SUPPORTING INFORMATION

Pd(II)/diphosphine/curcumin complexes as potential anticancer agents

Jocely L. Dutra,^{*a,b} João Honorato,^c Angélica Graminha,^a Carlos André F. Moraes,^a Kleber T. de Oliveira,^a Marcia R. Cominetti,^d Eduardo E. Castellano^e and Alzir A. Batista^{*a}

- a. Departamento de Química, Universidade Federal de São Carlos UFSCar, CP 676, CEP 13561-901, São Carlos, SP, Brazil. E-mail: jocely.dut@hotmail.com; daab@ufscar.br
- b. Departamento de Química, Universidade Federal do Amazonas UFAM, CEP 69077-000, Itacoatiara, AM, Brazil
- c. Instituto de Química, Universidade de São Paulo USP, CEP 05508-900, São Paulo, SP, Brazil.
- d. Departamento de Gerontologia, Universidade Federal de São Carlos UFSCar, CP 676, 13561-901, São Carlos, SP, Brazil.
- e. Instituto de Física de São Carlos, Universidade de São Paulo USP, CP 369, CEP 13560-970, São Carlos, SP, Brazil.

Characterization of complexes

Figures

Figure S1: ESI(+)-MS/MS analysis of the complexes A1-A5.

Figures S2-S7: FTIR spectra for the curcumin and the complexes A1-A5.

Figure S8. UV-vis spectra of the complexes A1-A5 in DMSO.

Figure S9. UV-vis spectrum of complex A1 deconvoluted in Matlab.

Figures S10-S15: ${}^{31}P{}^{1}H$, ${}^{1}H$, ${}^{13}C{}^{1}H$, COSY, HSQC, and HMBC NMR spectra of complexes (A1-A5), in acetone- d_6 at 298 K.

Figure S16. ³¹P{¹H} NMR spectra of the complexes (A) A1; (B) A2; (C) A3; (D) A4 and (E) A5, in DMSO (with D_2O capillary), in 0, 24, and 48 h.

Figure S17. UV-vis spectra in RPMI Culture medium (DMSO 0.5%) of the complexes (A) A1; (B) A2; (C) A3; (D) A4; (E) A5 (40 μ M) and (F) curcumin (20 μ M) at different times.

Figure S18. Cytotoxicity of complexes. Concentration-response curve of tumor cells (MDA-MB-231, MCF7, SKBR-3, A549, DU-145, A2780 and A2780cis) and non-tumor cells (MCF-10A and MRC-5) after complexes treatment for 48 h.

Figure S19. Effect of complex A1 on A2780cis cell morphology after incubation for 0, 24, and 48 h.

Figure S20. Effect of complex A1 on MRC-5 cell morphology after incubation for 0, 24, and 48 h.

Figure S21. Effect of complex A1 on A2780cis cell migration by using an inverted microscope (4×) and graph of the wound-healing closure percentages for treatment with complex A1. These experiments were representative of three independent assays. Significance at (****) p < 0.0001 using ANOVA. Solvent control experiments were performed with DMSO (0.5%).

Figure S22. ¹H NMR spectra of the A1 complex with guanosine (1 mol: 2 mol) at 0, 24 and 48 hours in deuterated DMSO.

Figure S23. Emission spectra of Hoechst (2.5 μ M)/CT-DNA (75 μ M) (I_{ex} = 343 nm) with different concentrations of complexes A2-A5 (a = 0; b= 2.5 μ M; c= 5.0 μ M; d= 7.5 μ M; e= 10.0 μ M; f= 12.5 μ M; g= 15.0 μ M; h= 17.5 μ M; i= 20.0 μ M).

Figure S24. Fluorescence spectra of HSA solution (2.5 μ M) in Tris–HCl buffer (0.1 M NaCl, pH 7,4) in the absence and presence of different concentrations of complexes A1-A5 (a = 0; b= 2.5 μ M; c = 5.0 μ M; d = 7.5 μ M; e = 10.0 μ M; f = 12.5 μ M; g = 15.0 μ M and h = 17.5 μ M). Inset: Stern–Volmer plots for the quenching of HSA fluorescence by complexes, 298, 303 and 310 K.

Tables

Table S1. Selected Interatomic Distances and Bond Angles for complexes.

Table S2. Crystal data and structure refinement parameters obtained for the complexes A1, A2, A4 and A5.

