp}]\left[\mathrm{BAr}^{\mathrm{F}} 4\right]$ (21)

Complex 21 was obtained as yellow crystals ($68.3 \mathrm{mg}, 0.0402 \mathrm{mmol}, 78 \%$ yield) by using [$\mathrm{RuCl}(\mathrm{dppe}) \mathrm{Cp}](30.9 \mathrm{mg}, 0.0515 \mathrm{mmol}),(p-\mathrm{tol}) \mathrm{C} \equiv \mathrm{CB}($ mida $)(15.9 \mathrm{mg}$, $0.0587 \mathrm{mmol})$, and $\mathrm{NaBAr}^{\mathrm{F}} 4^{2} \cdot 2.6 \mathrm{H}_{2} \mathrm{O}(50.8 \mathrm{mg}, 0.0544 \mathrm{mmol})$.
${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 7.80\left(\mathrm{~s}, 8 \mathrm{H}, o-\mathrm{H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.74(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}$ of Ph in dppe), $7.68\left(\mathrm{~s}, 4 \mathrm{H}, p-\mathrm{H}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$) , $7.47(\mathrm{~m}, 2 \mathrm{H}, p-\mathrm{H}$ of Ph in dppe), $7.42(\mathrm{~m}, 2 \mathrm{H}$, $p-\mathrm{H}$ of Ph in dppe), $7.34(\mathrm{~m}, 8 \mathrm{H}, m-\mathrm{H}$ of Ph in dppe $\times 2), 7.23(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}$ of Ph in dppe), $6.79\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, \mathrm{H} 3\right), 6.75\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, \mathrm{H} 2\right), 5.69(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 3.99\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=16.8\right.$ $\mathrm{Hz}, \mathrm{CH}_{2}$ of mida), $3.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $3.22\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=17.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida), $3.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of mida), $2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of p-tol). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $\left.d_{6}\right): \delta 79.6\left(\mathrm{~s}\right.$, dppe). ${ }^{13} \mathrm{C}\left\{{ }^{\{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta 338.8\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=15.4 \mathrm{~Hz}, \mathrm{Ru}=C=\mathrm{C}\right.$), 167.8 (s , CO of mida), $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}\right.$, ipso-C of $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$), 138.1 (m, ipso-C of Ph in dppe), 136.8 ($\mathrm{s}, \mathrm{C} 4$) 135.5 (br, $o-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}}$), 135.1 (m , ipso- C of Ph in dppe), 133.9 (virtual $\mathrm{t}, o-\mathrm{C}$ of Ph in dppe), 132.0 ($\mathrm{m}, o-\mathrm{C}$ of Ph in dppe), 131.8 ($\mathrm{s}, p-\mathrm{C}$ of Ph in dppe) 131.4 ($\mathrm{s}, p-\mathrm{C}$ of Ph in dppe), $130.6(\mathrm{~s}, \mathrm{C} 2), 130.3(\mathrm{~s}, \mathrm{C} 3), 130.0\left(\mathrm{brq},{ }^{2} J_{\mathrm{CF}}=32.0 \mathrm{~Hz}, m-\mathrm{C}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 129.6(\mathrm{~m}, m-\mathrm{C}$ of Ph in dppe $\times 2), 125.4(\mathrm{q}$, ${ }^{1} J_{\mathrm{CF}}=272.9 \mathrm{~Hz}, \mathrm{CF}_{3}$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $125.3(\mathrm{~s}, \mathrm{C} 1), 118.4\left(\mathrm{~m}, p-\mathrm{C}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 92.0(\mathrm{~s}, \mathrm{Cp}), 62.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of mida), $47.1(\mathrm{~s}$, CH_{3} of mida), $28.4\left(\mathrm{~m}, \mathrm{PCH}_{2}\right), 20.9\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of p-tol). The signal assignable to the $\mathrm{Ru}=\mathrm{C}=C$ could not be found, probably because it is overlapped with other signals. HRMS m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{RuP}_{2} \mathrm{C}_{45} \mathrm{H}_{43} \mathrm{BNO}_{4}{ }^{+}$: 836.18039; found 836.18234.

$\left[\mathrm{Ru}\left(=\mathrm{C}=\mathrm{C}\left(p-\mathrm{FC}_{6} \mathrm{H}_{4}\right)\{\mathrm{B}(\right.\right.$ mida $\left.)\}\right)($ dppe $\left.) \mathrm{Cp}\right]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right](2 \mathrm{~m})$

Complex $\mathbf{2 m}$ was obtained as yellow crystals ($62.0 \mathrm{mg}, 0.0364 \mathrm{mmol}, 71 \%$ yield) by using $[\mathrm{RuCl}($ dppe $) \mathrm{Cp}](30.7 \mathrm{mg}, 0.0512 \mathrm{mmol}),\left(p-\mathrm{FC}_{6} \mathrm{H}_{4}\right) \mathrm{C} \equiv \mathrm{CB}$ (mida) (15.9 mg , 0.0578 mmol), and $\mathrm{NaBAr}^{\mathrm{F}} 4^{2} \cdot 2.6 \mathrm{H}_{2} \mathrm{O}(50.7 \mathrm{mg}, 0.0543 \mathrm{mmol})$.
${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 7.80\left(\mathrm{~s}, 8 \mathrm{H}, o-\mathrm{H}\right.$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $7.77(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}$ of Ph in dppe), $7.68\left(\mathrm{~s}, 4 \mathrm{H}, p-\mathrm{H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.49(\mathrm{~m}, 2 \mathrm{H}, p-\mathrm{H}$ of Ph in dppe), $7.40(\mathrm{~m}, 6 \mathrm{H}, m$ - and p H of Ph in dppe), 7.33 (m, 4H, m - H of Ph in dppe) 7.23 ($\mathrm{m}, 4 \mathrm{H}, o-\mathrm{H}$ of Ph in dppe)
$6.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 2), 6.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3), 5.72(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 4.01\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=17.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of MIDA), $3.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $3.29\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=16.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida), $3.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of mida). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta 79.7$ (s, dppe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta 338.7\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=16.0 \mathrm{~Hz}, \mathrm{Ru}=C=\mathrm{C}\right.$), 167.7 (s, CO of mida) $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}\right.$, ipso-C of $\left.\mathrm{BAr}{ }^{\mathrm{F}}{ }_{4}\right), 162.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=245.0 \mathrm{~Hz}, \mathrm{C} 4\right) 137.9(\mathrm{~m}$, ipso-C of Ph in dppe), 135.6 (br, o-C of $\mathrm{BAr}^{\mathrm{F}} 4$), 135.2 (m , ipso-C of Ph in dppe), 133.9 (virtual $\mathrm{t}, o-\mathrm{C}$ of Ph in dppe), 132.5 ($\mathrm{d},{ }^{3} J_{\mathrm{CF}}=8.1$ $\mathrm{Hz}, \mathrm{C} 2$), 132.02 ($\mathrm{m}, o-\mathrm{C}$ of Ph in dppe), $131.97\left(\mathrm{~s}, p-\mathrm{C}\right.$ of Ph in dppe) 131.5 ($\mathrm{s}, p-\mathrm{C}$ of Ph in dppe), 130.0 ($\mathrm{brq},{ }^{2} J_{\mathrm{CF}}$ $=31.8 \mathrm{~Hz}, m-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $129.8\left(\mathrm{~m}, m-\mathrm{C}\right.$ of Ph in dppe), $129.7\left(\mathrm{~m}, m-\mathrm{C}\right.$ of Ph in dppe), $125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=273.0 \mathrm{~Hz}\right.$, CF_{3} of BAr_{4}), $124.6(\mathrm{~s}, \mathrm{C} 1), 118.5\left(\mathrm{~m}, p-\mathrm{C}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $116.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21.5 \mathrm{~Hz}, \mathrm{C} 3\right), 92.1(\mathrm{~s}, \mathrm{Cp}), 62.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of mida), 47.3 ($\mathrm{s}, \mathrm{CH}_{3}$ of mida), $28.4\left(\mathrm{~m}, \mathrm{PCH}_{2}\right.$). The signal assignable to the $\mathrm{Ru}=\mathrm{C}=C$ could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for $\mathrm{C}_{76} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{~B}_{2} \mathrm{~F}_{25} \mathrm{P}_{2} \mathrm{NRu} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}$: $\mathrm{C}, 52.65$; H, 3.00; N, 0.80. Found: C, 52.41; H, 2.83; N, 0.75 .

