Supporting Information

Construction of a series of pH stable Ca-based MOFs, their CO_{2}

adsorption and catalytic activity

Sudip Bhattacharjee^a, Tonmoy Chakrobarty^a, Soumadip Banerjee^b, Abhijit K. Das^b and Asim Bhaumik^a*

^aSchool of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja

S. C. Mullick Road, Jadavpur, Kolkata 700032, India, Email: msab@iacs.res.in

^bSchool of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India

Entry	Contents	Page
Scheme S1	Optimization synthesis strategy	
Figure S1	Different bridging coordination modes of the carboxylate	4
	groups of each ligand in Ca-MOF 1-4.	
Figure S2.	(a) Coordination environment of Ca(II), (b) different	4
	coordination mode of the carboxylate groups of PDA ligand in	
	Ca-MOF 1.	
Figure S3.	(a) Coordination environment of Ca(II), (b) different	5
	coordination mode of the carboxylate groups of 1,4 NDC	
	ligand in Ca-MOF 2.	
Figure S4.	Different coordination modes of the carboxylate groups of	5
	each ligand in Ca-MOF 3-4.	
Table S1.	Crystal and Structure Refinement Data for Ca-MOF (1-4).	6-7
Table S2.	Bond Lengths (Å) for Ca-MOF 1.	7
Table S3.	Bond Angles (°) for Ca-MOF 1.	7
Table S4.	Bond Lengths (Å) for Ca-MOF 2.	8
Table S5.	Bond Angles (°) for Ca-MOF 2.	9
Table S6.	Bond Lengths (Å) for Ca-MOF 3.	10
Table S7.	Bond Angles (°) for Ca-MOF 3.	10-11
Table S8.	Bond Lengths (Å) for Ca-MOF 4.	12
Table S9.	Bond Angles (°) for Ca-MOF 4.	13
Table S10.	Hydrogen bonds for Ca-MOF-4 (Å) and (°).	14
Figure S5.	PXRD pattern of Ca-MOF-1 (a), Ca-MOF-2 (b), Ca-MOF-3 (c)	15
	and Ca-MOF-4 (d) in methanol.	
Figure S6.	PXRD pattern of Ca-MOF-1 (a), Ca-MOF-2 (b), Ca-MOF-3 (c)	16
	and Ca-MOF-4 (d) at different pH medium.	
Figure S7.	FT-IR of Ca-MOF-1 (a), Ca-MOF-2 (b), Ca-MOF-3 (c) and Ca-	17
	MOF-4 (d).	
Figure S8.	Elemental mapping of Ca-MOFs.	18
Figure S9.	TGA and DTG plot of Ca-MOF-1 (a), Ca-MOF-2 (b), Ca-MOF-3	19
	(c) and Ca-MOF-4 (d).	
Table S11.	AIM analysis of EM-2 concerning the epoxide binding with	20-21
	the metal center at B3LYP/6-31G (d,p) level.	
Figure S10-16.	Chromatographic data of the reaction products.	22-25
Figure S10.	Recyclability of Ca-MOFs.	26
Figure S11.	TEM images of the Ca-MOFs after catalysis.	26
Figure S19.	DFT optimized structures of the model Ca-MOFs (a) and	27
	corresponding epoxide bonded complexes (b).	

Co-ordinates	Cartesian Co-ordinates.	28-44
References	References.	45

Scheme S1. Optimization synthesis strategy for the crystallization of four Ca-based MOFs. Reaction conditions: metal: ligand = 2:1, solvent 6 ml (DMF: $H_2O = 2:1$).

Figure S1. Different bridging coordination modes of the carboxylate groups of each ligand in **Ca-MOF 1-4**.

Figure S2. (a) Coordination environment of Ca(II), (b) different coordination mode of the carboxylate groups of PDA ligand in **Ca-MOF 1**.

Figure S3. (a) Coordination environment of Ca(II), (b) different coordination mode of the carboxylate groups of 1,4 NDC ligand in **Ca-MOF 2**.

Ca-MOF 4

Figure S4. Different coordination modes of the carboxylate groups of each ligand in Ca-MOF 3-4.

Ta	ble S1. Crystal	and Structure	Refinement	Data for C	a-MOF (1-4)
14		and structure	Rennennenne		

CCDC No.	2234284	2234285	2284521	2284522
empirical	C ₁₃ H ₁₇ CaNO ₆	$C_{15.01}H_{13.13}CaN_{0.98}O_5$	C _{13.05} H _{15.05} Ca ₂ NO ₁₂	$C_{24}H_{24}Ca_2O_{14}$
formula				
formula weight	323.35	327.32	458.07	616.59
temperature/K	145.0	144.95	166.52	145.26
crystal system	triclinic	orthorhombic	triclinic	triclinic
space group	P-1	P212121	P-1	P1
a/Å	6.7506(13)	6.6525(13)	9.2135(19)	6.527(18)
b/Å	10.564(2)	14.409(3)	10.112(2)	7.215(18)
c/Å	10.746(2)	14.878(4)	10.455(2)	13.83(5)
α/°	77.010(7)	90	96.156(8)	74.90(13)
β/°	82.594(6)	90	98.994(7)	76.50(8)

γ/°	81.892(6)	90	113.548(7)	89.9(2)
volume/Å ³	735.5(2)	1426.2(5)	866.3(3)	610(3)
Z	2	4	2	1
ρ _{calc} (g/cm ³)	1.460	1.524	1.756	1.678
µ/mm⁻¹	0.453	0.463	0.727	0.545
F(000)	340.0	680.0	473.0	320.0
crystal size/mm ³	0.4 × 0.3 × 0.2	0.4 × 0.3 × 0.2	0.4 × 0.3 × 0.2	0.4 × 0.3 × 0.2
radiation	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα
	(λ = 0.71073)	(λ = 0.71073)	(λ = 0.71073)	(λ = 0.71073)
2θ range for data collection/°	4.96 to 49.996	5.654 to 50	4.474 to 49.998	5.86 to 68.93
index ranges	-8 ≤ h ≤ 8, -12 ≤ k ≤ 12, -12 ≤ l ≤ 12	-7 ≤ h ≤ 7, -14 ≤ k ≤ 17, -17 ≤ l ≤ 17	-9 ≤ h ≤ 10, -12 ≤ k ≤ 12, -12 ≤ l ≤ 12	-9 ≤ h ≤ 10, - 10 ≤ k ≤ 11, - 21 ≤ l ≤ 21
reflections collected	5555	13214	7790	8117
independent reflections	2550 [R _{int} = 0.0456, R _{sigma} = 0.0665]	2492 [R _{int} = 0.0660, R _{sigma} = 0.0444]	2971 [R _{int} = 0.0525, R _{sigma} = 0.0593]	6080 [R _{int} = 0.0800, R _{sigma} = 0.2056]
data/restraints/ parameters	2550/0/193	2492/0/235	2971/1/272	6080/5/310
goodness-of-fit on F ²	1.063	1.044	1.033	1.056
final R indexes [I	R ₁ = 0.0538,	R ₁ = 0.0313, wR ₂ =	$R_1 = 0.0398, wR_2 =$	$R_1 = 0.0868,$
≥ 2σ (I)]	$wR_2 = 0.1273$	0.0687	0.1055	wR ₂ = 0.1585
final R indexes [all data]	R ₁ = 0.0755, wR ₂ = 0.1385	R ₁ = 0.0395, wR ₂ = 0.0735	R ₁ = 0.0423, wR ₂ = 0.1076	$R_1 = 0.1659,$ $wR_2 = 0.1986$
largest diff. peak/hole/e.Å ⁻³	0.76/-0.34	0.20/-0.31	0.58/-1.41	0.92/-1.43

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ca1	Ca1 ¹	3.9003(14)	Ca1	02	2.432(2)
Ca1	Ca1 ²	3.9651(13)	Ca1	01	2.800(3)
Ca1	O4 ²	2.492(2)	Ca1	05	2.378(2)
Ca1	O4 ³	2.370(2)	Ca1	O6	2.407(2)
Ca1	03	2.364(2)	Ca1	C10 ²	2.906(3)
Ca1	0 ^{3²}	2.594(2)			

Table S2. Bond Lengths (Å) for Ca-MOF 1.

