Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting Information

For

A comparative DFT study of HCHO decomposition on different terminations of the Co₃O₄ (110) surface

Xing Wang, Gbemi Abass, Jiajia Wang*, Dan Song*, Aibin Ma

College of Materials Science and Engineering, Hohai University, Nanjing 210098, P.

R. of China.

*Corresponding authors Tel: +86-25-83787239, Fax: +86-25-83786046

E-mail: xcrysden@163.com (Jiajia Wang) or songdancharls@hhu.edu.cn (Dan Song)

Surface phase diagram calculation method

The surface energy is calculated by:

$$E_{surf} = \frac{1}{2A} \left(E^{slab} - N_0 \mu_0 - N_H \mu_H - N_{Co} \mu_{Co} \right)$$
(S1)

where E^{slab} is the total energy of the slab model, N_i and μ_i (i=O, H, Co) are the number and chemical potential of the constituent *i*, respectively. In Eqn. (S1), the chemical potential of μ_o , μ_H and μ_{Co} have the following relationships:

$$\mu_{0} = \frac{1}{2} \mu_{0_{2}}(g) \tag{S2}$$
$$\mu_{H} = \frac{1}{2} \mu_{H_{2}}(g) = \frac{1}{2} [\mu_{H_{2}0}(g) - \mu_{0}] = \frac{1}{2} \mu_{H_{2}}(g) - \frac{1}{4} \mu_{0_{2}}(g) \tag{S3}$$
$$4 \mu_{0} + 3 \mu_{Co} = E^{bulk} \tag{S4}$$

where $\mu_i(g)$ (*i*=O₂, H₂, H₂O) is the chemical potential of corresponding gas, and E^{bulk} is the total energy of the bulk Co₃O₄. Then based on the above Eqn. (S2-S4), the Eqn. (S2) can be re-written as:

$$E_{surf} = \frac{1}{2A} \left[E^{slab} - \frac{1}{2} N_H \mu_{H_2 0(g)} + \frac{1}{2} \left(\frac{1}{2} N_H + \frac{4}{3} N_{Co} - N_O \right) \mu_{O_2(g)} - \frac{1}{3} N_{Co} E^{bulk} \right]_{(S5)}$$

It is seen that, in the Eqn. (S5), the surface energy is only dependent on the $\mu_{H_2O(g)}$ and $\mu_{O_2(g)}$, which can be calculated by:

$$\mu_{H_2O(g)} = E_{H_2O(g)}^{DFT} + E_{H_2O(g)}^{ZPE} + \Delta G_{H_2O(g)}^{0}(T) + k_B T ln \left(\frac{p_{H_2O}}{p^0}\right)_{(S6)}$$
$$\mu_{O_2(g)} = E_{O_2(g)}^{DFT} + E_{O_2(g)}^{ZPE} + \Delta G_{O_2(g)}^{0}(T) + k_B T ln \left(\frac{p_{O_2}}{p^0}\right)_{(S7)}$$

Where $E_{H_2O(g)}^{DFT}$ and $E_{O_2(g)}^{DFT}$ are DFT calculated electronic energies of the H₂O and O₂ gases, respectively, and $E_{H_2O(g)}^{ZPE}$ and $E_{O_2(g)}^{ZPE}$ are the corresponding zero-point energy corrections. The four terms represent the Gibbs free energies at 0K. The $\Delta G_{H_2O(g)}^{0}(T)$ and ${}^{\Delta G_{02}(g)}(T)$ are obtained from thermodynamic tables. k_{B} is the Boltzmann constant. p^{0} is ambient pressure $(1.01 \times 10^{5} \text{ Pa})$ and T = 298.15 K. For the simplicity purpose, we did not consider the variation of H₂O pressure and only set the H₂O pressure at the ambient pressure ${}^{p_{H_{2}0}}=1.01 \times 10^{5}$ Pa) during all calculations. According to Eqn. (S7), we can obtain a corresponding ${}^{\mu_{0_{2}(g)}}$ with the variation of O₂ gas pressure ${}^{p_{0_{2}}}$. Then, we define a chemical penitential difference ${}^{\Delta\mu_{0}}$ which can be expressed as:

$$\Delta \mu_0 = \mu_0 - \frac{1}{2} \left[E_{O_2(g)}^{DFT} + E_{O_2(g)}^{ZPE} \right]$$
(S8)

Based on Eqn. (S2) and (S7), the Eqn. (S8) can be re-written as:

$$\Delta \mu_0 = \mu_0 - \frac{1}{2} \Big[E_{O_2(g)}^{DFT} + E_{O_2(g)}^{ZPE} \Big] = \frac{1}{2} \Big[\Delta G_{O_2(g)}^{0}(T) + k_B T ln \left(\frac{p_{O_2}}{p^0} \right) \Big]$$
(S9)

Then, both the O₂ gas pressure $\binom{p_{0_2}}{}$ and chemical penitential difference $\Delta \mu_0$ can appear as horizontal axis in the in the surface phase diagram. More calculation details can be found in (*J. Phys. Chem. C 2015, 119, 9973-9979*) and (*Catal. Sci. Technol. 2014, 4, 3379-3389*).