Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting Information

For

A comparative DFT study of HCHO decomposition on different terminations of the $Co₃O₄$ (110) surface

Xing Wang, Gbemi Abass, Jiajia Wang* , Dan Song* , Aibin Ma

College of Materials Science and Engineering, Hohai University, Nanjing 210098, P.

R. of China.

*Corresponding authors Tel: +86-25-83787239, Fax: +86-25-83786046

E-mail: xcrysden@163.com (Jiajia Wang) or songdancharls@hhu.edu.cn (Dan Song)

Surface phase diagram calculation method

The surface energy is calculated by:

$$
E_{surf} = \frac{1}{2A} (E^{slab} - N_0 \mu_0 - N_H \mu_H - N_{Co} \mu_{Co})
$$
 (S1)

where E^{slab} is the total energy of the slab model, N_i and μ_i (i=O, H, Co) are the number and chemical potential of the constituent *i*, respectively. In Eqn. (S1), the chemical potential of μ_0 , μ_H and μ_C have the following relationships:

$$
\mu_0 = \frac{1}{2}\mu_{O_2}(g)
$$
\n
$$
\mu_H = \frac{1}{2}\mu_{H_2}(g) = \frac{1}{2}\left[\mu_{H_2O}(g) - \mu_0\right] = \frac{1}{2}\mu_{H_2}(g) - \frac{1}{4}\mu_{O_2}(g)
$$
\n
$$
4\mu_0 + 3\mu_{Co} = E^{bulk}
$$
\n(S4)

where $\mu_i(g)$ (*i*=O₂, H₂, H₂O) is the chemical potential of corresponding gas, and E^{bulk} is the total energy of the bulk $Co₃O₄$. Then based on the above Eqn. (S2-S4), the Eqn. (S2) can be re-written as:

$$
E_{surf} = \frac{1}{2A} \Big[E^{slab} - \frac{1}{2} N_H \mu_{H_2O(g)} + \frac{1}{2} \Big(\frac{1}{2} N_H + \frac{4}{3} N_{Co} - N_O \Big) \mu_{O_2(g)} - \frac{1}{3} N_{Co} E^{bulk} \Big]_{\text{(S5)}}
$$

It is seen that, in the Eqn. (S5), the surface energy is only dependent on the $\mu_{H_2O(g)}$ and μ_{0} (9) , which can be calculated by:

$$
\mu_{H_2O(g)} = E_{H_2O(g)}^{DFT} + E_{H_2O(g)}^{ZPE} + \Delta G_{H_2O(g)}(T) + k_B T ln \left(\frac{p_{H_2O}}{p^0} \right)_{(S6)}
$$
\n
$$
\mu_{O_2(g)} = E_{O_2(g)}^{DFT} + E_{O_2(g)}^{ZPE} + \Delta G_{O_2(g)}(T) + k_B T ln \left(\frac{p_{O_2}}{p^0} \right)_{(S7)}
$$

Where $n_2^{\nu(g)}$ and $n_2^{\nu(g)}$ are DFT calculated electronic energies of the H₂O and O₂ $E_{H_2O(g)}^{DFT}$ and $E_{O_2(g)}^{DFT}$ gases, respectively, and $n_2\sigma(g)$ and $n_2(g)$ are the corresponding zero-point energy $E_{H_2O(g)}^{ZPE}_{2O(g)}$ and $E_{O_2(g)}^{ZPE}_{2O(g)}$ $0_2(g)$ corrections. The four terms represent the Gibbs free energies at 0K. The $\Delta G_{H_2O0}^0$ $H_2^0O(g)(T)$

and $\frac{v_2(g)}{g}$ are obtained from thermodynamic tables. κ_B is the Boltzmann $\Delta G \frac{0}{O_0(a)}$ $o_2(g)(T)$ are obtained from thermodynamic tables. k_B i constant. p^0 is ambient pressure (1.01×10⁵ Pa) and T = 298.15 K. For the simplicity purpose, we did not consider the variation of H_2O pressure and only set the H_2O pressure at the ambient pressure $\binom{p_{H_2O}}{=}1.01\times10^5$ Pa) during all calculations. According to Eqn. (S7), we can obtain a corresponding μ_{0} $_{2}(g)$ with the variation of O₂ gas pressure (p_{0}^{p}). Then, we define a chemical penitential difference $\Delta \mu_{0}$ which can be expressed as:

$$
\Delta \mu_0 = \mu_0 - \frac{1}{2} \Big[E_{O_2(g)}^{DFT} + E_{O_2(g)}^{ZPE} \Big] \Big| (S8)
$$

Based on Eqn. (S2) and (S7), the Eqn. (S8) can be re-written as:

$$
\Delta\mu_0 = \mu_0 - \frac{1}{2} \Big[E_{O_2(g)}^{DFT} + E_{O_2(g)}^{ZPE} \Big] = \frac{1}{2} \Bigg[\Delta G_{O_2(g)}(T) + k_B T ln \Bigg(\frac{p_{O_2}}{p^0} \Bigg) \Bigg] \tag{S9}
$$

Then, both the O₂ gas pressure $\binom{p_{02}}{2}$ and chemical penitential difference $\Delta \mu_0$ can appear as horizontal axis in the in the surface phase diagram. More calculation details can be found in (*J. Phys. Chem. C 2015, 119, 9973-9979*) and (*Catal. Sci. Technol. 2014, 4, 3379- 3389*).