Symmetry transformations used to generate equivalent atoms: ¹2-X,1-Y,1-Z; ²1-X,1-Y,1-Z; ³1+X,+Y,+Z.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Ca1 ¹	Ca1	Ca1 ²	118.24(3)	Ca1 ¹	Ca1	Ca1 ²	118.24(3)
O4 ³	Ca1	Ca1 ¹	37.74(5)	O4 ³	Ca1	Ca1 ¹	37.74(5)
O4 ²	Ca1	Ca1 ¹	35.60(5)	O4 ²	Ca1	Ca1 ¹	35.60(5)
O4 ²	Ca1	Ca1 ²	86.05(5)	04 ²	Ca1	Ca1 ²	86.05(5)
O4 ³	Ca1	Ca1 ²	148.35(6)	O4 ³	Ca1	Ca1 ²	148.35(6)
O4 ³	Ca1	O4 ²	73.34(8)	O4 ³	Ca1	O4 ²	73.34(8)
O4 ²	Ca1	O3 ²	51.27(7)	04 ²	Ca1	O3 ²	51.27(7)
O4 ³	Ca1	O3 ²	121.38(7)	O4 ³	Ca1	O3 ²	121.38(7)
O4 ³	Ca1	02	128.29(8)	O4 ³	Ca1	02	128.29(8)
O4 ³	Ca1	01	79.27(7)	O4 ³	Ca1	01	79.27(7)
O4 ²	Ca1	01	72.84(7)	04 ²	Ca1	01	72.84(7)
O4 ³	Ca1	05	78.83(8)	O4 ³	Ca1	05	78.83(8)
O4 ³	Ca1	06	84.14(8)	O4 ³	Ca1	06	84.14(8)
O4 ³	Ca1	C10 ²	98.17(8)	O4 ³	Ca1	C10 ²	98.17(8)
O4 ²	Ca1	C10 ²	25.74(7)	O4 ²	Ca1	C10 ²	25.74(7)
O3 ²	Ca1	Ca1 ²	34.95(5)	O3 ²	Ca1	Ca1 ²	34.95(5)
O3 ²	Ca1	Ca1 ¹	85.22(5)	O3 ²	Ca1	Ca1 ¹	85.22(5)
03	Ca1	Ca1 ²	38.94(5)	03	Ca1	Ca1 ²	38.94(5)
03	Ca1	Ca1 ¹	152.25(6)	03	Ca1	Ca1 ¹	152.25(6)
03	Ca1	O4 ³	148.90(9)	03	Ca1	01	127.93(8)
03	Ca1	O4 ²	124.81(7)	03	Ca1	05	76.83(8)
03	Ca1	O3 ²	73.89(8)	03	Ca1	06	85.93(8)

Table S3. Bond Angles (°) for Ca-MOF 1.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
03	Ca1	02	80.25(8)	O3 ²	Ca1	C10 ²	25.67(7)
O3 ²	Ca1	01	98.74(7)	03	Ca1	C10 ²	99.56(8)
02	Ca1	Ca1 ¹	111.90(6)	02	Ca1	Ca1 ²	73.90(6)
02	Ca1	O4 ²	89.68(8)	01	Ca1	Ca1 ¹	72.45(5)
02	Ca1	O3 ²	74.35(8)	01	Ca1	Ca1 ²	117.77(6)
02	Ca1	01	49.02(7)	01	Ca1	C10 ²	83.73(8)
02	Ca1	C10 ²	79.27(8)	05	Ca1	Ca1 ²	76.94(6)
05	Ca1	Ca1 ¹	82.45(6)	05	Ca1	02	150.83(8)
05	Ca1	O4 ²	88.77(8)	05	Ca1	01	154.68(8)
05	Ca1	O3 ²	82.08(8)	05	Ca1	06	109.33(8)

Symmetry transformations used to generate equivalent atoms: ¹2-X,1-Y,1-Z; ²1-X,1-Y,1-Z; ³1+X,+Y,+Z.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ca1	Ca1 ¹	3.8839(9)	Ca1	04	2.332(2)
Ca1	Ca1 ²	3.8839(9)	Ca1	O3 ²	2.315(2)
Ca1	O2 ³	2.487(2)	Ca1	05	2.280(3)
Ca1	O2 ⁴	2.435(2)	Ca1	C1 ³	2.867(3)
Ca1	O1 ⁵	2.456(2)	Ca1	O1 ³	2.544(2)

Table S4. Bond Lengths (Å) for Ca-MOF 2.

Symmetry transformations used to generate equivalent atoms: ¹1/2+X,3/2-Y,1-Z; ²-1/2+X,3/2-Y,1-Z; ³1-X,1/2+Y,1/2-Z; ⁴3/2-X,1-Y,1/2+Z; ⁵1/2-X,1-Y,1/2+Z.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Ca1 ¹	Ca1	Ca1 ²	117.83(3)	01 ⁵	Ca1	01 ³	121.41(7)
O2 ³	Ca1	Ca1 ²	37.43(5)	O1 ³	Ca1	C1 ³	26.16(8)
O2 ⁴	Ca1	Ca1 ¹	38.37(5)	01 ⁵	Ca1	C1 ³	96.57(9)
O2 ⁴	Ca1	Ca1 ²	152.11(6)	04	Ca1	Ca1 ¹	70.26(7)
Ca1 ⁶	02	Ca1 ⁷	104.20(8)	04	Ca1	Ca1 ²	107.14(7)
C1	02	Ca1 ⁶	134.7(2)	04	Ca1	O2 ⁴	80.56(9)
C1	02	Ca1 ⁷	94.05(19)	04	Ca1	O2 ³	85.23(9)
Ca1 ⁸	01	Ca1 ⁷	101.90(8)	04	Ca1	015	97.55(9)
O2 ³	Ca1	Ca1 ¹	82.18(6)	04	Ca1	O1 ³	92.52(8)
O2 ⁴	Ca1	O2 ³	120.19(7)	04	Ca1	C1 ³	88.03(9)

Table S5. Bond Angles (°) for Ca-MOF 2.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O2 ⁴	Ca1	O1 ³	70.71(7)	O3 ²	Ca1	Ca1 ²	65.06(6)
O2 ³	Ca1	O1 ³	52.19(7)	O3 ²	Ca1	Ca1 ¹	109.25(7)
O2 ⁴	Ca1	O1 ⁵	167.87(8)	O3 ²	Ca1	O2 ³	86.09(8)
O2 ⁴	Ca1	C1 ³	95.34(9)	O3 ²	Ca1	O2 ⁴	104.55(9)
O2 ³	Ca1	C1 ³	26.04(9)	O3 ²	Ca1	01 ³	82.73(9)
O1 ³	Ca1	Ca1 ²	82.04(6)	O3 ²	Ca1	01 ⁵	78.91(8)
015	Ca1	Ca1 ²	39.87(5)	O3 ²	Ca1	04	171.29(9)
015	Ca1	Ca1 ¹	151.85(6)	O3 ²	Ca1	C1 ³	84.50(9)
01 ³	Ca1	Ca1 ¹	38.23(5)	05	Ca1	Ca1 ²	121.36(8)
015	Ca1	O2 ³	71.34(7)	05	Ca1	Ca1 ¹	120.59(8)
C1	01	Ca1 ⁸	131.8(2)	05	Ca1	O2 ³	156.46(10)
C1	01	Ca1 ⁷	91.32(18)	05	Ca1	O2 ⁴	83.14(9)
C12	04	Ca1	129.8(2)	05	Ca1	O1 ³	150.49(10)
C12	03	Ca1 ¹	138.2(2)	05	Ca1	01 ⁵	85.18(10)
C13A	05	Ca1	141.1(6)	05	Ca1	04	96.52(10)
C13B	05	Ca1	178.5(5)	05	Ca1	O3 ²	91.14(11)
02	C1	Ca1 ⁷	59.91(16)	05	Ca1	C1 ³	174.88(11)
01	C1	Ca1 ⁷	62.51(16)	C1 ³	Ca1	Ca1 ²	59.02(8)
C2	C1	Ca1 ⁷	175.4(2)	C1 ³	Ca1	Ca1 ¹	58.82(8)
05	Ca1	Ca1 ¹	82.45(6)	05	Ca1	02	150.83(8)
05	Ca1	O4 ²	88.77(8)	05	Ca1	01	154.68(8)
05	Ca1	O3 ²	82.08(8)	05	Ca1	06	109.33(8)

Symmetry transformations used to generate equivalent atoms: ¹1/2+X,3/2-Y,1-Z; ²-1/2+X,3/2-Y,1-Z; ³1-X,1/2+Y,1/2-Z; ⁴3/2-X,1-Y,1/2+Z; ⁵1/2-X,1-Y,1/2+Z; ⁶3/2-X,1-Y,-1/2+Z; ⁷1-X,-1/2+Y,1/2-Z; ⁸1/2-X,1-Y,-1/2+Z.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ca2	Ca21	3.8924(13)	Ca2	071	2.473(2)
Ca2	Ca1	3.9490(11)	Ca2	07	2.387(2)
Ca2	O81	2.492(2)	Ca2	03	2.602(2)
Ca2	04	2.437(2)	Ca2	09	2.399(2)

 Table S6.
 Bond Lengths (Å) for Ca-MOF 3.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ca2	O6	2.381(2)	Ca2	010	2.401(2)
Ca2	C10 ¹	2.828(3)	Ca1	O1 ³	2.577(2)
Ca1	Ca1 ²	3.9323(13)	Ca1	05	2.450(2)
Ca1	04	2.381(2)	Ca1	011	2.409(2)
Ca1	O2 ³	2.521(2)	Ca1	012	2.314(2)
Ca1	O2 ⁴	2.434(2)	Ca1	C1 ³	2.894(3)
Ca1	06	2.655(2)			