$\left[\mathrm{Ru}(=\mathbf{C}=\mathbf{C}(\boldsymbol{m}\right.$-xylyl) $\{\mathbf{B}($ mida $)\})($ dppe $) \mathrm{Cp}]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right]$ (2n)

Complex 2n was obtained as yellow crystals $(66.0 \mathrm{mg}, 0.0385 \mathrm{mmol}, 75 \%$ yield) by using [CpRuCl(dppe)] ($30.7 \mathrm{mg}, 0.0512 \mathrm{mmol}$), (m-xylyl) $\mathrm{C} \equiv \mathrm{CB}$ (mida) ($17.2 \mathrm{mg}, 0.0603 \mathrm{mmol}$), and $\mathrm{NaBAr}^{\mathrm{F}} 4^{2} \cdot 2.6 \mathrm{H}_{2} \mathrm{O}(51.5 \mathrm{mg}, 0.0552 \mathrm{mmol})$.
${ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}\right): \delta 7.80\left(\mathrm{~s}, 8 \mathrm{H}, o-\mathrm{H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.78(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}$ of Ph in dppe), $7.68\left(\mathrm{~s}, 4 \mathrm{H}, p-\mathrm{H}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $7.44(\mathrm{~m}, 4 \mathrm{H}, p-\mathrm{H}$ of Ph in dppe $\times 2$), $7.31(\mathrm{~m}$, $8 \mathrm{H}, m-\mathrm{H}$ of Ph in dppe $\times 2$), $7.23(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}$ of Ph in dppe), $6.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4)$, $6.47(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 2), 5.66(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 3.98\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=16.8 \mathrm{~Hz}, \mathrm{mida}\right), 3.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $3.19(\mathrm{~d}, 2 \mathrm{H}$, ${ }^{2} J_{\mathrm{HH}}=17.3 \mathrm{~Hz}$, mida), $3.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $2.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of mida), $2.07\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ of m-xylyl). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta 79.9$ (s, dppe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta 339.3\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=15.9 \mathrm{~Hz}, \mathrm{Ru}=C=\mathrm{C}\right.$), $167.8(\mathrm{~s}, \mathrm{CO}$ of mida), $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}\right.$, ipso-C of $\left.\mathrm{BAr}^{\mathrm{F}}{ }^{4}\right), 138.8(\mathrm{~s}, \mathrm{C} 3), 138.2(\mathrm{~m}$, ipso-C of Ph in dppe), $135.5(\mathrm{br}, o-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}}$), 135.0 (m , ipso- C of Ph in dppe), 134.0 ($\mathrm{m}, o-\mathrm{C}$ of Ph in dppe), 131.9 ($\mathrm{s}, o-$ and $p-\mathrm{C}$ of Ph in dppe), 131.4 (s, $p-\mathrm{C}$ of Ph in dppe), 130.0 (brq, ${ }^{2} J_{\mathrm{CF}}=31.9 \mathrm{~Hz}, m-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}} 4$), 129.6 (br, m - C of Ph in dppe $\times 2$), 129.1 ($\mathrm{s}, \mathrm{C} 4$), 128.5(s , $\mathrm{C} 2), 128.1(\mathrm{~s}, \mathrm{C} 1), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=273.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $118.4\left(\mathrm{~m}, p-\mathrm{C}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 92.0(\mathrm{~s}, \mathrm{Cp}), 62.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of mida), $47.0\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of mida), $28.5\left(\mathrm{~m}, \mathrm{PCH}_{2}\right) 20.5\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of m-xylyl). The signal assignable to the $\mathrm{Ru}=\mathrm{C}=C$ could not be found, probably because it is overlapped with other signals. HRMS m/z: [M+Na] calcd for $\mathrm{RuP}_{2} \mathrm{C}_{46} \mathrm{H}_{45} \mathrm{BNO}_{4}{ }^{+}$: 850.19604 ; found 850.19657 .
$\left[\mathrm{Ru}(=\mathbf{C}=\mathbf{C}(\boldsymbol{o}-\mathrm{tol})\{\mathrm{B}(\right.$ mida) $\})($ dppe $) \mathrm{Cp}]\left[\mathrm{BAr}^{\mathrm{F}} 4\right]$ (20)
$\square \mathrm{BAr}_{4} \quad$ Complex 20 was obtained as yellow crystals ($18.3 \mathrm{mg}, 0.0108 \mathrm{mmol}, 21 \%$ yield) by using [CpRuCl(dppe)] ($30.6 \mathrm{mg}, 0.0510 \mathrm{mmol}$), (o-tol) $\mathrm{C} \equiv \mathrm{CB}$ (mida) (16.2 mg , $0.0600 \mathrm{mmol})$, and $\mathrm{NaBAr}^{\mathrm{F}} 4 \cdot 2.6 \mathrm{H}_{2} \mathrm{O}(51.2 \mathrm{mg}, 0.0549 \mathrm{mmol})$.
${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 7.79\left(\mathrm{~s}, 8 \mathrm{H}, o-\mathrm{H}\right.$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $7.75(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{H}$ of Ph in dppe), $7.68\left(\mathrm{~s}, 4 \mathrm{H}, p-\mathrm{H}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$) , $7.51(\mathrm{~m}, 3 \mathrm{H}, p$ - and $o-\mathrm{H}$ of Ph in dppe), $7.34(\mathrm{~m}, 11 \mathrm{H}, p-$ $\times 3$ and $m-\times 3$ and $o-H$ of Ph in dppe), $7.21(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{H}$ of Ph in dppe), $7.05(\mathrm{~m}, 3 \mathrm{H}$, $o-\mathrm{H}$ of Ph in dppe and H6), $6.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 5)) 6.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 3), 5.84(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 4.05\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=17.8 \mathrm{~Hz}\right.$,
CH_{2} of mida), $3.88\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=16.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida), $3.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe $), 3.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of mida and CH_{2} of dppe), $3.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $3.14\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=16.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida), $3.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe $)$, $2.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of mida), $2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of o-tol). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $\left.d_{6}\right): \delta 79.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}}=15.1 \mathrm{~Hz}\right.$, dppe), $78.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}}=15.1 \mathrm{~Hz}\right.$, dppe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $\left.d_{6}\right): \delta 333.1\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=12.4 \mathrm{~Hz}, \mathrm{Ru}=C=\mathrm{C}\right), 168.7(\mathrm{~s}, \mathrm{CO}$ of mida), $166.5\left(\mathrm{~s}, \mathrm{CO}\right.$ of mida), $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}\right.$, ipso-C of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 138.5(\mathrm{~s}, \mathrm{C} 2), 138.1(\mathrm{~m}$, ipso-C of Ph in dppe), 137.6 (m , ipso-C of Ph in dppe), 135.5 (br, o-C of $\mathrm{BAr}^{\mathrm{F}} 4$), 135.1 (m, ipso-C of Ph in dppe) $133.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=\right.$ $11.5 \mathrm{~Hz}, o-\mathrm{C}$ of Ph in dppe), 132.8 ($\mathrm{m}, o-$ and ipso-C of Ph in dppe), 132.3 ($\mathrm{s}, \mathrm{C} 3$), 132.1 ($\mathrm{s}, p-\mathrm{C}$ of Ph in dppe), 132.0 ($\mathrm{d},{ }^{3} J_{\mathrm{CP}}=11.0 \mathrm{~Hz}, o-\mathrm{C}$ of Ph in dppe), 131.7 (m-, o - and $p-\mathrm{C}$ of Ph in dppe), 131.35 ($\mathrm{s}, p-\mathrm{C}$ of Ph in dppe), 131.26 (s, p - C of Ph in dppe), 130.8 ($\mathrm{s}, \mathrm{C} 6$), $129.9\left(\mathrm{~m}, m-\mathrm{C}\right.$ of $\mathrm{BAr}^{\mathrm{F}} 4$ and m - C of Ph in dppe $\times 4$), 128.3 ($\mathrm{s}, \mathrm{C} 1$), 128.1 (s, C 4), $126.6(\mathrm{~s}, \mathrm{C} 5), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $118.4\left(\mathrm{~m}, p-\mathrm{C}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 92.2(\mathrm{~s}, \mathrm{Cp}), 62.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of mida), $62.4\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of mida), $46.5\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of mida), $28.4\left(\mathrm{~m}, \mathrm{PCH}_{2}\right), 27.7\left(\mathrm{~m}, \mathrm{PCH}_{2}\right), 21.5\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of o-tol $)$. The signal assignable to the $\mathrm{Ru}=\mathrm{C}=C$ could not be found, probably because it is overlapped with other signals. HRMS $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{RuP}_{2} \mathrm{C}_{45} \mathrm{H}_{43} \mathrm{BNO}_{4}{ }^{+}: 836.18039$; found 836.18161.

