Supporting information

Multi-layered Heterogeneous Interfaces Created in Co_{0.85}Se@Ni₃S₄/NF to Enhance Supercapacitor Performances by

Multi-step Alternating Electrodoposition

Chunyan Zhang,^a Jinkun Yang,^a Hang Li,^a Mengfei Su,^a Boru Xiong,^b Feng Gao,^b and Qingyi Lu^a ^a State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. E-mail: qylu@nju.edu.cn

^b Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, P. R. China. E-mail: fgao@nju.edu.cn

Synthesis of PPy

Polypyrrole (PPy) was synthesized via an electrodeposition process by galvanostatic method carried out on a CHI660E electrochemical workstation with carbon cloth as the working electrode, an Ag/AgCl, KCl (saturated) electrode as the reference electrode and a Pt sheet (1.2 cm×1.2 cm) as the counter electrode. The typical deposition was performed in a mixed solution of 0.01 mmol SDBS (sodium dodecyl benzene sulfonate) and 0.15 mmol pyrrole monomer by galvanostatic method with a potential of 1 V for 800 seconds.

Fig. S1 The TEM image of 8L-Co_{0.85}Se@Ni₃S₄@NF

Fig. S2 HRTEM and corresponding IFFT images for Ni_3S_4 and $Co_{0.85}Se$ in Fig. 3b: (a) (113) and (b) (004) planes of Ni_3S_4 ; (c) (110), (d) (101) and (e) (102) planes of $Co_{0.85}Se$. The scale bar is 0.5 nm.

Fig. S3 EDS spectrum of 8L-Co $_{0.85}Se@Ni_3S_4/NF$

Fig. S4 SEM image and cross-section linear scanning EDS spectrum of 8L-Co_{0.85}Se@Ni_3S_4/NF.

Fig. S5 XRD pattern of 1L-Co_{0.85}Se

Fig. S6 CV curves of (a) 1L-Co_{0.85}Se@NF, (b) 2L-Co_{0.85}Se@Ni₃S₄/NF, (c) 4L-Co_{0.85}Se@Ni₃S₄/NF, (d) 6L-Co_{0.85}Se@Ni₃S₄/NF and (e) CoSeNiS/NF electrodes at scan rates from 2 to 50 mV s⁻¹.

Fig. S7 GCD curves of (a) $1L-Co_{0.85}Se@NF$, (b) $2L-Co_{0.85}Se@Ni_3S_4/NF$, (c) $4L-Co_{0.85}Se@Ni_3S_4/NF$, (d) $6L-Co_{0.85}Se@Ni_3S_4/NF$ and (e) CoSeNiS/NF electrodes at different current densities of 1 A g⁻¹, 2 A g⁻¹, 5 A g⁻¹, 10 A g⁻¹ and 20 A g⁻¹.

Fig. S8 Capacitance retentions rates of different electrodes at different current densities.

Fig. S9 SEM images of 8L-Co_{0.85}Se@Ni_3S_4@NF after cycling 5000 cycles.

Fig. S10 Cycle retention test of ppy/NF

Fig. S11 Lighting 17 LED lights by two ASC devices connected in series.