Symmetry transformations used to generate equivalent atoms: ¹2-X,1-Y,1-Z; ²1-X,-Y,-Z; ³+X,-1+Y,+Z; ⁴1-X,1-Y,-Z; ⁵2-X,-Y,1-Z.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Ca2 ¹	Ca2	Ca1	130.68(2)	01 ³	Ca1	06	83.49(7)
O81	Ca2	Ca2 ¹	87.14(5)	01 ³	Ca1	C1 ³	25.94(7)
O81	Ca2	Ca1	116.24(5)	05	Ca1	Ca2	68.19(6)
O81	Ca2	03	73.15(7)	05	Ca1	Ca1 ²	78.51(5)
O81	Ca2	C10 ¹	26.49(7)	05	Ca1	O2 ³	82.02(7)
04	Ca2	Ca2 ¹	128.56(5)	05	Ca1	06	51.35(7)
04	Ca2	Ca1	34.49(5)	05	Ca1	O1 ³	76.97(8)
04	Ca2	O81	82.11(7)	05	Ca1	C1 ³	74.87(8)
04	Ca2	07 ¹	122.36(7)	011	Ca1	Ca2	78.10(8)
04	Ca2	03	51.95(7)	011	Ca1	Ca1 ²	152.09(8)
04	Ca2	C10 ¹	101.10(7)	011	Ca1	O2 ³	120.33(9)
06	Ca2	Ca2 ¹	115.14(5)	011	Ca1	O2 ⁴	154.75(8)
06	Ca2	Ca1	40.90(5)	011	Ca1	06	72.24(8)
06	Ca2	O81	155.12(7)	011	Ca1	O1 ³	78.82(9)
06	Ca2	04	75.34(7)	011	Ca1	05	120.20(8)
06	Ca2	07	77.70(7)	011	Ca1	C1 ³	102.00(9)
06	Ca2	071	150.95(7)	012	Ca1	Ca2	115.31(7)
06	Ca2	03	100.15(7)	012	Ca1	Ca1 ²	85.48(8)
06	Ca2	09	82.88(7)	012	Ca1	04	83.54(8)
06	Ca2	010	89.15(8)	012	Ca1	O2 ³	92.28(8)
06	Ca2	C10 ¹	171.46(8)	012	Ca1	O2 ⁴	80.30(9)
071	Ca2	Ca2 ¹	36.03(5)	012	Ca1	06	142.73(9)
07	Ca2	Ca2 ¹	37.56(5)	012	Ca1	O1 ³	114.16(9)
07	Ca2	Ca1	99.64(5)	012	Ca1	05	160.04(9)

 Table S7. Bond Angles (°) for Ca-MOF 3.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
071	Ca2	Ca1	149.79(5)	012	Ca1	011	79.17(10)
071	Ca2	08 ¹	52.83(7)	012	Ca1	C1 ³	107.52(9)
07	Ca2	O81	122.99(7)	C1 ³	Ca1	Ca2	136.17(6)
07	Ca2	04	117.51(7)	C1 ³	Ca1	Ca1 ²	60.65(6)
07	Ca2	071	73.59(8)	C10	08	Ca2 ¹	91.77(16)
07	Ca2	03	79.72(7)	Ca1	04	Ca2	110.08(8)
071	Ca2	03	79.15(7)	C5	04	Ca2	94.27(16)
07	Ca2	09	148.86(7)	C5	04	Ca1	119.16(17)
07	Ca2	010	79.36(8)	Ca1 ⁴	02	Ca1 ⁵	105.03(7)
07	Ca2	C10 ¹	97.53(7)	C1	02	Ca1 ⁴	147.28(19)
071	Ca2	C10 ¹	26.59(7)	C1	02	Ca1 ⁵	93.89(17)
03	Ca2	Ca2 ¹	76.76(5)	Ca2	O6	Ca1	103.15(7)
03	Ca2	Ca1	70.65(5)	C6	O6	Ca2	115.10(17)
03	Ca2	C10 ¹	71.85(7)	C6	O6	Ca1	86.41(16)
09	Ca2	Ca2 ¹	148.15(6)	Ca2	07	Ca2 ¹	106.41(7)
09	Ca2	Ca1	80.42(6)	C10	07	Ca2	147.59(18)
09	Ca2	O81	82.97(7)	C10	07	Ca2 ¹	92.51(16)
09	Ca2	04	79.94(8)	C5	03	Ca2	87.17(17)
09	Ca2	071	120.72(8)	C1	01	Ca1 ⁵	91.17(16)
09	Ca2	03	128.02(7)	C6	05	Ca1	96.73(18)
09	Ca2	010	76.22(8)	C11	012	Ca1	152.0(3)
09	Ca2	C10 ¹	104.31(8)	02	C1	Ca1 ⁵	60.34(14)
010	Ca2	Ca21	77.97(6)	04	Ca1	Ca2	35.43(5)
010	Ca2	Ca1	127.09(7)	04	Ca1	Ca1 ²	115.32(5)
010	Ca2	O81	107.14(9)	04	Ca1	O2 ³	152.03(7)
010	Ca2	04	152.97(8)	04	Ca1	O2 ⁴	77.07(7)
010	Ca2	071	81.39(8)	04	Ca1	06	71.33(7)
010	Ca2	03	154.69(8)	04	Ca1	013	153.68(7)
010	Ca2	C10 ¹	96.99(9)	04	Ca1	05	92.54(7)
C10 ¹	Ca2	Ca21	60.80(6)	04	Ca1	011	86.13(9)
C10 ¹	Ca2	Ca1	134.84(6)	04	Ca1	C1 ³	167.21(8)
Ca1 ²	Ca1	Ca2	129.76(3)	O2 ⁴	Ca1	Ca2	97.74(5)
O2 ³	Ca1	Ca2	150.19(5)	O2 ⁴	Ca1	C1 ³	98.09(8)
O2 ³	Ca1	Ca1 ²	36.72(5)	O2 ³	Ca1	C1 ³	25.77(7)
O2 ⁴	Ca1	Ca1 ²	38.25(5)	06	Ca1	Ca2	35.95(4)
O2 ⁴	Ca1	O2 ³	74.97(7)	06	Ca1	Ca1 ²	129.85(5)
O2 ³	Ca1	06	122.64(6)	06	Ca1	C1 ³	101.51(7)
O2 ⁴	Ca1	06	118.47(7)	013	Ca1	Ca2	119.27(6)
O2 ³	Ca1	O1 ³	51.26(7)	013	Ca1	Ca1 ²	86.54(5)
O2 ⁴	Ca1	013	123.41(7)	C8	C10	Ca21	170.81(18)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O2 ⁴	Ca1	05	79.75(7)	07	C10	Ca21	60.90(14)

Symmetry transformations used to generate equivalent atoms: ¹2-X,1-Y,1-Z; ²1-X,-Y,-Z; ³+X,-1+Y,+Z; ⁴1-X,1-Y,-Z; ⁵+X,1+Y,+Z.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ca2	Ca1 ¹	3.606(11)	Ca2	010	2.438(11)
Ca2	Ca1	3.607(10)	Ca1	O6 ²	2.569(15)
Ca2	O6 ²	2.344(14)	Ca1	012 ²	2.337(13)
Ca2	012	2.548(14)	Ca1	013	2.347(14)
Ca2	013	2.455(14)	Ca1	O5 ²	2.464(13)
Ca2	05	2.344(13)	Ca1	014	2.579(13)
Ca2	011	2.408(11)	Ca1	O9 ²	2.539(13)
Ca2	014	2.552(13)	Ca1	015	2.405(11)
Ca2	09	2.581(14)	Ca1	016	2.439(10)

Table S8. Bond Lengths (Å) for Ca-MOF 4.

Symmetry transformations used to generate equivalent atoms: ¹1+X,+Y,+Z; ²-1+X,+Y,+Z.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Ca1 ¹	Ca2	Ca1	129.6(2)	015	Ca1	Ca2 ²	111.3(4)
O6 ²	Ca2	Ca1	45.3(3)	015	Ca1	Ca2	108.7(4)
O6 ²	Ca2	Ca1 ¹	169.4(3)	015	Ca1	O6 ²	142.6(4)
O6 ²	Ca2	012	131.7(4)	015	Ca1	O5 ²	149.1(4)
O6 ²	Ca2	013	80.1(4)	015	Ca1	014	77.1(4)
O6 ²	Ca2	011	80.8(5)	015	Ca1	O9 ²	81.7(4)
O6 ²	Ca2	014	69.3(5)	015	Ca1	016	111.9(4)
O6 ²	Ca2	09	144.1(4)	015	Ca1	C13 ²	154.9(3)
O6 ²	Ca2	010	75.2(5)	016	Ca1	Ca2	97.4(3)
012	Ca2	Ca1	90.1(4)	016	Ca1	Ca2 ²	94.9(4)
012	Ca2	Ca1 ¹	40.2(3)	016	Ca1	O6 ²	95.8(4)
012	Ca2	014	93.6(4)	016	Ca1	O5 ²	86.7(4)
012	Ca2	09	65.3(4)	016	Ca1	014	140.0(4)
013	Ca2	Ca1 ¹	92.0(3)	016	Ca1	O9 ²	139.5(4)
013	Ca2	Ca1	40.2(3)	016	Ca1	C13 ²	93.2(4)