$[\mathrm{Ru}(=\mathrm{C}=\mathrm{C}(\boldsymbol{\beta}$-biphenyl)$)\{\mathrm{B}($ mida $)\})($ dppe $) \mathrm{Cp}]\left[\mathrm{BAr}^{\mathrm{F}} 4\right](2 \mathrm{p})$

Complex $\mathbf{2 p}$ was obtained as yellow crystals ($26.7 \mathrm{mg}, 0.0152 \mathrm{mmol}, 51 \%$ yield) by using [RuCl(dppe)Cp] (17.8 mg, 0.0297 mmol$),(\beta$-biphenyl) $\mathrm{C} \equiv \mathrm{CB}$ (mida) (11.1 $\mathrm{mg}, 0.0333 \mathrm{mmol}$), and $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4} \cdot 2.6 \mathrm{H}_{2} \mathrm{O}(29.2 \mathrm{mg}, 0.0313 \mathrm{mmol})$.
${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 7.79\left(\mathrm{~s}, 8 \mathrm{H}, o-\mathrm{H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.75(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}$ of Ph in dppe), $7.68\left(\mathrm{~s}, 4 \mathrm{H}, p-\mathrm{H}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$) , $7.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 8), 7.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 9), 7.43(\mathrm{~m}, 2 \mathrm{H}, p-\mathrm{H}$ of Ph in dppe), $7.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 10), 7.30(\mathrm{~m}, 11 \mathrm{H}, m-\times 2$ and $p-\mathrm{H}$ of Ph in dppe and H 4$)$, 7.23 (m, 4H, o-H of Ph in dppe), 7.09 (m, 2H, H2, H5), 6.94 (br d, 1H, 6), 5.70 (s, $5 \mathrm{H}, \mathrm{Cp}), 4.04\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=16.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida), $3.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), 3.28 (d, $2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=16.8 \mathrm{~Hz}, \mathrm{CH}_{2}$ of mida), $3.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $2.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of mida). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetoned_{6}): $\delta 79.8$ (s, dppe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta 338.8\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=16.5 \mathrm{~Hz}, \mathrm{Ru}=C=\mathrm{C}\right.$), 167.8 (s, CO of mida), 162.6 $\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}\right.$, ipso-C of $\mathrm{BAr}^{\mathrm{F}}$), $142.5(\mathrm{~s}, \mathrm{C} 3), 141.6(\mathrm{~s}, \mathrm{C} 7), 138.1$ (m, ipso-C of Ph in dppe), $135.5(\mathrm{br}, o-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}}$), 135.0 (m , ipso- C of Ph in dppe), 133.9 (virtual $\mathrm{t}, o-\mathrm{C}$ of Ph in dppe), 132.0 (d, o - and $p-\mathrm{C}$ of Ph in dppe), 131.5 (s, p-C of Ph in dppe), 130.1 ($\mathrm{s}, \mathrm{C} 5$), 129.98 (brq, ${ }^{2} J_{\mathrm{CF}}=31.3 \mathrm{~Hz}, m-\mathrm{C}$ of $\mathrm{BAr}{ }^{\mathrm{F}} 4$), 129.97 ($\mathrm{s}, \mathrm{C} 6$), 129.6 (m, m-C of Ph in dppe $\times 2$ and C9), $129.3(\mathrm{~s}, \mathrm{C} 1), 129.2(\mathrm{~s}, \mathrm{C} 2), 128.3(\mathrm{~s}, \mathrm{C} 10), 128.0(\mathrm{~s}, \mathrm{C} 8), 126.1(\mathrm{~s}, \mathrm{C} 4), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}\right.$ $=272.9 \mathrm{~Hz}, \mathrm{CF}_{3}$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 118.4\left(\mathrm{~m}, p-\mathrm{C}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 92.1(\mathrm{~s}, \mathrm{Cp}), 62.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of mida), $47.3\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of mida), 28.5 $(\mathrm{m}, \mathrm{PCH})$. The signal assignable to the $\mathrm{Ru}=\mathrm{C}=C$ could not be found, probably because it is overlapped with other signals. HRMS m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{RuP}_{2} \mathrm{C}_{50} \mathrm{H}_{45} \mathrm{BNO}_{4}{ }^{+}$: 898.19604; found 898.20034.

