Synthesis of Ru(II) and Os(II) Photosensitizers Bearing one 9,10-diamino-1,4,5,8-tetraazaphenanthrene Scaffold

Simon De Keijger,[‡] Emilie Cauët,[†] Benjamin Elias[‡]* and Ludovic Troian-Gautier^{‡,}

[‡] UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1/L4.01.02, B-1348 Louvain-la-Neuve, Belgium

[†]Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (CP 160/09), Université libre de Bruxelles (ULB), 50 av. F. D. Roosevelt, CP160/09, B-1050 Brussels, Belgium

[¢]Wel Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium

*Correspondence to: Benjamin.Elias@uclouvain.be, Ludovic.Troian@uclouvain.be

Table of contents

Structure of the extended ligands	S2
¹ H NMR and HR-MS characterization	S3
Electrochemistry	S11
DFT Calculations	S15

Structure of the extended ligands

1,10-phenanthrolino[5,6-b]-1,4,5,8,9,12-hexaazatriphenylene 1,4,5,8-tetraazaphenanthrene[9,10-b]-1,4,5,8,9,12-hexaazatriphenylene PHEHAT TAPHAT

Chart S1. Structure of 1,4,5,8,9,12-hexaazatriphenylene (HAT), dipyrido[3,2-a:2',3'-c]phenazine (dppz), tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine (TPPHZ), 1,10-phenanthrolino[5,6-b]-1,4,5,8,9,12-hexaazatriphenylene (PHEHAT) and 1,4,5,8-tetraazaphenanthrene[9,10-b]-1,4,5,8,9,12-hexaazatriphenylene (TAPHAT)

¹H NMR and HR-MS characterization

Figure S1. ¹H NMR spectrum of [Os(phen)₂(diNH₂TAP)]²⁺ recorded in CD₃CN at 500 MHz and 298 K.

Figure S2. HR-MS spectrum of [Os(phen)₂(diNH₂TAP)]²⁺.

Figure S3. ¹H NMR spectrum of $[Os(TAP)_2(NO_2NH_2TAP)]^{2+}$ recorded in CD₃CN at 500 MHz and 298 K.

Figure S4. HR-MS spectrum of [Os(TAP)₂(NO₂NH₂TAP)]²⁺.

Figure S5. ¹H NMR spectrum of [Os(TAP)₂(diNH₂TAP)]²⁺ recorded in CD₃CN at 500 MHz and 298 K.

Figure S6. HR-MS spectrum of [Os(TAP)₂(diNH₂TAP)]²⁺.

Figure S7. ¹H NMR spectrum of $[Ru(phen)_2(diminoTAP)]^{2+}$ recorded in CD₃CN at 300 MHz and 298 K.

Figure S8. HR-MS spectrum of [Ru(phen)₂(diiminoTAP)]²⁺.

Figure S9. ¹H NMR spectrum of [Ru(phen)₂(diNH₂TAP)]²⁺ recorded in CD₃CN at 300 MHz and 298 K.

Figure S10. HR-MS spectrum of [Ru(phen)₂(diNH₂TAP)]²⁺.

Figure S11. ¹H NMR spectrum of [Ru(TAP)₂(diiminoTAP)]²⁺ recorded in CD₃CN at 300 MHz and 298 K.

Figure S12. HR-MS spectrum of [Ru(TAP)₂(diiminoTAP)]²⁺.

Figure S13. ¹H NMR spectrum of [Ru(TAP)₂(NO₂NH₂TAP)]²⁺ recorded in CD₃CN at 300 MHz and 298 K.

Figure S14. HR-MS spectrum of [Ru(TAP)₂(NO₂NH₂TAP)]²⁺.

Figure S15. ¹H NMR spectrum of [Ru(TAP)₂(diNH₂TAP)]²⁺ recorded in CD₃CN at 300 MHz and 298 K.

Figure S16. HR-MS spectrum of [Ru(TAP)₂(diNH₂TAP)]²⁺.