Table S9. Bond Angles (°) for Ca-MOF 4.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
013	Ca2	012	51.8(4)	C13 ²	Ca1	Ca2	67.3(4)
013	Ca2	014	68.5(4)	C13 ²	Ca1	Ca2 ²	63.4(4)
013	Ca2	09	104.5(4)	Ca2 ¹	O6	Ca1 ¹	94.4(4)
05	Ca2	Ca1	160.5(3)	C13	O6	Ca2 ¹	175.7(10)
05	Ca2	Ca1 ¹	42.7(3)	C13	O6	Ca1 ¹	89.9(9)
05	Ca2	O6 ²	137.7(4)	Ca1 ¹	012	Ca2	95.0(5)
05	Ca2	012	77.6(4)	C12	012	Ca2	91.5(10)
05	Ca2	013	122.8(4)	C12	012	Ca1 ¹	173.4(11)
05	Ca2	011	87.9(4)	Ca1	013	Ca2	97.3(4)
05	Ca2	014	148.8(4)	C12	013	Ca2	95.4(9)
05	Ca2	09	69.8(4)	C12	013	Ca1	152.3(10)
05	Ca2	010	71.4(5)	Ca2	05	Ca1 ¹	97.1(5)
011	Ca2	Ca1	110.6(4)	C13	05	Ca2	150.4(10)
011	Ca2	Ca1 ¹	109.3(4)	C13	05	Ca1 ¹	96.7(9)
011	Ca2	012	143.0(4)	Ca2	014	Ca1	89.3(4)
011	Ca2	013	148.4(4)	Ca1 ¹	09	Ca2	89.5(4)
011	Ca2	014	81.3(4)	013	Ca1	O6 ²	77.7(4)
011	Ca2	09	77.7(4)	013	Ca1	O5 ²	122.8(4)
011	Ca2	010	111.3(4)	013	Ca1	014	69.6(4)
014	Ca2	Ca1	45.6(3)	013	Ca1	O9 ²	148.5(4)
014	Ca2	Ca1 ¹	114.5(3)	013	Ca1	015	87.2(5)
014	Ca2	09	79.3(3)	013	Ca1	016	71.9(5)
09	Ca2	Ca1	118.8(3)	013	Ca1	C13 ²	102.3(5)
09	Ca2	Ca1 ¹	44.8(3)	O5 ²	Ca1	Ca2 ²	40.2(3)
010	Ca2	Ca1 ¹	97.6(4)	O5 ²	Ca1	Ca2	92.1(4)
010	Ca2	Ca1	95.4(4)	O5 ²	Ca1	O6 ²	51.8(3)
010	Ca2	012	96.2(4)	05 ²	Ca1	014	104.9(4)
010	Ca2	013	87.6(4)	05 ²	Ca1	O9 ²	68.8(4)
010	Ca2	014	139.8(4)	05 ²	Ca1	C13 ²	25.1(4)
010	Ca2	09	139.7(4)	014	Ca1	Ca2	45.0(3)
Ca2 ²	Ca1	Ca2	129.6(2)	014	Ca1	Ca2 ²	118.8(3)
O6 ²	Ca1	Ca2 ²	89.9(3)	014	Ca1	C13 ²	84.5(4)
O6 ²	Ca1	Ca2	40.4(3)	09 ²	Ca1	Ca2 ²	45.7(3)
O6 ²	Ca1	014	65.6(4)	09 ²	Ca1	Ca2	114.6(3)
O6 ²	Ca1	C13 ²	26.9(4)	O9 ²	Ca1	O6 ²	93.5(4)
012 ²	Ca1	Ca2 ²	44.7(4)	09 ²	Ca1	014	79.2(3)
012 ²	Ca1	Ca2	169.0(3)	09 ²	Ca1	C13 ²	78.2(4)
012 ²	Ca1	O6 ²	131.0(4)	012 ²	Ca1	C13 ²	104.5(5)
012 ²	Ca1	013	138.3(4)	013	Ca1	Ca2	42.5(3)
012 ²	Ca1	O5 ²	79.4(5)	013	Ca1	Ca2 ²	160.6(3)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
012 ²	Ca1	014	144.0(4)	O12 ²	Ca1	015	81.9(5)
012 ²	Ca1	O9 ²	69.0(4)	012 ²	Ca1	016	75.3(5)

Symmetry transformations used to generate equivalent atoms: ¹1+X,+Y,+Z; ²-1+X,+Y,+Z.

D-H···A	d(D-H)	d(H…A)	d(D…A)	L (DHA)	Symmetry Code
O9-H9A…O7	0.99	1.76	2.702(19)	159	x,1+y,-1+z
O9-H9B…O2	0.99	1.74	2.697(18)	161	x,y,1+z
010-H10A…01	0.87	2.19	2.812(18)	128	-1+x,-1+y,1+z
010-H10A…O6	0.87	2.50	2.912(18)	110	-1+x,y,z
011-H11A…O2	0.88	1.91	2.739(19)	155	x,y,1+z
011-H11B…01	0.89	1.99	2.771(19)	147	-1+x,y,1+z
014-H14A…O8	0.99	1.76	2.722(18)	162	1+x,1+y,-1+z
014-H14B…O1	0.99	1.77	2.714(19)	159	x,y,1+z
015-H15A…08	0.87	1.92	2.753(19)	160	1+x,1+y,-1+z
015-H15B…07	0.88	1.91	2.76(2)	164	x,1+y,-1+z
016-H16A…07	0.87	2.05	2.777(19)	140	x,y,-1+z
O16-H16B…O8	0.87	2.32	3.134(19)	156	1+x,y,-1+z

Table S10. Hydrogen bonds for Ca-MOF-4 (Å) and (°).

Figure S5. PXRD pattern of Ca-MOF-1 (a), Ca-MOF-2 (b), Ca-MOF-3 (c) and Ca-MOF-4 (d) in methanol.

Figure S6. PXRD pattern of Ca-MOF-1 (a), Ca-MOF-2 (b), Ca-MOF-3 (c) and Ca-MOF-4 (d) at different pH medium.

Figure S7. FT-IR of Ca-MOF-1 (a), Ca-MOF-2 (b), Ca-MOF-3 (c) and Ca-MOF-4 (d).

Figure S8. Elemental mapping of Ca-MOFs.

Thermo-gravimetric analysis

Figure S9. TGA and DTG plot of Ca-MOF-1 (a), Ca-MOF-2 (b), Ca-MOF-3 (c) and Ca-MOF-4 (d).

QTAIM Analysis:

QTAIM analysis is the topological analysis of atoms in a molecule. This formalism is employed by AIMAII program, where the classical definition of a 'bond' is considered to be the 'bond path', indicating a line of maximum electron density linking the bonded pairs of atoms in an equilibrium geometry. The interaction of two atoms at a certain distance creates a critical point (Bond Critical Point-BCP) in the electron density [p(r)] where the gradient $\nabla p(r)$ vanishes. The strength of this interaction in varied molecular systems largely depends upon two important parameters, viz., electron density and its Laplacian [$\nabla^2 p(r)$] at the concerned BCP.

Electronic energy density [H(r)] is defined as

H(r) = G(r) + V(r)

Where H(r), G(r) and V(r) are the electronic, kinetic and potential energy densities, respectively. The ratio [-G(r)/V(r)] predicts the nature of the bonding interaction. [-G(r)/V(r)]>1 indicates non-covalent interaction whereas 0.5 < [-G(r)/V(r)] < 1 specifies partly covalent interaction. Negative values of both $\nabla^2 \rho(r)$ and H(r) indicate the interaction to be strong, for medium interaction H(r) is negative but $\nabla^2 \rho(r)$ is positive, and the interactions are weak when both are positive.

Table S11: AIM analysis of **EM-2** concerning the epoxide binding with the metal centre, at B3LYP/6-31G (d,p) level.

System	ВСР	ρ(r)	∇² ρ(r)	G	V	Н	-G/V
EM-2	074-Ca22	0.025	0.120	0.027	-0.024	0.003	1.121

Figure S10: GC analysis of styrene oxide conversion under standard conditions.

Figure S11: Mass fragmentation of styrene oxide and the reaction product.

Figure S12: GC analysis of cyclohexane oxide using over different Ca-MOFs.

Figure S13: Mass fragmentation of cyclohexane oxide and the reaction product.

Figure S14: GC analysis for the allyl-glycidyl ether conversion.

Figure S15: GC analysis for the phenyl glycidyl ether conversion.

Figure S16: GC analysis of the reaction mixture for tertiary butyl-glycidyl ether.

Figure S17: Recyclablity of Ca-MOFs for consecutive four reaction cycles in the methanolysis of styrene oxide.

Figure S18. TEM images of Ca-MOFs after catalysis.

Figure S19. DFT optimized structures of the model MOF structures (a) and corresponding epoxide bonded complexes (b).

