Supporting Information

Cyclometalated luminescent platinum(II) complexes of dissymmetrical 2,2':4',2"-terpyridine and its self-assembled dimer presenting Pt-Ag dative bonds

Lorien Benda,^{a‡} Louise Miton,^{a‡} Nihal Hadj Seyd,^a Lise-Marie Chamoreau,^a Gediminas Jonusauskas,^b Nathan D. McClenaghan,^b Bernold Hasenknopf,^a Valérie Marvaud,^a and Guillaume Vives*

Table of contents

X-ray crystallography data	2
Supplementary Scheme	3
Supplementary Figures	4
NMR spectra of compound	14

X-ray crystallography data

Identification code	3	5
Empirical formula	$C_{87.5}H_{97.5}AgCl_{7.5}F_9N_{10}O_9Pt_2S_3$	$C_{21}H_{21}N_4ClPt$
Formula weight	2464.35	559.96
Temperature/K	200	200(1)
Crystal system	monoclinic	monoclinic
Space group	$P2_1/n$	$P2_1/m$
a/Å	15.4562(9)	12.6144(9)
b/Å	42.508(3)	6.7077(4)
c/Å	15.6202(12)	12.6960(8)
$\alpha/^{\circ}$	90	90
β/°	105.542(4)	106.728(4)
$\gamma^{\prime \circ}$	90	90
Volume/Å ³	9887.5(12)	1028.79(12)
Ζ	4	2
$\rho_{calc}g/cm^3$	1.655	1.808
μ/mm^{-1}	9.854	6.962
F(000)	4896.0	540.0
Crystal size/mm ³	$0.15 \times 0.02 \times 0.02$	$0.45\times0.15\times0.02$
Radiation	$CuK\alpha (\lambda = 1.54178)$	MoKa ($\lambda = 0.71073$)
20 range for data collection/°	7.198 to 94.526	5.394 to 61.116
Index ranges	$\begin{array}{c} -14 \leq h \leq 14, -40 \leq k \leq 40, -14 \leq l \leq \\ 12 \end{array}$	$-17 \le h \le 17, -9 \le k \le 9, -18 \le 1$ ≤ 18
Reflections collected	36015	29225
Independent reflections	8823 [$R_{int} = 0.1455$, $R_{sigma} = 0.1398$]	29225 [$R_{int} = 0.0560, R_{sigma} = 0.0751$]
Data/restraints/parameters	8823/53/600	29225/0/161
Goodness-of-fit on F ²	1.052	1.111
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.1270, wR_2 = 0.2911$	$R_1 = 0.0558, wR_2 = 0.1227$
Final R indexes [all data]	$R_1 = 0.1900, wR_2 = 0.3264$	$R_1 = 0.0706, wR_2 = 0.1294$
Largest diff. peak/hole/e Å ⁻³	2.22/-1.79	5.35/-3.75
CCDC number	2339432	2339433

Supplementary Scheme

Scheme S1. Proposed mechanism for the formation of terpyridine 4a and 4b.

Supplementary Figures

Figure S1. ¹H NMR DOSY Spectra (600 MHz, CD₂Cl₂, 300K) of complex **2**.

Figure S2. Partial ¹H NMR NOESY Spectra (600 MHz, CD₂Cl₂, 300K) of complex **2** showing the regioselectivity of the pyridine decoordination.

Figure S4. ESI-Tof mass spectra of dimer **3** experimental (top) and calculated (bottom).

Figure S5. Luminescence decay for 1 in degassed dry CHCl₃ at 293 K (λ_{ex} =355 nm).

Figure S6. Luminescence decay for 1 in degassed dry CHCl₃ at 77 K (λ_{ex} =355 nm).

Figure S7. Luminescence decay for 2 in degassed dry CHCl₃ at 293 K (λ_{ex} =355 nm).

Figure S8. Luminescence decay for **2** in degassed dry CHCl₃ at 77 K (λ_{ex} =355 nm).

Figure S9. Luminescence decay for **3** in degassed dry CHCl₃ at 293 K (λ_{ex} =355 nm).

Figure S10. Luminescence decay for **3** in degassed dry CHCl₃ at 77 K (λ_{ex} =355 nm).

Figure S11. Luminescence decay for **5** in degassed dry CHCl₃ at 293 K (λ_{ex} =355 nm).

Figure S12. Luminescence decay for **5** in degassed dry CHCl₃ at 77 K (λ_{ex} =355 nm).

Figure S13. Emission of degassed solutions of 1 in CHCl₃ at 293 and 77 K.

Figure S14. Emission of degassed solutions of 2 in CHCl₃ at 293 and 77 K.

Figure S15. Emission of degassed solutions of **3** in CHCl₃ at 293 and 77 K.

Figure S16. Emission of degassed solutions of 5 in CHCl₃ at 293 and 77 K.

Figure S17. Emission of 1 in the solid state ($\lambda_{ex} = 440$ nm). Coloured scale bar corresponds to emission intensity (arbitrary units).

Figure S18. Emission of **2** in the solid state ($\lambda_{ex} = 440$ nm). Coloured scale bar corresponds to emission intensity (arbitrary units).

Figure S19. Emission of **3** in the solid state ($\lambda_{ex} = 440$ nm). Coloured scale bar corresponds to emission intensity (arbitrary units).

Figure S20. Emission of 5 in the solid state ($\lambda_{ex} = 440$ nm). Coloured scale bar corresponds to emission intensity (arbitrary units).

Figure S22. Aromatic region of ¹H NMR (400 MHz, 300 K) spectrum of complex 1 in CDCl₃

Figure S23. ¹³C Jmod NMR (151 MHz, 300 K) spectrum of complex **1** in DMSO-*d*₆

Figure S25. Aromatic region of ¹H NMR (600 MHz, 300 K) spectrum of complex 2 in CD₂Cl₂

Figure S26. ¹³C Jmod NMR (151 MHz, 300 K) spectrum of complex **2** in CD₂Cl₂

Figure S28. Aromatic region of ¹H NMR (400 MHz, 300 K) spectrum of complex 3 in CDCl₃

Figure S29. ¹³C Jmod NMR (100 MHz, 300 K) spectrum of complex **3** in CDCl₃

Figure S31. Aromatic region of ¹H NMR (400 MHz, 300 K) spectrum of ligand 4b in CDCl₃

Figure S32. 13 C NMR (100 MHz, 300 K) spectrum of ligand **4b** in CDCl₃

Figure S34. Aromatic region of ¹H NMR (400 MHz, 300 K) spectrum of complex 5 in DMSO-d₆

Figure S35. ¹³C NMR (100 MHz, 300 K) spectrum of ligand 5 in DMSO- d_6