$\left[\mathrm{Ru}(=\mathrm{C}=\mathrm{C}(\beta\right.$-naphthyl)$\{\mathrm{B}($ mida) $)\})($ dppe $) \mathrm{Cp}]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right](2 q)$

Complex $\mathbf{2 q}$ was obtained as yellow crystals $(41.9 \mathrm{mg}, 0.0242 \mathrm{mmol}, 47 \%$ yield) by using $[\mathrm{RuCl}(\mathrm{dppe}) \mathrm{Cp}] \quad(30.6 \mathrm{mg}, \quad 0.0510 \mathrm{mmol})$, $(\beta$ naphthyl) $\mathrm{C} \equiv \mathrm{CB}$ (mida) ($18.4 \mathrm{mg}, 0.0599 \mathrm{mmol}$), and $\mathrm{NaBAr}^{\mathrm{F}} 4 \cdot 2.6 \mathrm{H}_{2} \mathrm{O}(50.9 \mathrm{mg}$, 0.0556 mmol).
${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 7.80\left(\mathrm{~s}, 8 \mathrm{H}, o-\mathrm{H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.73(\mathrm{~m}, 5 \mathrm{H}, o-\mathrm{H}$ of Ph in dppe and H 10$), 7.68(\mathrm{~s}, 4 \mathrm{H}, p-\mathrm{H}$ of $\mathrm{BAr}^{\mathrm{F}}$) , $7.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 7), 7.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 5), 7.43(\mathrm{~m}, 4 \mathrm{H}, p-\mathrm{H}$ of Ph in dppe and $\mathrm{H} 8, \mathrm{H} 9), 7.32(\mathrm{~m}, 5 \mathrm{H}, m-\mathrm{H}$ of Ph in dppe and H2), $7.20(\mathrm{~m}, 10 \mathrm{H}, o-$ and m - and p - H of Ph in dppe, $), 7.05\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=1.5 \mathrm{~Hz}, \mathrm{H} 6\right)$, $5.72(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 4.00\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=17.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of mida), $3.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $3.28\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=16.8 \mathrm{~Hz}\right.$, CH_{2} of mida), $3.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of mida). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- $\left.d_{6}\right): \delta 79.6$ (s, dppe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta 338.7\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=16.5 \mathrm{~Hz}, \mathrm{Ru}=C=\mathrm{C}\right), 167.8\left(\mathrm{~s}, \mathrm{CO}\right.$ of MIDA), $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}\right.$, ipso-C of $\mathrm{BAr}^{\mathrm{F}}$), 138.1 (m, ipso-C of Ph in dppe), 135.5 ($\mathrm{br}, o-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}} 4$), 135.0 (m , ipso- -C of Ph in dppe), 134.4 ($\mathrm{s}, \mathrm{C} 3$), 133.7 (virtual $\mathrm{t}, o-\mathrm{C}$ of Ph in dppe), 132.9 (s C 4), 131.9 (virtual $\mathrm{t}, o-\mathrm{C}$ of Ph in dppe), 131.7 ($\mathrm{s}, p-\mathrm{C}$ of Ph in dppe) 131.4 (s, p-C of Ph in dppe), 130.0 (brq, ${ }^{2} J_{\mathrm{CF}}=31.6 \mathrm{~Hz}, m-\mathrm{C}$ of $\mathrm{BAr}{ }^{\mathrm{F}} 4$), $129.6(\mathrm{~m}, m-\mathrm{C}$ of Ph in dppe and C 2), 129.5 (m, m-C of Ph in dppe), 129.4 ($\mathrm{s}, \mathrm{C} 5$), 128.9 ($\mathrm{s}, \mathrm{C} 6$), 128.7 ($\mathrm{s}, \mathrm{C} 7$), 128.2 ($\mathrm{s}, \mathrm{C} 10$), 126.7 (m, C8, C9), 126.1 $(\mathrm{s}, \mathrm{C} 1), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=273.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 118.4\left(\mathrm{~m}, p-\mathrm{C}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 92.2(\mathrm{~s}, \mathrm{Cp}), 62.9\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of mida), 47.3 (s, CH_{3} of mida), $28.4\left(\mathrm{~m}, \mathrm{PCH}_{2}\right)$. The signal assignable to the $\mathrm{Ru}=\mathrm{C}=C$ could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for $\mathrm{C}_{80} \mathrm{H}_{55} \mathrm{O}_{4} \mathrm{~B}_{2} \mathrm{~F}_{24} \mathrm{P}_{2} \mathrm{NRu} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 54.40; H, 3.12; N, 0.79. Found: C, 54.09 ; H, 2.96; N, 0.74 .

$[\mathrm{Ru}(=\mathrm{C}=\mathrm{C}(\alpha$-thiophene $)\{\mathrm{B}($ mida $)\})($ dppe $) \mathrm{Cp}]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right](2 \mathrm{r})$