Table S3. Assign the main IR bands of free curcumin and complexes.

Table S4. In vitro cell viability results (IC_{50} values) toward some cell lines studied.

Table S5. In vitro cell viability results (IC_{50} values) toward some cell lines studied.

Complexes structure

Figures

Figure S1. ESI(+)-MS/MS analysis of the complexes (A) A1, (B) A2, (C) A3, (D) A4 e (E) A5. Comparison between theoretical and experimental mass isotope distribution corresponding to the $[M]^+$.

Figure S2. FTIR spectra for the curcumin.

Figure S3. FTIR spectra for complex A1.

Figure S4. FTIR spectra for complex A2.

Figure S5. FTIR spectra for complex A3.

Figure S6. FTIR spectra for complex A4.

Figure S7. FTIR spectra for complex A5.

Figure S8. UV-vis spectra of the complexes A1-A5 in DMSO.

Figure S9. UV-vis spectrum of complex A1 deconvoluted in Matlab.

Figure S10. ³¹P{¹H} NMR spectra of complexes A1–A5, in CH₂Cl₂ (with D₂O capillary).

^{8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0} Chemical shift (ppm)

Figure S11. NMR ¹H spectra of the complexes (A) A1; (B) A2; (C) A3; (D) A4 e (E) A5, in acetoned₆.

Figure S12. NMR ¹³C spectra of complexes (A) A1; (B) A2; (C) A3; (D) A4 and (E) A5, in acetoned₆.

Figure S13. COSY ¹H-¹H NMR spectra of complexes (A) **A1**; (B) **A2**; (C) **A3**; (D) **A4** and (E) **A5**, in acetone- d_6 .

Figure S14. ¹H-¹³C HSQC NMR of complexes (A) A1; (B) A2; (C) A3; (D) A4 and (E) A5, in acetone-d₆.

Figure S15. ¹H-¹³C HMBC NMR of complexes (A) A1; (B) A2; (C) A3; (D) A4 and (E) A5, in acetone- d_6 .

Figure S16. ³¹P{¹H} NMR spectra of the complexes (A) **A1**; (B) **A2**; (C) **A3**; (D) **A4** and (E) **A5**, in DMSO (with D_2O capillary), in 0, 24, and 48 h.

Figure S17. UV-vis spectra in /RPMI Culture medium (DMSO 0.5%) of the complexes (A) A1; (B) A2; (C) A3; (D) A4; (E) A5 (40 μ M) and (F) free curcumin (20 μ M) at different times.

Figure S18. Cytotoxicity of complexes. Concentration-response curve of tumor cells (MDA-MB-231, MCF7, SKBR-3, A549, DU-145, A2780 and A2780cis) and non-tumor cells (MCF-10A and MRC-5) after complexes treatment for 48 h.

Figure S19. Effect of complex A1 on A2780cis cell morphology after incubation for 0, 24, and 48 h.

Figure S20. Effect of complex A1 on MRC-5 cell morphology after incubation for 0, 24, and 48 h.

Figure S21. Effect of complex A1 on A2780cis cell migration by using an inverted microscope (4×) and graph of the wound-healing closure percentages for treatment with complex A1. These experiments were representative of three independent assays. Significance at (****) p < 0.0001 using ANOVA. Solvent control experiments were performed with DMSO (0.5%).

Figure S22. (A) Effects of complex A1 on apoptosis of A2780cis cells after 24 h of treatment at $^{1}/_{2} \times IC_{50}$ (0.7 µM), IC₅₀ (1.4 µM) and 2 × IC₅₀ (2.8 µM) concentrations of complex A1. Apoptosis assay with PE-Annexin V (detected in the FL2-A channel) and 7AAD (detected in the FL3-A channel).

Figure S23. ¹H NMR spectra of the A1 complex with guanosine (1 mol: 2 mol) at 0, 24 and 48 hours in deuterated DMSO.

Figure S24. Emission spectra of Hoechst (2.5 μ M)/CT-DNA (75 μ M) (I_{ex} = 343 nm) with different concentrations of complexes A2-A5 (a= 0; b= 2.5 μ M; c= 5.0 μ M; d= 7.5 μ M; e= 10.0 μ M; f= 12.5 μ M; g= 15.0 μ M; h= 17.5 μ M; i= 20.0 μ M).