Figure S17. Cyclic voltammograms (A, B) and differential pulse voltammogram (C) of $[Os(phen)_2(diNH_2TAP)]^{2+}$ in acetonitrile (0.1 V/s) with tetrabutylammonium hexafluorophosphate (0.1M) as supporting electrolyte.

Figure S18. Cyclic voltammograms (A, B) and differential pulse voltammogram (C) of $[Os(TAP)_2(NO_2NH_2TAP)]^{2+}$ in acetonitrile (0.1 V/s) with tetrabutylammonium hexafluorophosphate (0.1 M) as supporting electrolyte.

Figure S19. Cyclic voltammograms (A, B) and differential pulse voltammogram (C) of $[Os(TAP)_2(diNH_2TAP)]^{2+}$ in acetonitrile (0.1 V/s) with tetrabutylammonium hexafluorophosphate (0.1 M) as supporting electrolyte.

Figure S20. Cyclic voltammograms (A, B) and differential pulse voltammogram (C) of $[Ru(phen)_2(diminoTAP)]^{2+}$ in acetonitrile (0.1 V/s) with tetrabutylammonium hexafluorophosphate (0.1 M) as supporting electrolyte.

Figure S21. Cyclic voltammograms (A, B) and differential pulse voltammogram (C) of $[Ru(phen)_2(diNH_2TAP)]^{2+}$ in acetonitrile (0.1 V/s) with tetrabutylammonium hexafluorophosphate (0.1 M) as supporting electrolyte.

Figure S22. Cyclic voltammograms (A, B) and differential pulse voltammogram (C) of $[Ru(TAP)_2(diminoTAP)]^{2+}$ in acetonitrile (0.1 V/s) with tetrabutylammonium hexafluorophosphate (0.1 M) as supporting electrolyte.

Figure S23. Cyclic voltammograms (A, B) and differential pulse voltammogram (C) of $[Ru(TAP)_2(NO_2NH_2TAP)]^{2+}$ in acetonitrile (0.1 V/s) with tetrabutylammonium hexafluorophosphate (0.1 M) as supporting electrolyte.

Figure S24. Cyclic voltammograms (A, B) and differential pulse voltammogram (C) of $[Ru(TAP)_2(diNH_2TAP)]^{2+}$ in acetonitrile (0.1 V/s) with tetrabutylammonium hexafluorophosphate (0.1 M) as supporting electrolyte.

DFT Calculations

Table S1. Cartesian Coordinates (in Å) of the equilibrium geometry of the singlet state of the the $Ru(phen)_2(diNH_2TAP)$ ²⁺ complex.

Ru	-0.30625 0.00001 -0.00003
С	-2.45636 -0.60559 -2.16445
С	1.30569 1.6717 2.10848
С	-2.45627 0.60519 2.16457
С	-2.08952 -2.25419 -0.54335
С	2.50489 0.43593 0.55223
С	-2.08991 2.25387 0.54343
С	-1.36398 -2.65822 0.6154
С	-1.36457 2.65801 -0.6154
С	2.50495 -0.43552 -0.55231
С	0.26651 -2.12112 2.2078
С	0.26586 2.12118 -2.20795
С	1.30594 -1.67142 -2.10859
С	-3.4444 -1.39815 -2.77726
С	2.53314 2.128 2.64142
С	-3.44434 1.39761 2.77753
С	0.07992 -3.36037 2.84764
С	0.07894 3.36036 -2.84782
Ċ	2.53346 -2.12757 -2.64151
H	-2.19793 -0.36729 2.55835
Н	0.35984 1.98498 2.52416
Н	-2.19819 0.36692 -2.55829
Н	0.9842 1.40501 -2.58059
Н	0.36013 -1.9848 -2.5243
Н	0.98473 -1.40482 2.58041
Н	2.52803 2.81292 3.48042
Н	-3.95129 1.01686 3.65486
H	-3 95154 -1 01748 -3 65452
Н	0.67125 3.59276 -3.72346
Н	2.52845 -2.8125 -3.4805
Н	0.67238 -3.5927 3.72319
N	-1.78614 -1.01802 -1.07164
N	-1 78626 1 01775 1 07167
N	1 29004 0 82467 1 06154
N	-0.43826 -1.76813 1.11566
N	1 29017 -0 8244 -1 06166
N	-0.43873 1.76808 -1.11572
C	-3 75354 -2 64625 -2 2579
C	-0.85299 -4.26114 2.35637
C	-0.85409 4.26096 -2.35649
C	-3 75374 2 64566 2 25822
C	-3 06769 3 10767 1 1091
C	-1 60987 3 91993 -1 20889
C	3 72997 0 88856 1 09747
C	3 73011 -0 88801 -1 09752
C	-1 60897 -3 92021 1 20888
č	-3 06724 -3 10815 -1 10889
с Н	-1 01086 5 21836 -2 83982
Н	-4 51104 3 2685 2 72035
H	-4 51083 -3 26910 -2 7100
H	-1 0095 -5 21850 2 83068
N	3 77365 1 75/08 2 15057
N	2 72201 1 75442 2 15042
1 N	5.12591 -1.15442 -2.15902