01			
С	-5.31392800	1.05589300	-0.79938300
С	-5.05694100	1.12306500	0.57700000
С	-5.91476500	0.43546100	1.44520400
С	-6.99692100	-0.29584200	0.95748600
С	-7.24962900	-0.36173500	-0.41791100
С	-6.39655200	0.32567200	-1.28826500
Н	-4.65279500	1.57403400	-1.48689900
Н	-5.73385200	0.47462200	2.51607900
Н	-7.65905900	-0.81127200	1.64749500
Н	-6.58154600	0.29230500	-2.35898100
С	-8.43218100	-1.15941500	-0.94810700
Н	-8.41639900	-1.17724500	-2.04021100
Н	-8.39554100	-2.18835800	-0.57839300
С	-3.86872100	1.89935900	1.11141900
Н	-3.82611900	2.88569700	0.63594400
С	-9.74514500	-0.56844500	-0.46941700
0	-10.28974800	-0.83238700	0.58013000
0	-10.24248600	0.33884900	-1.34353000
Н	-11.04959000	0.69319400	-0.93263700
С	-2.54661200	1.18471300	0.80827400
0	-2.16769700	1.12812100	-0.41378100
0	-1.89917300	0.66046000	1.75593800
Н	-3.95356300	2.03432200	2.19128200
Ca	-0.16996400	-0.18574000	0.29730400
С	5.04631900	-2.17616700	1.26975700
С	4.27620700	-2.51195800	0.14915800
С	4.78735000	-2.20811900	-1.11953500
С	6.02612800	-1.58559100	-1.26075600
С	6.78893300	-1.24042900	-0.13882600
С	6.28361000	-1.54942600	1.12833100
Н	4.67263100	-2.41004500	2.26310900
Н	4.20292100	-2.45644300	-1.99998800

Н	6.40517600	-1.36597700	-2.25618700
Н	6.86300200	-1.30105700	2.01451600
С	8.12089100	-0.54661700	-0.28698600
Н	8.81377000	-0.82729700	0.51372700
Н	8.61838000	-0.83518900	-1.22170100
С	2.91418200	-3.14865000	0.31221600
Н	2.85073500	-3.69918700	1.25286300
Н	2.72824100	-3.84723000	-0.51134200
С	1.78645300	-2.10309400	0.28441100
0	1.65213400	-1.39553300	-0.76321900
0	1.04333900	-1.98895600	1.30581900
С	8.03736300	0.97116800	-0.29770600
0	7.03282100	1.64547600	-0.38294800
0	9.27082300	1.52250400	-0.21516600
Н	9.14493200	2.48580500	-0.25045600
0	-1.88510300	-1.47380400	-0.95631700
Н	-2.45955900	-2.15790000	-0.59242200
Н	-2.41799200	-0.65247100	-1.00836800
С	2.14453100	2.52505400	0.49660400
0	1.26327200	1.65294300	0.48151400
Ν	3.26209800	2.51831000	-0.23472300
Н	2.05059400	3.40314000	1.15406100
С	4.20794000	3.62746000	-0.17962700
Н	3.90710200	4.33391600	0.59734000
Н	5.21072700	3.24997400	0.03525400
Н	4.23306800	4.15389400	-1.14113600
С	3.57136200	1.42551400	-1.15938600
Н	2.91952700	0.57388500	-0.96513200
Н	3.43184700	1.76252100	-2.19373000
Н	4.61322900	1.13036900	-1.01835400

M-2

01			
С	5.51724800	1.53191300	1.53320900
С	5.02512400	1.51181600	0.24618200
С	5.47959800	0.48949300	-0.65211200
С	6.45428900	-0.46973000	-0.20536200
С	6.93073100	-0.41032900	1.14527500
С	6.45637900	0.57773500	1.97980000
Н	5.17431400	2.29722500	2.22345700
Н	6.81202800	0.62856900	3.00539600
С	7.92984000	-1.42529400	1.67483500
Н	7.97194100	-1.34070800	2.76510700
Н	7.63542200	-2.44743000	1.42609900
С	4.02584900	2.56208700	-0.19700200
Н	3.99277700	3.35236800	0.55922300
С	9.34181200	-1.23210400	1.14663000
0	9.92883900	-1.98683200	0.40164500
0	9.90173400	-0.09114700	1.61368500
Н	10.78453600	-0.04121800	1.20958800
С	2.59919800	2.01760300	-0.34055000
0	2.00252500	1.60600800	0.70293500
0	2.06654100	1.99070300	-1.49749900
Н	4.32034300	3.01385600	-1.14762600
Са	0.12101900	0.95043200	-0.59267500
C	-4.46951500	-1.77764500	-2.04525200
C	-3.73365300	-2.13300400	-0.93304000
C	-4.36579100	-2.09581800	0.35496400
C	-5.74938600	-1.71317800	0.45542000
C	-6.46369900	-1.33063700	-0.72536000
C	-5.81683100	-1.37312900	-1.94091400
н	-3 99977300	-1 80606000	-3 02413500
н	-6 35241100	-1 09093300	-2 84393100
C	-7 90172100	-0.87864400	-0 65913400
н	-8 33406000	-0 85480700	-1 66672700
н	-8 53585700	-1 56618500	-0.08857000
C	-2 27952500	-2 52628700	-1 11313600
н	-2 12886200	-2 90351400	-2 12602700
н	-1 99251500	-3 31125900	-0.40828000
C C	-1 34624500	-1 3738/800	-0.91383800
0	1.34024300	-0.01100200	0.27254600
0	-0.85027200	-0.91109200	1 94004700
C C	-0.83027200 8 00622200	-0.70794800	-1.94004700
	-8.09022200	0.51545200	-0.08452000
0	-1.2552/000	1.340/9100	0.12009900
U L	-9.40302000	0.70217700	0.12100100
	-9.4593/000		0.4850/300
L O	-2.59/29900	3.19114100	-0.19426300
U	-1.5/111600	2.51202900	-0.36994500

N	-3.66390600	2.82223900	0.51492700
Н	-2.68504400	4.19145600	-0.64298400
С	-4.80636000	3.71606200	0.68328100
Н	-4.66050800	4.62037700	0.08856100
Н	-5.72132000	3.21039600	0.36507500
Н	-4.90953400	4.00107400	1.73651600
С	-3.74251000	1.52062200	1.18132200
Н	-2.91615400	0.88585200	0.86559100
Н	-3.69860700	1.65654700	2.26761000
Н	-4.69078100	1.04629500	0.92001300
С	4.99280700	0.39386200	-1.98592700
С	6.90884400	-1.45660400	-1.12406800
С	5.44927100	-0.58332400	-2.84305000
С	6.42014200	-1.51196900	-2.41057500
Н	4.23083500	1.08760200	-2.32350300
Н	5.06038300	-0.63829400	-3.85577000
Н	6.78411900	-2.27369100	-3.09403300
Н	7.66834400	-2.16582600	-0.81476000
С	-6.36156900	-1.71150500	1.73989700
С	-3.66526000	-2.42086200	1.55016600
С	-5.65740900	-2.05601700	2.87138600
Н	-2.60703800	-2.64130800	1.49470600
С	-4.29255300	-2.40507400	2.77580600
Н	-3.73408900	-2.65660600	3.67248300
Н	-6.14976000	-2.05144200	3.83956500
Н	-7.40639600	-1.43443600	1.83402800

M-3

Ca	-0.04229200	-2.70970400	-0.55472400
0	2.01982700	1.69810000	1.61715000
0	-1.55443000	-2.39594600	1.22309600
0	-7.91405300	0.50297800	1.44297900
0	1.39318200	-1.01982300	0.40477300
0	1.78850600	1.72172800	-0.60991000
0	-1.61615300	-0.31241100	2.08485700
0	-7.10935600	-1.03110500	2.80499800
0	2.40581100	-2.47254900	-0.92667900
0	1.13158300	-4.77410300	-0.25256200
Н	1.19602100	-5.57162400	0.28441800
Н	2.02924800	-4.41975500	-0.39091700
С	-7.04064800	-0.31799600	1.66609000
С	2.44282900	1.47609600	0.44926100
С	-2.11206900	-1.28128100	1.44950600
С	3.73844500	0.71080000	0.28513200
С	3.71797900	-0.64918000	-0.07804000
С	-3.45188700	-1.04142800	0.76896600
С	-5.84739100	-0.56478700	0.79182600
С	-4.63445700	-0.81812200	1.46156800
Н	-4.59965500	-0.79463000	2.54715600
С	2.43663600	-1.42213400	-0.21858900
С	4.97114800	1.32799100	0.46430600
Н	4.99594600	2.36765100	0.76448100
0	7.08951600	-2.90085200	-0.31602700
0	8.53907800	1.22407800	0.00933000
0	8.54930100	-1.26534400	-0.59541600
0	7.21543400	2.59716000	1.15060900
С	7.32481600	-1.70901500	-0.34038800
С	6.17393700	-0.71881800	-0.11807800
С	6.18874300	0.65279900	0.26046800
С	7.41996600	1.47104200	0.44746000
С	4.92097000	-1.32486200	-0.26903300
Н	4.90338300	-2.37411900	-0.53247700
0	-8.09195200	0.42838700	-1.13557400
0	-1.18214800	-0.50821600	-1.00807700
0	-7.00190600	-0.69623100	-2.70186600
0	-1.99394900	-2.34383100	-1.97029300
С	-2.15777700	-1.28387500	-1.31797800
С	-7.05153300	-0.28108700	-1.56268600
С	-5.86751000	-0.52428900	-0.62524900
С	-3.47646200	-1.01728300	-0.63845400
С	-4.67090700	-0.78850400	-1.30907900
Н	-4.70811500	-0.80769800	-2.39205700
Н	8.61395100	-0.28076200	-0.51383500
Н	8.06997300	3.06026000	1.17729600
Н	-6.43471800	-1.72608600	2.80669500