Figure S25. Fluorescence spectra of HSA solution (2.5 μ M) in Tris–HCl buffer (0.1 M NaCl, pH 7,4) in the absence and presence of different concentrations of complexes A1-A5 (a = 0; b= 2.5 μ M; c = 5.0 μ M; d = 7.5 μ M; e = 10.0 μ M; f = 12.5 μ M; g = 15.0 μ M and h = 17.5 μ M). Inset: Stern–Volmer plots for the quenching of HSA fluorescence by complexes, 298, 303 and 310 K.

Tables

Bond	C*	Complexes					
lengths (Å)	Cur	A1	A2	A4	A5		
Pd(1)-P(1)	—	2.2866(6)	2.2162(5)	2.2409(17)	2.2596(10)		
Pd(1)-P(2)	_	2.2569(6)	2.2257(6)	2.2504(15)	2.2816(10)		
Pd(1)-O(1)	_	2.0444(16)	2.0509(14)	2.063(4)	2.045(3)		
Pd(1)-O(3)	_	2.0360(16)	2.0486(14)	2.051(4)	2.046(3)		
C(1)-O(1)	1.298	1.286(3)	1.290(3)	1.285(7)	1.280(5)		
C(3)–O(3)	1.303	1.285(3)	1.282(2)	1.271(7)	1.294(5)		
hand angles (deg)		Complexes					
bolid angles (deg)		A1	A2	A4	A5		
O(1)-Pd(1)-P(1)		170.01(5)	176.25(4)	175.27(11)	177.49(8)		
O(3)-Pd(1)-P(2)		178.18(5)	173.61(4)	176.92(12)	175.40(8)		
P(2)-Pd(1)-P(1)		95.69(2)	86.01(2)	92.93(6)	95.95(4)		
O(1)-Pd(1)-P(2)		87.14(5)	91.07(4)	90.87(11)	83.64(8)		
O(3)-Pd(1)-P(1)		84.72(5)	89.30(4)	84.01(12)	88.63(8)		
O(3)-Pd(1)-O(1)		92.74(6)	93.79(6)	92.21(15)	91.79(11)		

Table S1. Selected Interatomic Distances and Bond Angles for complexes.

*CCDC

code

636155

	A1	A2	A4	A5
Empirical formula	$C_{57}H_{49}F_6O_6P_3Pd$	$C_{47}H_{43}F_6O_6P_3Pd$	$C_{49}H_{47}F_6O_6P_3Pd$	$C_{58}H_{50}Cl_9F_6FeO_6P_3Pd$
Formula weight	1143.27	1017.12	1045.17	1531.19
Temperature	100 K	100 K	293(2)	100(1)
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	$P2_1/c$	$P2_1/n$	P-1	$P2_1/n$
Unit cell dimensions	a = 14.0442(3) Å b = 9.5822(2) Å c = 37.0985(7) Å $\alpha = 90^{\circ}$ B = 94.609(2)°	a = 14.0940(2) Å b = 22.4280(3) Å c = 16.0300(3) Å $\alpha = 90^{\circ}$ B = 112.924(2) $^{\circ}$	a = 9.0366(6) Å b = 16.4302(12) Å c = 19.0475(13) Å $\alpha = 112.064(7)^{\circ}$ $\beta = 96.129(6)^{\circ}$	a = $17.9737(3)$ Å b = $15.9310(3)$ Å c = $23.2031(5)$ Å a = 90° B = $95.1174(18)^{\circ}$
	p = 94.009(2) $y = 90^{\circ}$	p = 112.924(2) $y = 90^{\circ}$	p = 90.129(0) $y = 101.480(6)^{\circ}$	p = 93.1174(18) $y = 90^{\circ}$
Volume/Å ³	4976.36(18)	4666.90(14)	2516.7(3)	6617.5(2)
Z	4	4	2	4
$\rho_{calc}g/cm^3$	1.526	1.448	1.379	1.537
µ/mm ⁻¹	0.545	0.571	0.531	0.990
F(000)	2336.0	2072.0	1068.0	3080.0
Crystal size	$0.188 \times 0.062 \times 0.027 \text{ mm}^3$	$0.177 \times 0.139 \times 0.105 \text{ mm}^3$	$0.208 \times 0.102 \times 0.063 \text{ mm}^3$	$0.319 \times 0.282 \times 0.175 \text{ mm}^3$
2θ range for data collection	3.506 to 51.496°	3.742 to 51.5°	5.06 to 51.496°	4.354 to 51.36°
Index ranges	$-16 \le h \le 17,$ $-11 \le k \le 11,$ $-45 \le 1 \le 45$	$\begin{array}{l} -17 \leq h \leq 17, \\ -27 \leq k \leq 27, \\ -19 \leq l \leq 19 \end{array}$	$\begin{array}{l} -11 \leq h \leq 11, \\ -20 \leq k \leq 20, \\ -23 \leq l \leq 23 \end{array}$	$\begin{array}{l} -21 \leq h \leq 21, \\ -18 \leq k \leq 19, \\ -28 \leq l \leq 28 \end{array}$
Reflections collected	76902	94656	47990	57867
Independent reflections	9514 [$R_{int} = 0.0650, R_{sigma} = 0.0336$]	8938 [R _{int} = 0.0472, R _{sigma} = 0.0211]	9594 [R _{int} = 0.1055, R _{sigma} = 0.0941]	12522 [R _{int} = 0.0429, R _{sigma} = 0.0325]
Data/restraints/parameters	9514/0/662	8938/0/572	9594/151/590	12522/84/797
Goodness-of-fit on F ²	1.081	1.058	1.004	1.105
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0339, wR_2 = 0.0765$	$R_1 = 0.0277, wR_2 = 0.0685$	$R_1 = 0.0800, wR_2 = 0.2250$	$R_1 = 0.0473, wR_2 = 0.1074$
Final R indexes [all data]	$R_1 = 0.0395, wR_2 = 0.0789$	$R_1 = 0.0328, wR_2 = 0.0722$	$R_1 = 0.1093, wR_2 = 0.2609$	$R_1 = 0.0691, wR_2 = 0.1247$
Largest diff. peak/hole	0.74/-0.62 e.Å ⁻³	0.65/-0.48 e.Å ⁻³	2.06/-1.41 e.Å ⁻³	1.11/-1.11 e.Å ⁻³