Complex 2 r was obtained as yellow crystals ($56.2 \mathrm{mg}, 0.0332 \mathrm{mmol}, 65 \%$ yield) by using [CpRuCl(dppe)] ($30.7 \mathrm{mg}, 0.0512 \mathrm{mmol}$), (α-thiophene) $\mathrm{C} \equiv \mathrm{CB}$ (mida) (14.9 $\mathrm{mg}, 0.0612 \mathrm{mmol}$), and $\mathrm{NaBAr}^{\mathrm{F}} \cdot{ }_{4} \cdot 2.6 \mathrm{H}_{2} \mathrm{O}(50.9 \mathrm{mg}, 0.0546 \mathrm{mmol})$.
${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 7.78\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{s}, 8 \mathrm{H}, o-\mathrm{H}\right.$ of $\mathrm{BAr}_{4}{ }_{4}$ and $o-\mathrm{H}$ of Ph in dppe), $7.68\left(\mathrm{~s}, 4 \mathrm{H}, p-\mathrm{H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.46(\mathrm{~m}, 4 \mathrm{H}, p-\mathrm{H}$ of Ph in dppe $\times 2$), $7.39(\mathrm{~m}, 8 \mathrm{H}, m-\mathrm{H}$ of Ph in dppe $\times 2), 7.26(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}$ of Ph in dppe $), 7.05\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=5.9 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=\right.$
$1.0 \mathrm{~Hz}, \mathrm{H} 2), 6.80\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=5.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=3.5 \mathrm{~Hz}, \mathrm{H} 3\right), 6.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4), 5.70(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 4.07\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=\right.$ 17.3 Hz , mida), $3.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $3.31\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=17.3 \mathrm{~Hz}\right.$, mida $), 3.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $2.54(\mathrm{~s}$, 3 H, mida). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone $-d_{6}$): $\delta 79.5$ (s, dppe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta 340.4\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=15.7 \mathrm{~Hz}\right.$, $\mathrm{Ru}=C=\mathrm{C}$), 167.8 (s, CO of mida), $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}\right.$, ipso-C of $\mathrm{BAr}^{\mathrm{F}} 4$), $137.8(\mathrm{~m}, i p s o-\mathrm{C}$ of Ph in dppe), 135.5 (br, o-C of $\mathrm{BAr}^{\mathrm{F}}$), 135.0 (m, ipso-C of Ph in dppe), 134.0 (virtual $\mathrm{t}, o-\mathrm{C}$ of Ph in dppe), 132.1 ($\mathrm{m}, o-$ and $p-\mathrm{C}$ of Ph in dppe), 131.6 ($\mathrm{s}, p-\mathrm{C}$ of Ph in dppe), 130.0 ($\mathrm{brq},{ }^{2} J_{\mathrm{CF}}=31.8 \mathrm{~Hz}, m-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$), 129.7 ($\mathrm{m}, m-\mathrm{C}$ of Ph in dppe $\times 2$), 128.7 ($\mathrm{s}, \mathrm{C} 3$), $128.1(\mathrm{~s}, \mathrm{C} 1), 126.5(\mathrm{~s}, \mathrm{C} 4), 126.4(\mathrm{~s}, \mathrm{C} 2), 125.3\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 118.4(\mathrm{~m}, p-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}}$), $92.7(\mathrm{~s}, \mathrm{Cp}), 63.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of mida), $47.4\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of mida), $28.6\left(\mathrm{~m}, \mathrm{PCH}_{2}\right)$. The signal assignable to the $\mathrm{Ru}=\mathrm{C}=C$ could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for $\mathrm{C}_{74} \mathrm{H}_{51} \mathrm{O}_{4} \mathrm{~B}_{2} \mathrm{~F}_{24} \mathrm{P}_{2} \mathrm{NSRu}: \mathrm{C}, 52.56 ; \mathrm{H}, 3.04 ; \mathrm{N}, 0.83$. Found: C, $52.43 ; \mathrm{H}, 2.79 ; \mathrm{N}, 0.79$.

$\left[\mathrm{Ru}(=\mathrm{C}=\mathbf{C}(\boldsymbol{\beta}\right.$-thiophene) $\{\mathrm{B}($ mida $)\})($ dppe $) \mathrm{Cp}]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right]$ (2s)

Complex $2 \mathbf{s}$ was obtained as red crystals ($48.3 \mathrm{mg}, 0.0286 \mathrm{mmol}, 58 \%$ yield) by using [$\mathrm{RuCl}($ dppe $) \mathrm{Cp}](29.6 \mathrm{mg}, 0.0493 \mathrm{mmol}),(\beta$-thiophene $) \mathrm{C} \equiv \mathrm{CB}($ mida $)(14.4 \mathrm{mg}$, $0.0592 \mathrm{mmol})$, and $\mathrm{NaBAr}_{4} \cdot 2.6 \mathrm{H}_{2} \mathrm{O}(50.9 \mathrm{mg}, 0.0546 \mathrm{mmol})$.
${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 7.79\left(\mathrm{~m}, 12 \mathrm{H}, o-\mathrm{H}\right.$ of $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$ and $o-\mathrm{H}$ of Ph in dppe), $7.68\left(\mathrm{~s}, 4 \mathrm{H}, p-\mathrm{H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.44(\mathrm{~m}$, $8 \mathrm{H}, p-\times 2$ and $m-\mathrm{H}$ of Ph in dppe), $7.35(\mathrm{~m}, 4 \mathrm{H}, m-\mathrm{H}$ of Ph in dppe), $7.25(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}$ of Ph in dppe), 7.17 (dd, 1 H , $\left.{ }^{3} J_{\mathrm{HH}}=5.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{HH}}=3.0 \mathrm{~Hz}, \mathrm{H} 2\right), 6.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4), 6.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 3), 5.67(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 4.02\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=16.8 \mathrm{~Hz}\right.$, mida), $3.41\left(\mathrm{~m}, 2 \mathrm{H}\right.$, dppe), $3.24\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{HH}}=17.3 \mathrm{~Hz}\right.$, mida), $3.06\left(\mathrm{~m}, 2 \mathrm{H}\right.$, dppe), $2.62\left(\mathrm{~s}, 3 \mathrm{H}\right.$, mida). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (acetone- d_{6}): $\delta 79.6$ (s, dppe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (acetone- d_{6}): $\delta 339.3\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=15.7 \mathrm{~Hz}, \mathrm{Ru}=C=\mathrm{C}\right.$), 167.8 (s, CO of mida), $162.6\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}\right.$, ipso-C of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 137.9\left(\mathrm{~m}\right.$, ipso-C of Ph in dppe), $135.5\left(\mathrm{br}, o-\mathrm{C}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 135.0$ (m, ipso-C of Ph in dppe), 134.0 (virtual $\mathrm{t}, o-\mathrm{C}$ of Ph in dppe), 132.0 (m, o and p - C of Ph in dppe), 131.5 (s, p - C of Ph in dppe), 130.0 (brq, ${ }^{2} J_{\mathrm{CF}}=34.8 \mathrm{~Hz}, m-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}} 4$), 129.7 ($\mathrm{m}, m-\mathrm{C}$ of Ph in dppe $\times 2$), 129.5 ($\mathrm{s}, \mathrm{C} 3$), 127.1 ($\mathrm{s}, \mathrm{C} 2$), $126.5(\mathrm{~s}, \mathrm{C} 1), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$) , $123.1(\mathrm{~s}, \mathrm{C} 4), 118.5\left(\mathrm{~m}, p-\mathrm{C}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 92.2(\mathrm{~s}, \mathrm{Cp}), 62.8(\mathrm{~s}$, CH_{2} of mida), $47.2\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of mida), $28.6\left(\mathrm{~m}, \mathrm{PCH}_{2}\right)$. The signal assignable to the $\mathrm{Ru}=\mathrm{C}=C$ could not be found, probably because it is overlapped with other signals. Elemental analysis calcd for $\mathrm{C}_{74} \mathrm{H}_{51} \mathrm{O}_{4} \mathrm{~B}_{2} \mathrm{~F}_{24} \mathrm{P}_{2} \mathrm{NSRu} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 51.62; H, 2.97; N, 0.81. Found: C, 51.52; H, 2.96; N, 0.76 .