Н	-8.01860700	0.66884000	-0.17908700
С	-0.64245900	3.83833200	-0.46079100
0	-1.17661000	2.94378200	0.22369700
Ν	-1.24310000	4.98591400	-0.80075500
Н	0.38527000	3.72051600	-0.83205400
С	-0.55669800	5.98719700	-1.60537900
Н	0.44829800	5.63892000	-1.85037700
Н	-1.10341300	6.16934500	-2.53687900
Н	-0.47921000	6.93184700	-1.05613600
С	-2.60949000	5.27766400	-0.38057500
Н	-2.98033800	4.43937400	0.20653700
Н	-2.62965800	6.18911500	0.22618600
Н	-3.24927600	5.42419700	-1.25710900

M-4

01			
Са	0.83854800	1.99997800	0.65863900
Са	-0.84968800	-1.25816300	-0.40848600
0	-1.36838500	0.94798800	0.09666400
0	1.36838600	-0.21893700	0.18619000
0	-1.34855800	3.02526700	0.86917100
0	1.33411400	-2.25901300	-0.67936700
С	-1.98888700	2.03284800	0.43762200
С	4.23409400	-0.29171800	0.43437400
С	3.46731800	-1.38018200	-0.06606600
С	-3.47591500	2.10276300	0.31600100
С	-5.62549700	1.08510600	-0.20205900
С	-4.21365500	1.01148500	-0.10289600

Н	-3.72811200 0.07682000 -0.36316700
С	1.98052400 -1.29183800 -0.19961700
С	5.59961400 -0.40160900 0.54134300
Н	6.18483000 0.43267600 0.91737000
С	5.50058000 -2.69633300 -0.33704700
С	6.27172100 -1.59620200 0.16370300
С	4.09621200 -2.55409700 -0.44119600
Н	3.49455700 -3.37413200 -0.81877600
С	-6.28421300 2.31429400 0.12753600
С	-4.13309300 3.32134100 0.64642300
С	-5.49838100 3.42290900 0.55072700
Н	-5.99944600 4.35437900 0.79905400
Н	3.74700500 0.63092000 0.72925600
н	-3.52715100 4.15954600 0.96993200
С	7.67640600 -1.73730500 0.26569100
С	6.17068800 -3.89350900 -0.71360100
С	8.30038300 -2.91269900 -0.10821900
С	-6.40376700 -0.03053500 -0.61713100
С	-7.69358600 2.38103500 0.02243000
С	-7.77148300 0.06112500 -0.70827000
С	7.53515900 -4.00455500 -0.60424000
н	8.28174200 -0.91836200 0.64117700
Н	8.04153600 -4.91810800 -0.89195000
Н	5.58174000 -4.72460900 -1.09135900
С	9.77988500 -2.98599500 0.02840100
0	10.48759100 -2.09125300 0.44679200
0	10.28910700 -4.18013800 -0.36832400
Н	11.24919300 -4.11328400 -0.23601100
С	-8.42637700 1.28207000 -0.38703200
Н	-5.89203700 -0.95914500 -0.85277100
Н	-8.36363400 -0.79032400 -1.02152700
Н	-8.21752800 3.30032700 0.26437200
С	-9.90420800 1.42913700 -0.47266600
0	-10.52184100 2.44191800 -0.20872800
0	-10.52632600 0.29550500 -0.88590300
Н	-11.47409000 0.50806800 -0.90261400
С	4.21435000 4.44764700 -0.24533700
С	5.30898200 4.53116600 0.62482200
С	6.39235500 5.34886300 0.30968700
С	6.38699300 6.08842000 -0.87569400
С	5.29676100 6.00875000 -1.74596100
С	4.21320900 5.19071200 -1.43294300
Н	5.29288100 3.94832700 1.53921300
Н	7.24061200 5.41063600 0.98527100
Н	7.23179700 6.72586200 -1.12109200
Н	5.29344100 6.58414700 -2.66713700
н	3.35655700 5.11267500 -2.09312700

С	3.04848400	3.57004400	0.08913600
0	3.06015400	2.91637000	1.19380300
0	2.07987200	3.48425700	-0.72786800
С	-4.09918400	-3.92007700	0.37381000
С	-4.08642800	-4.66752000	1.55856500
С	-5.09918900	-5.58973300	1.81385100
С	-6.12716100	-5.77471800	0.88578100
С	-6.14106400	-5.03592400	-0.29986900
С	-5.13048200	-4.11091300	-0.55520400
Н	-3.27723800	-4.50983100	2.26286500
Н	-5.08841800	-6.16541100	2.73474700
Н	-6.91579500	-6.49461000	1.08566700
Н	-6.93841900	-5.18240600	-1.02271600
Н	-5.12094400	-3.53086500	-1.47164700
С	-3.00906100	-2.92930600	0.10340900
0	-3.07020800	-2.21236400	-0.96000800
0	-2.05197800	-2.81867200	0.92992900
0	-1.21107600	-1.59518600	-2.80365600
Н	-0.69699200	-2.19439100	-3.35832700
0	1.18312300	2.39529600	3.04754900
Н	0.68153000	3.01903900	3.58632700
Н	2.05285800	2.80005600	2.85723200
Н	-2.07200100	-2.02228200	-2.62287000

Epoxide (E)

2.58788900	0.02112100	0.74351800
1.60256000	0.57915500	-0.20624400
2.48862900	-0.48157100	-0.59149700
3.49821600	0.57634400	0.97096200
2.23870800	-0.65267700	1.52551400
1.84077600	1.54428700	-0.65732500
0.14660500	0.26436300	-0.11790400
-0.78852700	1.30438300	-0.05885100
-0.30153300	-1.06176900	-0.07974200
-2.15031900	1.02489100	0.05541400
-0.44882600	2.33649000	-0.10213200
-1.66302300	-1.34004500	0.03040800
0.42617900	-1.86313500	-0.15887400
-2.59105400	-0.29867200	0.10209200
-2.86659500	1.84009300	0.10189400
-2.00157700	-2.37196300	0.05374400
-3.65151000	-0.51743300	0.18605300
	2.58788900 1.60256000 2.48862900 3.49821600 2.23870800 1.84077600 0.14660500 -0.78852700 -0.30153300 -0.30153300 -2.15031900 -0.44882600 -1.66302300 0.42617900 -2.59105400 -2.86659500 -2.00157700 -3.65151000	2.587889000.021121001.602560000.579155002.48862900-0.481571003.498216000.576344002.23870800-0.652677001.840776001.544287000.146605000.26436300-0.788527001.30438300-0.30153300-1.06176900-2.150319001.02489100-0.448826002.33649000-1.66302300-1.340045000.42617900-1.86313500-2.59105400-0.29867200-2.866595001.84009300-2.00157700-2.37196300-3.65151000-0.51743300

EM-1

01			
С	3.92762500	-2.88765300	-0.10696200
С	3.89992200	-2.04872700	1.01600100
С	5.07836900	-1.37970800	1.37086500
С	6.24897600	-1.53969000	0.63062700
С	6.27184800	-2.37645100	-0.49124000
С	5.09794800	-3.04972900	-0.84722500
Н	3.02021000	-3.40429100	-0.40275900
Н	5.08042000	-0.72720300	2.24018900
Н	7.15620200	-1.02222500	0.92948900
Н	5.09840600	-3.70928300	-1.71136000
С	7.54947300	-2.54932700	-1.30006100
Н	7.35899600	-3.16997500	-2.17846500
Н	7.92585400	-1.57686400	-1.63130500
С	2.62593000	-1.85617000	1.81499900
Н	2.18563900	-2.83229700	2.04924700
С	8.64454900	-3.17997100	-0.46064300
0	9.40398100	-2.57711600	0.26619000
0	8.66465300	-4.52880800	-0.58091100
Н	9.35987300	-4.84199300	0.02273600
С	1.57258800	-1.05799500	1.03346100
0	1.06147300	-1.60247400	-0.00010200
0	1.26166500	0.10079800	1.42685700
Н	2.83731400	-1.33739600	2.75225600
Ca	-0.30749000	0.48994400	-0.46661200
С	-5.90202700	0.87645600	-1.97990600
С	-4.92521500	-0.01268900	-2.44433000
С	-5.11949300	-1.38311900	-2.22039900
С	-6.24890500	-1.84374900	-1.54786800
С	-7.21746000	-0.95113500	-1.07227000
С	-7.03121300	0.41512100	-1.30347700
Н	-5.77649500	1.94254600	-2.15039100