С	4.9785 -0.4522 -0.53863
С	4.97843 0.45292 0.53858
Ν	6.14479 -0.92864 -1.0882
Ν	6.14464 0.92952 1.08813
Н	7.00167 -0.94036 -0.55855
Н	6.06435 -1.58063 -1.85455
Н	7.00158 0.94112 0.55859
Н	6.06416 1.5815 1.85448
С	-3.30409 -4.3857 -0.49077
С	-2.60397 -4.7757 0.61866
С	-2.60495 4.77525 -0.61856
С	-3.30485 4.38516 0.49098
Н	-2.78898 - 5.74147 1.07523
Н	-4.05338 5.03715 0.92672
Н	-4.05257 -5.03781 -0.92643
Н	-2.79021 5.74097 -1.07514

Table S2. Cartesian Coordinates (in Å) of the equilibrium geometry of the singlet state of the the $Ru(TAP)_2(diNH_2TAP)]^{2+}$ complex.

Ru	-0.31824	0.00000	0.0000
С	-2.49309	0.67312	2.16127
С	1.30081	-1.63585	-2.13984
С	-2.49309	-0.67312	-2.16127
С	-2.0796	2.25769	0.51998
С	2.49745	-0.42614	-0.55962
С	-2.0796	-2.25769	-0.51998
С	-1.35327	2.64482	-0.63082
С	-1.35327	-2.64482	0.63082
С	2.49745	0.42614	0.55962
С	0.25699	2.13504	-2.21953
С	0.25699	-2.13504	2.21953
С	1.30081	1.63585	2.13984
С	-3.46758	1.54156	2.70642
С	2.5311	-2.07902	-2.68279
С	-3.46758	-1.54156	-2.70642
С	0.02248	3.39752	-2.81301
С	0.02248	-3.39752	2.81301
С	2.5311	2.07902	2.68279
Н	-2.28618	0.28604	-2.61207
Н	0.35708	-1.94351	-2.56369
Н	-2.28618	-0.28604	2.61207
Н	0.98528	-1.45116	2.62907
Н	0.35708	1.94351	2.56369
Н	0.98528	1 45116	-2.62907
Н	2 52732	-2 74654	-3 53534
Н	-4 01947	-1 23638	-3 5862
Н	-4 01947	1 23638	3 5862
Н	0 58776	-3 6859	3 68995
Н	2 52732	2 74654	3 53534
Н	0 58776	3 6859	-3 68995
N	-1 79554	1 02726	1 0683
N	-1 79554	-1 02726	-1.0683
N	1 28688	-0.81174	-1 07763
N	-0.4308	1 75345	-1 12983
N	1 28688	0.81174	1 07763
N	-0.4308	-1.75344	1 1 2 9 8 3
C C	-3.0/052	-1.75544	-1 0730
C	-1.58572	-3.90035	1 23272
C C	3 72/36	-0.86626	-1 11307
C	3.72+30	0.86625	1 11207
C	1 58572	3 00025	1.11307
C	-1.36572	3.90033	1 07380
N	3 71742	1 71222	2 10182
IN N	3.71742 2.71742	1 71222	2.19103
N C	<i>J</i> ./1/42 <i>A</i> .07315	0.44220	2.19103
C	4.9/313	0.44229	0.54655
U N	6 12509	-0.44229	-0.54655
IN N	6 12509	0.90823	1.10703
IN II	7 00127	-0.90824	-1.10/03
п u	6.05944	0.911/3	1 00001
п u	7 00127	1.34023	1.09091
11 U	6.05914	-0.911/4	-0.39233
п	0.03844	-1.34023	-1.89091
C	-3.2809/	4.39404	0.431/8
C	-2.5/332	4.//103	-0.03999
U	-2.5/332	-4.7/153	0.65999