$[\mathrm{Ru}(=\mathrm{C}=\mathbf{C H}(p-\mathrm{Ans}))(\mathrm{dppe}) \mathrm{Cp}]\left[\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right]$ (3b)

To characterize byproducts in the vinylidene rearrangement, we performed synthesis of the protodeboronated complex.

A mixture of $[\mathrm{RuCl}(\mathrm{dppe}) \mathrm{Cp}](60.3 \mathrm{mg}, 0.1005 \mathrm{mmol}),(p-\mathrm{Ans}) \mathrm{C} \equiv \mathrm{CB}(\mathrm{dan})$ ($30.2 \mathrm{mg}, 0.1013 \mathrm{mmol}$), $\mathrm{H}_{2} \mathrm{O}\left(5.2 \mathrm{mg}, 0.2885 \mathrm{mmol}\right.$), and $\mathrm{NaBAr}^{\mathrm{F}} 4^{2} \cdot 2.6 \mathrm{H}_{2} \mathrm{O}$ ($101.9 \mathrm{mg}, 0.1092 \mathrm{mmol}$) in 1,2-dichloroethane $(2 \mathrm{~mL})$ was heated at $70^{\circ} \mathrm{C}$ for 1 h . The resulting brown suspension was filtered through a short pad of Celite and rinsed with 1,2-dichloroethane (ca. 1 mL). The filtrate was dried in vacuo, and the residue was purified by column chromatography on silica gel (dichloromethane/hexane $=1: 1$). Complex 3b was obtained as a red oil (118.4 mg, 0.0759 mmol).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.76\left(\mathrm{~s}, 8 \mathrm{H}, o-\mathrm{H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.53\left(\mathrm{~s}, 4 \mathrm{H}, p-\mathrm{H}\right.$ of BAr $\left.{ }_{4}\right)$, $7.42(\mathrm{~m}, 16 \mathrm{H}, p-\times 2$ and $m-\times 2$ and $o-\mathrm{H}$ of Ph in dppe), $7.14\left(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}\right.$ of Ph in dppe), $6.42\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.9 \mathrm{~Hz}, \mathrm{H} 3\right), 6.15\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, \mathrm{H} 2\right), 5.50$ $(\mathrm{s}, 5 \mathrm{H}, \mathrm{Cp}), 4.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ru}=\mathrm{C}=\mathrm{CH}), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\left.p-\mathrm{Ans}\right), 2.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 77.5$ (s, dppe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 356.7\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=16.5 \mathrm{~Hz}, \mathrm{Ru}=C=\mathrm{C}\right), 161.9$ $\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}\right.$, ipso-C of $\mathrm{BAr}^{\mathrm{F}}$), $158.6(\mathrm{~s}, \mathrm{C} 4), 135.0\left(\mathrm{br}, o-\mathrm{C}\right.$ of $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$ and ipso-C of Ph in dppe), $133.8(\mathrm{~m}$, $i p s o-C$ of Ph in dppe), 132.1 (virtual $\mathrm{t}, o-\mathrm{C}$ of Ph in dppe), 132.0 ($\mathrm{s}, p-\mathrm{C}$ of Ph in dppe), 131.9 ($\mathrm{s}, p-\mathrm{C}$ of Ph in dppe), 131.4 (virtual $\mathrm{t}, o-\mathrm{C}$ of Ph in dppe), 129.3 (m, m - C of Ph in dppe $\times 2$), 129.0 (brq, ${ }^{2} J_{\mathrm{CF}}=31.4 \mathrm{~Hz}, m-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$), $127.0(\mathrm{~s}, \mathrm{C} 2), 124.7\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=273.5 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $117.6\left(\mathrm{~m}, p-\mathrm{C}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 117.5(\mathrm{~s}, \mathrm{Ru}=\mathrm{C}=C), 117.5(\mathrm{~s}, \mathrm{C} 1)$, $114.4(\mathrm{~s}, \mathrm{C} 3)$, $91.9(\mathrm{~s}, \mathrm{Cp}), 55.3\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{Ru}=\mathrm{C}=\mathrm{C}(p-\mathrm{Ans})\right), 27.1\left(\mathrm{~m}, \mathrm{PCH}_{2}\right) . \mathrm{HRMS} m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{RuP}_{2} \mathrm{OC}_{40} \mathrm{H}_{37}{ }^{+}$: 697.13632 ; found 697.13633.
$\left[\mathrm{Ru}\left(=\mathrm{C}=\mathbf{C H}\left(p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathbf{H}_{4}\right)\right)(\mathrm{dppe}) \mathrm{Cp}\right]\left[\mathrm{BAr}^{\mathrm{F}} 4\right](3 \mathrm{c})$

To characterize byproducts in the vinylidene rearrangement, we performed synthesis of the protodeboronated complex .