Н	-4.36764100	-2.08602800	-2.56368800
Н	-6.37928400	-2.91182000	-1.38910300
Н	-7.77519900	1.12719200	-0.95352600
С	-8.42813800	-1.44749400	-0.32096500
Н	-9.29895200	-0.80344400	-0.48679600
Н	-8.73032300	-2.44469200	-0.66533800
С	-3.67971700	0.49617500	-3.13305600
Н	-3.82698200	1.51023800	-3.50980000
Н	-3.43218900	-0.15131700	-3.98277900
С	-2.45388000	0.49530500	-2.20057500
0	-2.13135500	-0.60326900	-1.64460500
0	-1.82164100	1.57649400	-2.03136600
С	-8.23142800	-1.55454900	1.18249800
0	-7.19196200	-1.43005700	1.79451900
0	-9.40276300	-1.83388400	1.80279800
Н	-9.19949900	-1.90913100	2.75042400
0	1.51467500	0.01717900	-2.09157700
Н	2.34278400	0.50619900	-2.16440300
Н	1.70938800	-0.79285000	-1.57410100
С	-2.63717500	0.78365900	2.24765500
0	-1.81624800	0.96565400	1.33687100
Ν	-3.50971300	-0.22530400	2.34074900
Н	-2.70507700	1.49515500	3.08602900
С	-4.38025800	-0.36117200	3.50315100
Н	-4.27468900	0.51218800	4.15098800
Н	-5.42014700	-0.45503800	3.18042900
Н	-4.11232100	-1.25617500	4.07742600
С	-3.59998800	-1.27207800	1.32087700
Н	-3.11166700	-0.95020500	0.40100300
Н	-3.12413100	-2.19173000	1.68254200
Н	-4.65463500	-1.47046200	1.11798800
С	0.22800300	3.67077400	0.82457100
С	1.60799600	3.14942800	0.88778000
0	0.71224400	2.77404800	-0.19717900
Н	-0.54194600	3.24407100	1.46348200
Н	0.06370400	4.68940000	0.47944800
Н	1.79780900	2.32505800	1.57203400
С	2.78891000	3.97679500	0.51083800
С	3.89992400	4.00998700	1.36199100
С	2.80615100	4.73334300	-0.66862100
С	5.00513000	4.80214200	1.05035000
Н	3.89758400	3.41353700	2.27069900
С	3.91419400	5.51873400	-0.98187000
Н	1.95666300	4.68435700	-1.34292600
С	5.01435400	5.55912100	-0.12190800
Н	5.86069500	4.82140600	1.71898100
Н	3.92103600	6.09748100	-1.90096100

01			
С	-4.73426900	-2.91074600	1.16299700
С	-4.43053300	-2.46791400	-0.10646200
С	-5.17266900	-1.36450000	-0.64699900
С	-6.22200200	-0.75962100	0.13012600
С	-6.49631500	-1.25542200	1.44714600
С	-5.75423500	-2.31001300	1.93215000
Н	-4.17493100	-3.74030200	1.58569600
Н	-5.95550600	-2.69158500	2.92959300
С	-7.57201600	-0.62901400	2.31855800
Н	-7.45690200	-1.00140900	3.34106800
Н	-7.48704900	0.45990400	2.34356100
С	-3.32849600	-3.13719300	-0.90089400
Н	-3.03668200	-4.05794900	-0.38612000
С	-8.98896700	-0.94965700	1.87105600
0	-9.78093600	-0.15741100	1.40822900
0	-9.28908800	-2.25705900	2.05207700
Н	-10.19564500	-2.37319900	1.72060800
С	-2.06479900	-2.27027600	-1.02928500
0	-1.45486900	-1.94243800	0.03642200
0	-1.69110900	-1.91012300	-2.18849900
Н	-3.66739200	-3.40521500	-1.90486700
Са	0.11654400	-0.62840300	-1.24269900
С	5.35427200	1.49305500	-1.54578700
С	4.50062800	1.72514300	-0.48633900
С	4.92353200	1.35262800	0.83401300
С	6.23131100	0.78495200	1.02720800
С	7.07514200	0.55246200	-0.10636900
С	6.62294300	0.90445700	-1.35878000

Н	5.04363600	1.77260600	-2.54832000
Н	7.25706100	0.73505300	-2.22542700
С	8.44537200	-0.06020600	0.05738200
Н	8.99624900	0.00986500	-0.88877200
Н	9.05555500	0.46910800	0.79630400
С	3.15119500	2.36213300	-0.75774300
Н	3.20460300	2.93546000	-1.68487600
Н	2.87361800	3.04559400	0.04987600
С	2.03351100	1.31791100	-0.91715800
0	1.58054400	0.75211300	0.13304400
0	1.62362200	1.05325100	-2.08374100
С	8.43283700	-1.53583200	0.42326800
0	7.54419700	-2.32967800	0.19995100
0	9.59040200	-1.89964100	1.02453800
Н	9.52473600	-2.85580400	1.18936900
С	2.71946800	-3.05712700	-1.52430100
0	1.75962200	-2.27505500	-1.49186400
N	3.69617300	-3.13114100	-0.61457700
Н	2.83129500	-3.77435200	-2.35189900
С	4.75797200	-4.12587900	-0.72198800
Н	4.65614800	-4.67438000	-1.66113100
Н	5.73374800	-3.63514000	-0.68799100
Н	4.69578700	-4.83949100	0.10809200
С	3.72474600	-2.24996800	0.55263300
Н	3.03540700	-1.41929000	0.40729900
Н	3.43786900	-2.80614100	1.45277900
Н	4.73859700	-1.86473100	0.68102800
С	-4.89597000	-0.84096100	-1.94142900
С	-6.94959300	0.32474400	-0.43601600
С	-5.61667600	0.21672200	-2.45197700
С	-6.65490700	0.80139700	-1.69471500
Н	-4.08607900	-1.26666800	-2.52333100
Н	-5.38591200	0.59963900	-3.44190600
Н	-7.22701900	1.62798000	-2.10616100
Н	-7.76573700	0.77036400	0.12151600
С	6.64112800	0.45666800	2.34973600
С	4.08601600	1.52381400	1.97129900
С	5.81100200	0.65926800	3.42911700
Н	3.07348500	1.87737700	1.82513700
С	4.51667100	1.18903900	3.23569800
Н	3.85601500	1.32619900	4.08666100
Н	6.14866800	0.40285400	4.42914700
Н	7.62858000	0.03810900	2.51567000
С	-2.50983600	1.10614400	0.26741800
С	-1.41184500	2.09099600	0.33418400
0	-1.53843800	1.19285900	-0.80388800
Н	-2.45868300	0.18094800	0.83605000

Н	-3.50337100	1.44664500	-0.01388400
Н	-0.55461000	1.85056300	0.96074600
С	-1.62000100	3.54213200	0.06673700
С	-1.07799000	4.48452200	0.94839200
С	-2.36230900	3.98299400	-1.03653000
С	-1.28870700	5.84814800	0.74248300
Н	-0.49109600	4.14832500	1.79951800
С	-2.56575200	5.34573100	-1.24478200
Н	-2.76002900	3.25347400	-1.73491300
С	-2.03376900	6.28177200	-0.35458800
Н	-0.86532100	6.57013400	1.43460100
Н	-3.13749300	5.67876900	-2.10607700
Н	-2.19384900	7.34317200	-0.51956300

EM-3

01			
Ca	0.13220600	0.53128200	0.79188800
Ca	0.21995700	-3.12675300	0.01386800
0	3.16407400	2.76075900	-0.43052700
0	-1.27918100	-2.69547100	1.76724600
0	-7.64278900	0.24896300	1.78129600
0	1.73332900	-1.28982200	0.73796900
0	1.69570000	1.09678600	-0.82319400
0	-1.34630500	-0.51933700	2.34980100
0	-6.82704600	-1.12825600	3.29537000
0	2.41511800	-2.64268500	-0.88492900
0	1.65470000	-5.03080000	0.22519900
Н	1.91577000	-5.80784900	0.73165800
Н	2.45417700	-4.63815500	-0.16810200
С	-6.77314100	-0.55207000	2.08029300
С	2.86203900	1.56495900	-0.59168800
С	-1.84955100	-1.56634500	1.86797900
С	4.00703000	0.54649500	-0.50504500