Table S2. Crystal data and structure refinement parameters obtained for the complexes A1, A2, A4 and A5.

		Vibrational Frequency (cm ⁻¹)				
		Compounds				
	Cur	A1	A2	A3	A4	A5
νΟΗ	3448	3503	3510	3458	3514	3491
ν (C=O) ketone	1628	1621	1624	1616	1622	1620
ν (C=C) aliphatic	1514	1504	1504	1504	1506	1504
ν (C–O) phenol	1282	1282	1280	1290	1292	1288
ν Ρ-Ο	-	1095	1030	1085	1100	1095
ν P–F	-	840	840	844	840	844

Table S3. Assign the main IR bands of free curcumin and complexes.

Table S4. In vitro cell viability results (IC $_{50}$ values) toward some cell lines studied.

Compounds	IC ₅₀ (μmol/L) 48 h					
compounds	MDA-MB-231	MCF-7	SKBR-3	A2780	A2780cis	
P1 - [PdCl ₂ (PPh ₃) ₂]	≥25	≥25	≥25	n.t	≥25	
P2 - [PdCl ₂ (dppe)]	≥50	≥50	≥50	≥50	≥50	
P3 - [PdCl ₂ (dppp)]	≥50	≥50	≥50	n.t	≥50	
P4 - [PdCl ₂ (dppb)]	≥25	≥25	≥25	n.t	≥25	
P5 - [PdCl ₂ (dppf)]	≥50	≥40	≥40	n.t	9.9 ± 0.9	

Table S5 - In vitro cell viability results (IC $_{\rm 50}$ values) toward some cell lines studied.

Compounds		IC₅₀ (µM) 48 h	
compounds	MCF-7	A549	DU-145
A1 - $[Pd(cur)(PPh_3)_2]PF_6$	24.8 ± 0.2	≥40	12.6 ± 0.4
A2 - [Pd(cur)(dppe)]PF ₆	22.6 ± 0.3	≥40	18.6 ± 0.4
A3 - [Pd(cur)(dppp)]PF ₆	12.0 ± 1.1	≥40	18.5 ± 1.3
A4 - [Pd(cur)(dppb)]PF ₆	15.1 ± 0.4	≥40	22.9 ± 0.6
A5 - [Pd(cur)(dppf)]PF ₆	≥40	≥40	≥40
Curcumin	36.8 ± 1.6	38.9 ± 1.3	n.t
Cisplatin	13.9 ± 2.0	14.4 ± 1.4	2.3 ± 0.4