A mixture of $[\mathrm{RuCl}(\mathrm{dppe}) \mathrm{Cp}] \quad(59.7 \mathrm{mg}, \quad 0.0995 \mathrm{mmol}), \quad(p-$
$\left.\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C} \equiv \mathrm{CB}($ dan $)(34.0 \mathrm{mg}, 0.1012 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(6.1 \mathrm{mg}, 0.3385 \mathrm{mmol})$, and $\mathrm{NaBAr}^{\mathrm{F}} 4 \cdot 2.6 \mathrm{H}_{2} \mathrm{O}(101.7 \mathrm{mg}, 0.1090$ $\mathrm{mmol})$ in 1,2-dichloroethane (2 mL) was heated at $70^{\circ} \mathrm{C}$ for 1 h . The resulting brown suspension was filtered through a short pad of Celite and rinsed with 1,2-dichloroethane (ca. 1 mL). The filtrate was dried in vacuo, and the residue was purified by column chromatography on silica gel (dichloromethane/hexane $=1: 1$). Complex was obtained as a red oil ($142.5 \mathrm{mg}, 0.0892 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.79\left(\mathrm{~s}, 8 \mathrm{H}, o-\mathrm{H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.55\left(\mathrm{~s}, 4 \mathrm{H}, p-\mathrm{H}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 7.46(\mathrm{~m}, 12 \mathrm{H}, p-\times 2$ and $m-$ and $o-\mathrm{H}$ of Ph in dppe), 7.38 (m, m-H of Ph in dppe), $7.17\left(\mathrm{~m}, 4 \mathrm{H}, o-\mathrm{H}\right.$ of Ph in dppe), $7.08\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, \mathrm{H} 3\right), 6.33(\mathrm{~d}$, $\left.2 \mathrm{H},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, \mathrm{H} 2\right), 5.53(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 4.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ru}=\mathrm{C}=\mathrm{CH}), 3.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe), $2.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dppe). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 76.6\left(\mathrm{~s}\right.$, dppe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 350.9\left(\mathrm{t},{ }^{2} J_{\mathrm{CP}}=16.3 \mathrm{~Hz}, \mathrm{Ru}=C=\mathrm{C}\right), 161.9$ $\left(\mathrm{q},{ }^{1} J_{\mathrm{CB}}=50.0 \mathrm{~Hz}\right.$, ipso-C of $\mathrm{BAr}^{\mathrm{F}}{ }_{4}$), $135.0\left(\mathrm{br}, o-\mathrm{C}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}}{ }_{4}\right), 134.3(\mathrm{~m}$, ipso-C of Ph in dppe), 133.5 (m, ipso-C of Ph in dppe), 132.2 ($\mathrm{m}, p-\mathrm{C}$ of Ph in dppe $\times 2$), 132.0 (virtual $\mathrm{t}, o-\mathrm{C}$ of Ph in dppe), 131.4 (virtual $\mathrm{t}, o-\mathrm{C}$ of Ph in dppe), $130.0(\mathrm{~s}, \mathrm{C} 1), 129.4\left(\mathrm{~m}, m-\mathrm{C}\right.$ of Ph in dppe $\times 2$), 129.1 (brq, ${ }^{2} J_{\mathrm{CF}}=31.5 \mathrm{~Hz}, m-\mathrm{C}$ of $\mathrm{BAr}^{\mathrm{F}} 4$), $128.0(\mathrm{~m}, \mathrm{C} 4), 125.5(\mathrm{~m}$, C3) $125.4(\mathrm{~s}, \mathrm{C} 2), 124.7\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=273.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of $\left.\mathrm{BAr}^{\mathrm{F}} 4\right), 124.0\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$ of $\mathrm{Ru}=\mathrm{C}=\mathrm{C}\left(p-\mathrm{CF}_{3} C_{6} \mathrm{H}_{4}\right)$), $117.6\left(\mathrm{~m}, p-\mathrm{C}\right.$ of $\mathrm{BAr}^{\mathrm{F}}$), $117.1(\mathrm{~s}, \mathrm{Ru}=\mathrm{C}=C)$, $92.2(\mathrm{~s}, \mathrm{Cp}), 27.0\left(\mathrm{~m}, \mathrm{PCH}_{2}\right)$. HRMS $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{RuP}_{2} \mathrm{~F}_{3} \mathrm{C}_{40} \mathrm{H}_{34}{ }^{+}$: 735.11313; found 735.11372.

2. ${ }^{13}$ C-labeling Experiments

According to the general procedure, a reaction was performed using complex 1a ($31.4 \mathrm{mg}, 0.0523 \mathrm{mmol}$), an isotopic labeling alkyne, $\mathrm{PhC} \equiv{ }^{13} \mathrm{CB}$ (mida) $(14.6 \mathrm{mg}, 0.0568 \mathrm{mmol})$, and $\mathrm{NaBAr}_{4} \cdot 2.6 \mathrm{H}_{2} \mathrm{O}(51.2 \mathrm{mg}, 0.0549 \mathrm{mmol})$. The ratio of $\mathbf{2 - 1 3} \mathbf{C} \boldsymbol{\alpha}$ and $\mathbf{2 - 1 3} \mathbf{C}_{\boldsymbol{\beta}}$ was estimated from the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR as follows:

The relative integration ratio of the C_{β} signals in the ${ }^{13} \mathrm{C}$-labeling and non-labeling experiments based on the Cp signals is 1.58:0.07 (${ }^{13} \mathrm{C}_{\beta}$ in labeling experiment: ${ }^{13} \mathrm{C}_{\beta}$ in non-labeling experiment). Taking into account that the alkyne reagent is $25 \%{ }^{13} \mathrm{C}$-enriched, and the natural abundance of ${ }^{13} \mathrm{C}$ is 1.1%, the ratio of C_{β} signals between the two experiments can be calculated as:
${ }^{13} \mathrm{C}_{\beta}$ in ${ }^{13} \mathrm{C}$-labeling experiment: ${ }^{13} \mathrm{C}_{\beta}$ in non-labeling experiment $=0.25 \mathrm{t}+0.011(1-\mathrm{t}): 0.011$,
where $\mathrm{t}=$ the migration ratio of the $\mathrm{B}($ mida $)$ group.

Thus, it is calculated to be 1.10 by solving the following equation:

$$
\begin{gathered}
\{0.25 t+0.011(1-t)\} \times 0.07=0.011 \times 1.58 \\
t=0.99
\end{gathered}
$$

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of ${ }^{13} \mathrm{C}$-labeled (upper) and non-labeled (lower) vinylidene complexes 2.

A reaction was performed according to the general procedure using complex $\mathbf{1 a}$ ($30.5 \mathrm{mg}, 0.0508 \mathrm{mmol}$), an isotopic labeling alkyne, $\mathrm{Ph}^{13} \mathrm{C} \equiv \mathrm{CB}($ dan $)\left(13.7 \mathrm{mg}, 0.0511 \mathrm{mmol}\right.$), and anhydrous $\mathrm{NaBAr}^{\mathrm{F}} \cdot 4 \cdot 6 \mathrm{THF}(66.0 \mathrm{mg}, 0.0500$ mmol). The ratio of $\mathbf{3}-{ }^{13} \mathbf{C} \boldsymbol{\alpha}$ and $\mathbf{3}-{ }^{13} \mathbf{C}_{\boldsymbol{\beta}}$ was estimated from the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR as follows:

The relative integration ratio of the C_{β} signals in the ${ }^{13} \mathrm{C}$-labeling and non-labeling experiments based on the Cp signals is 2.81:0.016 $\left({ }^{13} \mathrm{C}_{\beta}\right.$ in labeling experiment: ${ }^{13} \mathrm{C}_{\beta}$ in non-labeling experiment). Taking into account that the alkyne reagent is $19.5 \%{ }^{13} \mathrm{C}$-enriched, and the natural abundance of ${ }^{13} \mathrm{C}$ is 1.1%, the ratio of C_{β} signals between the two experiments can be calculated as:
${ }^{13} \mathrm{C}_{\beta}$ in ${ }^{13} \mathrm{C}$-labeling experiment: ${ }^{13} \mathrm{C}_{\beta}$ in non-labeling experiment $=0.195 \mathrm{t}+0.011(1-\mathrm{t}): 0.011$, where $t=$ the migration ratio of the $\mathrm{B}(\mathrm{dan})$ group .

Thus, it is calculated to be 1.10 by solving the following equation:

$$
\begin{gathered}
\{0.195 \mathrm{t}+0.011(1-\mathrm{t})\} \times 0.16=0.011 \times 2.81 \\
\mathrm{t}=0.99
\end{gathered}
$$

Figure S3. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of ${ }^{13} \mathrm{C}$-labeled (upper) and non-labeled (lower) vinylidene complexes $\mathbf{3}$.