С	3.86709300	-0.84439100	-0.34711300
С	-3.21302500	-1.42678600	1.20529800
С	-5.60232800	-0.91682600	1.21816600
С	-4.37914100	-1.11114400	1.89009300
Н	-4.32157200	-0.95882200	2.96423100
С	2.57730400	-1.60826600	-0.16998400
С	5.30155300	1.05456900	-0.62686700
Н	5.38689600	2.12680000	-0.74124200
0	7.03563700	-3.35540800	0.06930400
0	8.82537000	0.47675900	-1.11229800
0	8.61309200	-2.04355200	-0.74969200
0	7.65962300	2.30157700	-0.61813000
С	7.36771500	-2.26422900	-0.35280100
С	6.31497700	-1.15133300	-0.45600700
С	6.45554100	0.25708700	-0.61552200
С	7.74561600	0.97299300	-0.80079100
С	5.01480300	-1.64419800	-0.33034600
Н	4.91520600	-2.71347100	-0.20203000
0	-7.84747800	-0.06040700	-0.77415700
0	-0.99880100	-1.08205900	-0.68324400
0	-6.82136000	-1.37359500	-2.23199400
0	-1.79548900	-3.04109700	-1.37941700
С	-1.96662600	-1.91068800	-0.86526100
С	-6.83944700	-0.84829200	-1.13754800
С	-5.65149500	-1.03645400	-0.19380700
С	-3.27109200	-1.57205100	-0.19339600
С	-4.47566400	-1.40630400	-0.86311900
Н	-4.53455600	-1.54349100	-1.93584300
Н	8.75976800	-1.09933100	-1.01744400
Н	8.54468900	2.65652000	-0.80753800
Н	-6.15877100	-1.82601400	3.36386700
Н	-7.75406100	0.26596000	0.15547500
С	-0.78710700	3.16233400	-1.29550100
С	-1.69582400	2.06245500	-1.66578700
0	-1.26610500	2.24340000	-0.27876800
Н	0.27717700	3.06882700	-1.50029500
Н	-1.19597300	4.16611900	-1.20170700
Н	-1.23817500	1.19384700	-2.13548000
С	-3.15161600	2.23304900	-1.92816800
С	-3.73649900	1.55008900	-3.00152300
С	-3.95325900	3.04119500	-1.11108000
С	-5.10281500	1.67224400	-3.25769400
Н	-3.12171700	0.91369700	-3.63325300
С	-5.31794200	3.16094200	-1.36691500
Н	-3.50964900	3.54822000	-0.25972800
С	-5.89698300	2.47580300	-2.43829200
Н	-5.55094100	1.12276100	-4.07911900

Н	-5.93416000	3.78016200	-0.72168900
Н	-6.96364500	2.55194800	-2.62269000
С	2.11028200	2.59640800	2.67403600
0	1.06418200	1.99575100	2.36961600
Ν	2.38686200	3.86383500	2.36446400
Н	2.89344900	2.09875800	3.26498000
С	3.73368000	4.39303400	2.54041300
Н	4.24183900	4.43034600	1.57139100
Н	3.68934500	5.39696900	2.97262600
Н	4.30046800	3.74600800	3.21336800
С	1.48460200	4.62621200	1.50420200
Н	1.79524700	4.49621600	0.46281700
Н	0.47014200	4.25118100	1.63614100
Н	1.52552000	5.68039000	1.79029300

EM-4

Λ	1
υ	т

Са	0.90692300	-1.59400600	-0.89384800
Са	-0.90026200	1.69703700	-0.04288700
0	-1.38013500	-0.53215900	-0.42052100
0	1.34358900	0.70369300	-0.50577000
0	-1.25438100	-2.73327000	-0.65555600
0	1.24484400	2.60055200	0.64116000
С	-1.93909300	-1.69127500	-0.48106300
С	4.20521500	0.81267700	-0.59948900
С	3.41750500	1.75049500	0.12413700
С	-3.42538600	-1.79956600	-0.33594500
С	-5.62521800	-0.78258200	-0.10879100
С	-4.21832000	-0.67183400	-0.24142400
Н	-3.77959600	0.32017200	-0.26863400
С	1.92141800	1.69118700	0.09072900

С	5.57716800	0.87921800	-0.54549300
Н	6.17894700	0.16458800	-1.10007900
С	5.44100500	2.82818900	0.94883400
С	6.23414600	1.87664100	0.22631900
С	4.03010900	2.73804200	0.87371800
Н	3.41123700	3.45082300	1.40875300
С	-6.22182200	-2.08476000	-0.06566200
С	-4.02125500	-3.09202100	-0.30246100
С	-5.38069200	-3.22875500	-0.16561400
Н	-5.83471400	-4.21554600	-0.13756700
Н	3.72308000	0.05311100	-1.20558900
Н	-3.37389300	-3.95708400	-0.38987300
С	7.64478100	1.96554300	0.30313100
С	6.09692800	3.83036100	1.71670100
С	8.25454100	2.94977900	1.05856800
С	-6.45839000	0.36639100	-0.01773700
С	-7.62629100	-2.18625400	0.07195900
С	-7.82009900	0.23921100	0.11343500
С	7.46757600	3.89477500	1.77385800
Н	8.26629800	1.25663700	-0.23481600
Н	7.96247400	4.66045100	2.35922800
Н	5.49161800	4.55043700	2.26036800
С	9.74090400	2.97860200	1.09060300
0	10.46822900	2.20070800	0.50512100
0	10.23459700	3.98432400	1.85800600
Н	11.20123100	3.90535200	1.80270700
С	-8.41348400	-1.05258800	0.16074800
Н	-5.99153300	1.34634900	-0.05809300
Н	-8.45419900	1.11513100	0.18072100
Н	-8.10386700	-3.16036000	0.10810400
С	-9.88189000	-1.23987300	0.30406000
0	-10.44817500	-2.31424100	0.35253500
0	-10.56108200	-0.06667100	0.37976700
Н	-11.49698200	-0.31145700	0.46836500
С	4.35255700	-3.83256600	-2.27527100
С	5.28295800	-3.26628300	-3.15629100
С	6.40964300	-3.98897700	-3.54457700
С	6.61281600	-5.28191500	-3.05576600
С	5.68682200	-5.85149300	-2.17794300
С	4.56050400	-5.12946000	-1.78834200
Н	5.10489300	-2.26170800	-3.52415600
Н	7.12940200	-3.54658300	-4.22728600
Н	7.49111600	-5.84499100	-3.35879700
Н	5.84434900	-6.85746300	-1.79956400
Н	3.82756000	-5.55227800	-1.10997000
С	3.14104800	-3.05494900	-1.85270500
0	2.97229800	-1.87461000	-2.32594900

0	2.32104300	-3.57510700	-1.03879500
С	-3.95294300	4.33270700	-1.50990900
С	-3.70028300	5.04894600	-2.68705700
С	-4.64517400	5.95015600	-3.17337900
С	-5.84490800	6.14568800	-2.48445500
С	-6.09889400	5.43815400	-1.30688500
С	-5.15636300	4.53365200	-0.82147100
Н	-2.76115900	4.88342100	-3.20318800
Н	-4.44775300	6.50132800	-4.08819500
Н	-6.58049400	6.84927300	-2.86408900
Н	-7.03029700	5.59256400	-0.76976700
Н	-5.33277400	3.97832100	0.09334300
С	-2.93421700	3.36368900	-0.99126000
0	-3.21322800	2.66641200	0.04961200
0	-1.82207900	3.25520800	-1.59238600
0	-1.66050400	2.32133800	2.20333300
Н	-1.22889000	3.01920700	2.71102400
0	0.52397900	-1.48724900	-3.33048100
Н	0.05719700	-2.17561000	-3.81958300
Н	1.48543100	-1.65143200	-3.44251700
Н	-2.47941700	2.69478700	1.81756200
С	2.01998900	-3.22842200	2.02384400
С	1.49090000	-2.15597100	2.89006200
0	1.53375700	-1.99940400	1.44731300
Н	3.09231100	-3.37752000	1.92915000
Н	1.40125900	-4.09798100	1.81771900
Н	2.22375400	-1.52892600	3.39652700
С	0.15273500	-2.21091700	3.54202600
С	0.02170900	-1.75922400	4.86047300
С	-0.97071500	-2.71627200	2.87281000
С	-1.21147100	-1.82343300	5.50963700
Н	0.88770600	-1.35728100	5.38062200
С	-2.20410400	-2.76844900	3.51995300
Н	-0.88796400	-3.04862400	1.84254200
С	-2.32695200	-2.32678100	4.83978800
Н	-1.30099500	-1.47286200	6.53346800
Н	-3.07105700	-3.14880200	2.98835100
н	-3.28958000	-2.36916400	5.34038300

References:

- 1 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3-8.
- 2 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
- 3 M. G. Sheldrick, A Short History of SHELX. *Acta Cryst.*, 2008, **A64**, 112-122.
- 4 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. *Appl. Crystallogr.*, 2009, **42**, 339342.
- 5 J. L. Farrugia, J. Appl. Crystallogr. 2012, **45**, 849-854.
- 6 A. V. Blatov, Nanocluster Analysis of Intermetallic Structures with the Program Package TOPOS. *Struct. Chem.* 2012, **23**, 955-963.
- 7 R. Bader, J. Phys. Chem. A, 1998, **102**, 7314-7323.
- 8 P. S. V. Kumar, V. Raghavendra and V. Subhramanian, *Journal of Chemical Sciences*, 2016, **128**, 1527-1536.
- 9 A. Banerjee, T. Ash, T. Debnath and A. K. Das, Int. J. Hydrog. Energy. 2021, 46, 17827-17839.