Element	Weight (%)	Atomic
S	18.28	0.35
Со	22.09	0.23
Ni	24.87	0.26
Se	34.76	0.27

Table S1 Element contents from EDS analysis of 8L-Co_{0.85}Se@Ni_3S_4/NF

r	r	1	
Materials	Specific Capacitance	References	
8L-Co _{0.85} Se@Ni ₃ S ₄ /NF	1558.33 F g ⁻¹ at 1 A g ⁻¹	This work	
CoFe ₂ Se ₄ @CoNi-CH	1288.89 F g ⁻¹ at 1 A g ⁻¹	J. Colloid Interface Sci. 2022, 621, 149-159.	
Ni ₉ S ₈ @Ni ₂ B	1555.33 F g ⁻¹ at 1 A g ⁻¹	J. Colloi Interface Sci. 2023, 649, 815-825.	
NiMo ₃ S ₄ /BP	830 F g ⁻¹ at 1 A g ⁻¹	Small 2024, 20 , 2310120	
V-Ni ₃ S ₂	1448.4 F g ⁻¹ at 1 A g ⁻¹	J. Colloid. Interface Sci. 2023, 629, 1049-1060.	
CoSe ₂ /NiSe ₂	1302.5 F g ⁻¹ at 1 A g ⁻¹	J. Electroanal. Chem. 2021, 895 , 115479.	
Ni _x Se _y	1025 F g ⁻¹ at 1 A g ⁻¹	J. Electroanal. Chem. 2021, 895 , 115479.	
(Ni,Co)Se ₂ -T	1412.5 F g ⁻¹ at 1 A g ⁻¹	<i>Electrochim. Acta</i> 2021, 393 , 139049.	
Ni ₃ S ₂ /Co ₉ S ₈ /C-2	1195 F g ⁻¹ at 1 A g ⁻¹	Appl. Surf. Sci. 2022, 574 , 151727.	

Table. S2 Electrochemical performances comparisons of $8L-Co_{0.85}Se@Ni_3S_4$ with the recently reported CoSe-based and/or Ni_3S_4-based materials.

Materials	Energy density and power density	Ref		
Co _{0.85} Se@Ni ₃ S ₄ /NF//PPy/NF	76.98 Wh kg^{-1} at 775 W kg^{-1}	This work		
NiCo ₂ S ₄ @HCs//AC	$69.6 \text{ Wh } \text{kg}^{-1} \text{ at } 847 \text{ W } \text{kg}^{-1}$	<i>Adv. Funct. Mater.</i> 2023, 33 , 2210238		
FCNS-2//AC	50 Wh kg ⁻¹ at 1.353 kW kg ⁻¹	Appl. Surf. Sci. 2023, 611 , 155568		
CoNiMn-S//RGO	42.1 Wh kg^{-1} at 750 W kg^{-1}	<i>Chem. Eng. J.</i> 2021, 405 , 126928		
Ni ₃ S _{4-x} //AC	33.1 Wh kg ⁻¹ at 1.680 kW kg ⁻¹	Small 2022, 18, 2106074		
NiCo ₂ S ₄ //AC	21.4 Wh kg ⁻¹ at 1.663 kW kg ⁻¹	Mater. Res. Bull. 2023, 157, 112036		
NiS/CNFs-2//AC	22.4 Wh kg^{-1} at 680 W kg^{-1}	ACS Appl. Nano Mater. 2022, 5, 6192		
NiMoS ₄ /NiS ₂ //NCO	38.6 Wh kg ⁻¹ at 958.6 W kg ⁻¹	<i>Chem. Eng. J.</i> 2022, 435 , 135231		
HCS//Co _{0.85} Se@CoNi ₂ S ₄ /GF	46.5 W h kg ⁻¹ at 750 W kg ⁻¹	J. Mater. Chem. A 2018, 6 , 15630-15639.		
Ni–Co–S/GF//PPy/GF	46.5 W h kg ⁻¹ at 825.0 W kg ⁻¹	Adv. Sci. 2018, 5 , 1700375		

 $\textbf{Table S3}\ Comparison \ table \ of \ the \ other \ identical \ ASCs \ with \ Co_{0.85}Se@Ni_3S_4/NF//PPy/NF \ ASC$

Layer numbers	Sample/ cycle numbers							
1	Co _{0.85} Se /8							
2	Co _{0.85} Se /4	Ni ₃ S ₄ /4						
4	Co _{0.85} Se /2	Ni ₃ S ₄ /2	Co _{0.85} Se /2	Ni ₃ S ₄ /2				
6	Co _{0.85} Se /2	Ni ₃ S ₄ /2	Co _{0.85} Se /1	Ni ₃ S ₄ /1	Co _{0.85} Se /1	Ni ₃ S ₄ /1		
8	Co _{0.85} Se /1	Ni ₃ S ₄ /1	Co _{0.85} Se /1	Ni ₃ S ₄ /1	Co _{0.85} Se /1	Ni ₃ S ₄ /1	Co _{0.85} Se /1	Ni ₃ S ₄ /1

Table S4 The cycle numbers corresponding to different electrochemical deposition layers