3. DFT calculations

All calculations were carried out by using the Gaussian 16 program packages. ${ }^{\text {S1 }}$ Geometry optimizations were performed at B3LYP with GD3BJ empirical dispersion ${ }^{\mathrm{S} 2}$ along with a combined basis set: $6-311 \mathrm{G}^{*}$ for $\mathrm{C}, \mathrm{H}, \mathrm{P}, \mathrm{N}$, and B and SDD for Ru. Vibrational frequencies were calculated at the same level to characterize each stationary points to confirm no imaginary frequencies except for the transition state with one imaginary frequency. NBO analyses were performed $\mathrm{HF} / 6-311 \mathrm{G}(\mathrm{d})+$ SDD.

Table S1. Gibbs free energy (G) at 298.150 K and 1.0000 atm .

	$\Delta G(\mathrm{kcal} / \mathrm{mol})$	$\Delta H(\mathrm{kcal} / \mathrm{mol})$	$\Delta S(\mathrm{cal} / \mathrm{mol})$
complex A $(\mathrm{R}=\mathrm{B}($ dan $))$	0.0	0.0	0.0
TS $(\mathrm{R}=\mathrm{B}(\mathrm{dan}))$	9.2	11.3	7.1
Complex B $(\mathrm{R}=\mathrm{B}($ dan $))$	-10.1	-8.0	7.0
complex A $(\mathrm{R}=\mathrm{B}($ mida $))$	0.0	0.0	0.0
TS $(\mathrm{R}=\mathrm{B}($ mida $))$	21.5	21.7	0.7
Complex B $(\mathrm{R}=\mathrm{B}($ mida $))$	-10.1	-10.1	3.5

4. References

S1. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F.

Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
S2. (a) S. Grimme, J. Comp. Chem. 2006, 27, 1787; (b) S. Grimme, S. Ehrlich and L. Goerigk, J. Comp. Chem. 2011, 32, 1456.

5. NMR Spectra

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a}$ in acetone- $d 6$

Figure S5. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 a}$ in acetone- $d 6$

\qquad
$\begin{array}{llllllllllllllllllllllllllllllllllll}99 & 97 & 95 & 93 & 91 & 89 & 87 & 85 & 83 & 81 & 79 & 77 & 75 & 73 & 71 & 69 & 67 & 65 & 63 & 61\end{array}$

Figure S6. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2a in acetone- $d 6$

Figure $\mathbf{S} 7 .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 b}$ in acetone- $d 6$

Figure S8. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 b}$ in acetone- $d 6$
$\stackrel{\infty}{\dot{j}}$

Figure S9. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 b}$ in acetone- $d 6$

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 c}$ in acetone- $d 6$

Figure S11. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 c}$ in acetone- $d 6$
$\stackrel{\bar{n}}{\stackrel{y}{4}}$

Figure S12. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 c}$ in acetone- $d 6$

2d

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 d}$ in acetone- $d 6$

Figure S14. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 d}$ in acetone- $d 6$

Figure S15. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 d}$ in acetone- $d 6$

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 e}$ in acetone- $d 6$

Figure S17. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 e}$ in acetone- $d 6$

Figure S18. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 e}$ in acetone- $d 6$

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 f}$ in CDCl_{3}

Figure S20. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 f}$ in CDCl_{3}

Figure S21. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 f}$ in CDCl_{3}

N.

$2 g$

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 g}$ in CDCl_{3}

Figure S23. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 g}$ in CDCl_{3}

$2 g$

Figure S24. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 g}$ in CDCl_{3}

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 h}$ in acetone- $d 6$

Figure S26. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 h}$ in acetone- $d 6$

Figure S27. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 h}$ in acetone- $d 6$

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 i}$ in acetone- $d 6$

Figure S29. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 i}$ in acetone- $d 6$
(mida)

Figure S30. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 i}$ in acetone- $d 6$

Figure $\mathbf{S 3 1} .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 j}$ in CDCl_{3}

Figure S32. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 j}$ in CDCl_{3}

Figure S33. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2} \mathbf{j}$ in CDCl_{3}

Figure S34. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 k}$ in CDCl_{3}

Figure S35. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 k}$ in CDCl_{3}

Figure S36. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 k}$ in CDCl_{3}

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 1}$ in acetone- $d 6$

Figure S38. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 1}$ in acetone- $d 6$

Figure S39. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 1}$ in acetone- $d 6$

く1」

Figure $\mathbf{S 4 0} .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 m}$ in acetone- $d 6$

Figure $\mathbf{S 4 1} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 m}$ in acetone- $d 6$

Figure $\mathbf{S 4 2} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 m}$ in acetone- $d 6$

Figure S43. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 n}$ in acetone- $d 6$

Figure S44. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 n}$ in acetone- $d 6$

Figure $\mathbf{S 4 5} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 n}$ in acetone- $d 6$

Figure S46. ${ }^{1} \mathrm{H}$ NMR spectrum of 2 o in acetone- $d 6$

Figure S47. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 o in acetone- $d 6$
N్ल్ల NiN

$\begin{array}{llllllllllllllllllllllllllllllllllll}89 & 88 & 87 & 86 & 85 & 84 & 83 & 82 & 81 & 80 & 79 & 78 & 77 & 76 & 75 & 74 & 73 & 72 & 71 & 70\end{array}$

Figure S48. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 o in acetone- $d 6$

Figure S49. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 p}$ in acetone- $d 6$

Figure S50. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 p}$ in acetone- $d 6$

Figure S51. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 p}$ in acetone- $d 6$

Figure S52. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 q}$ in acetone- $d 6$

Figure S53. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 q}$ in acetone- $d 6$

Figure S54. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 q}$ in acetone- $d 6$

Figure S55. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 r}$ in acetone- $d 6$

$\begin{array}{lllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

Figure S56. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 r in acetone- $d 6$

$\begin{array}{llllllllllllllllllllllllllllll}89 & 88 & 87 & 86 & 85 & 84 & 83 & 82 & 81 & 80 & 79 & 78 & 77 & 76 & 75 & 74 & 73 & 72 & 71 & 70 & 69 & 68 & 67 & 66 & 65 & 64 & 63 & 62 & 61 & 60\end{array}$

Figure S57. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2 r}$ in acetone- $d 6$

Figure S58. ${ }^{1} \mathrm{H}$ NMR spectrum of 2 s in acetone- $d 6$

Figure S59. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2s in acetone- $d 6$

Figure S60. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 s in acetone- $d 6$

Figure S61. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}$ in CDCl_{3}

Figure S62. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 a}$ in CDCl_{3}

Figure S63. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 3a in CDCl_{3}

Figure S64. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}$ in CDCl_{3}

Figure S65. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 b}$ in CDCl_{3}

Figure S66. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 b}$ in CDCl_{3}

Figure S67. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}$ in CDCl_{3}

Figure S68. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 c}$ in CDCl_{3}

Figure S69. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 c}$ in CDCl_{3}

Figure S70. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}$ in acetone- $d 6$

Figure S71. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4 a}$ in acetone- $d 6$

Figure S72. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 b}$ in acetone- $d 6$

Figure S73. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4 b}$ in acetone- $d 6$