С	-3.28097	-4.39464	-0.45178
Н	-2.73473	5.72914	-1.13874
Н	-4.02925	-5.0398	-0.89457
Н	-4.02925	5.0398	0.89456
Н	-2.73473	-5.72914	1.13874
Ν	-0.87565	-4.27081	2.3436
Ν	-3.75058	-2.74144	-2.18722
Ν	-3.75058	2.74144	2.18722
Ν	-0.87565	4.27081	-2.3436

Table S3. Cartesian Coordinates (in Å) of the equilibrium geometry of the singlet state of the the $Ru(phen)_2(diiminoTAP)]^{2+}$ complex.

Ru	0.51642 -0.00011 0.00002
С	2.58119 -0.69173 2.24967
С	2.58175 0.69272 -2.24889
С	2.31563 -2.26297 0.53792
С	-2.25753 0.44628 -0.56775
С	2.31429 2.26393 -0.53741
С	1.64276 -2.62463 -0.66461
С	1.6407 2.62527 0.66483
С	-2.25742 -0.44769 0.56718
С	0.04968 -2.04583 -2.28448
С	0.04728 2.04575 2.2841
С	3.53724 -1.5096 2.88058
С	3.53714 1.51142 -2.87971
С	0.27699 -3.25364 -2.96873
С	0.27333 3.25391 2.96814
Н	2.29965 -0.25923 -2.67412
Н	2.29798 0.25986 2.67498
Н	-0.67561 1.32622 2.64087
Н	-0.67349 -1.32674 -2.6415
Н	3.98971 1.17204 -3.80247
Н	3.98929 -1.16992 3.80349
Н	-0.28991 3.45907 3.86919
Н	-0.28568 -3.45901 -3.87009
Ν	1.98169 -1.05157 1.10047
Ν	1.98158 1.05215 -1.0999
Ν	-1.0525 0.77572 -0.99723
Ν	0.72004 -1.73064 -1.15919
Ν	-1.05233 -0.77652 0.99694
Ν	0.71844 1.73072 1.15926
С	3.8877 -2.72732 2.31843
С	1.2099 -4.15923 -2.48586
С	1.20575 4.16007 2.48543
С	3.88638 2.72951 -2.31761
С	3.26742 3.13898 -1.11178
С	1.9202 3.8588 1.30073
С	-3.51683 0.89459 -1.13493
С	-3.51658 -0.89631 1.13444
С	1.92359 -3.85773 -1.30075
С	3.2694 -3.13721 1.11239
Н	1.3906 5.09453 3.00261
Н	4.62183 3.37007 -2.79056
Н	4.62366 -3.36722 2.79146
Н	1.39583 -5.09331 -3.00331
С	-4.7401 0.45422 -0.57702
С	3.54971 -4.38207 0.4476
С	2.9048 -4.72762 -0.70905
С	2.90083 4.72944 0.70918
С	3.54642 4.38423 -0.44718
Н	3.12104 -5.6694 -1.20029
Н	4.28154 5.04891 -0.88636
Н	4.28533 -5.04616 0.88685
Н	3.11603 5.67155 1.20024
С	-4.73999 -0.45614 0.57663
С	-4.65119 2.13537 -2.71152
С	-5.8714 1.70149 -2.16005
С	-4.65063 -2.13754 2.71102

С	-5.87093 -1.70385 2.15965
Н	-1.02866 1.41249 -1.79784
Н	-1.02842 -1.41315 1.79766
Ν	-5.91763 -0.87243 1.10488
Ν	-3.4774 -1.73454 2.19946
Ν	-3.47786 1.73262 -2.20006
Ν	-5.91788 0.87013 -1.10529
Н	-6.81659 2.02862 -2.57561
Н	-4.6247 2.80447 -3.56238
Н	-6.81603 - 2.03107 2.57534
Н	-4.62391 -2.8066 3.56191

Table S4. Cartesian Coordinates (in Å) of the equilibrium geometry of the singlet state of the the $Ru(TAP)_2(diiminoTAP)]^{2+}$ complex.

Ru	-0.54025	0.00000	0.00000
С	-2.63732	-0.76429	-2.22808
С	-2.63731	0.76432	2.22808
С	-2.30234	-2.27644	-0.50568
С	2.23956	0.44861	0.57132
С	-2.30231	2.27646	0.50568
С	-1.61972	-2.62064	0.68423
С	-1.61969	2.62065	-0.68423
С	2.23955	-0.44864	-0.57131
С	-0.04619	-2.06251	2.2966
С	-0.04617	2.0625	-2.29661
Ċ	-3.58011	-1.66042	-2.786
Ċ	-3.58008	1.66046	2.786
Č	-0.30462	-3.30186	2.92897
C	-0 30459	3 30184	-2.92898
Н	-2.41241	-0 17607	2,70828
Н	-2 41241	0.17609	-2 70828
Н	0.67986	1 36885	-2 69364
Н	0.67985	-1 36888	2.69364
Н	-4 08565	1 39584	3 70578
н	-4 08567	-1 39579	-3 70577
Н	0 23492	3 56127	-3 83069
н	0.23492	-3 56120	3 83068
N	-2 00059	-1.06631	-1 08564
N	-2.00059	1 06633	1 08564
N	1.0/161	0.77730	1.00504
N	-0.70671	-1 71037	1.00132
N	1 0/16	-0.77741	-1.00152
N	0.70660	1 71027	1 17838
N C	-0.70009	3 16624	1.06771
C C	-1.87218	3 85/35	-1 32261
C	2 5017	0.80576	1 1 27/7
C	2 5017	0.09570	1.13/4/
C	3.3017	2 95/25	1 22261
C	2 24206	2 16621	1.52201
C	-5.24290	-5.10021	-1.00//1
C C	4./2194	0.45550 4 4141	0.37603
C	-3.30127	-4.4141	-0.40318
C	-2.83931	-4./4000	0.74819
C	-2.83943	4./4009	-0./482
	-3.30121	4.41413	0.40318
H	-3.01945	-5.68534	1.256//
H	-4.23006	5.07742	0.85342
H	-4.23012	-5.07/43	-0.85342
H	-3.01938	5.68536	-1.256/8
C	4.72194	-0.45539	-0.57803
C	4.63322	2.13536	2.71427
C	5.85313	1.70104	2.16123
C	4.63321	-2.13538	-2./142/
C	5.85312	-1.70107	-2.16123
Н	1.01746	1.41328	1.80346
Н	1.01745	-1.41329	-1.80345
N	5.89962	-0.87035	-1.10553
Ν	3.4604	-1.73215	-2.20199
N	3.46041	1.73213	2.202
Ν	5.89962	0.87032	1.10553
Н	6.79854	2.0277	2.57628

Н	4.60673 2.80378 3.56532
Η	6.79853 -2.02773 -2.57628
Η	4.60672 -2.8038 -3.56532
Ν	-1.1948 4.18592 -2.46567
Ν	-3.8888 2.83634 2.22923
Ν	-1.19485 -4.18592 2.46566
Ν	-3.88884 -2.8363 -2.22923