Supporting Information of the manuscript entitled:

Homo- and Heterobimetallic Transition Metal Cluster derived from [Cp*Fe(η^5 -E₅)] (E = P, As) – Unprecedented Structural Motifs of the resulting Polypnictogen Ligands

Sabrina B. Dinauer,^a Robert Szlosek,^a Martin Piesch,^a Gábor Balázs,^a Stephan Reichl,^a Lukas Prock,^a Christoph Riesinger,^a Marc D. Walter^b and Manfred Scheer^{*a}

 S. B. Dinauer, R. Szlosek, Dr. M. Piesch, Dr. G. Balázs, Dr. Stephan Reichl, L. Prock, Dr. C. Riesinger, Prof. Dr. M. Scheer Institute of Inorganic Chemistry University of Regensburg, 93040 Regensburg (Germany)
 E-mail: manfred.scheer@chemie.uni-regensburg.de

[b] Prof. Dr. M. D. Walter Institute of Inorganic and Analytical Chemistry Technical University of Braunschweig 38106 Braunschweig (Germany) E-mail: mwalter@tu-bs.de

Author Contributions

Sabrina B. Dinauer - performing experimental work, writing of original draft.

Robert Szlosek – performing all calculations, co-writing final manuscript.

Martin Piesch – performing experimental work (first syntheses of 1-Ni and 2-Ni).

Stephan Reichl – performing experimental work (first synthesis of 1-Mn).

Christoph Riesinger – finalization of all single crystal X-ray structures.

Lukas Prock – performing experimental work (synthesis of $[Cp'''Fe(\mu-Br)]_2$.

Gábor Balázs – co-writing final manuscript.

Marc D. Walter – performing experimental work (synthesis of $[{Cp'''Mn(THF)(\mu-I)}_2]$ and co-writing final manuscript.

Manfred Scheer – project administration, funding acquisition, co-writing final manuscript.

All authors contributed to preparing the manuscript.

Table of Contents

1	Experimental Part		
	1.1	Synthetic procedures and experimental details	4
	1.2	Synthesis of [(Cp*Fe)(Cp'''Cr)(μ,η ^{5:5} -P ₅)] (1-Cr)	5
	1.3	Synthesis of [(Cp*Fe)(Cp'''Cr) ₂ (μ_3 , $\eta^{2:3:3}$ -As ₄)(μ_3 -As)] (2-Cr)	6
	1.4	Synthesis of [(Cp*Fe)(Cp'''Mn)(μ,η ^{5:5} -P ₅)] (1-Mn)	7
	1.5	Reaction of [Cp*Fe(η^5 -As ₅)], KC ₈ and [Cp'''Mn(thf)(µ-I)] ₂	8
	1.6	Synthesis of [(Cp*Fe)(Cp'''Fe) ₂ (μ_3 , $\eta^{2:1:1}$ -P ₂)(μ , $\eta^{3:3}$ -P ₃)] (1-Fe)	9
	1.7	Synthesis of [(Cp*Fe)(Cp'''Fe) ₂ (μ_3 , $\eta^{2:1:1}$ -As ₂)(μ , $\eta^{3:3}$ -As ₃)] (2-Fe)1	0
	1.8	Synthesis of [(Cp*Fe)(Cp'''Ni) ₂ (μ_3 , $\eta^{2:1:1}$ -P ₂)(μ_3 , $\eta^{2:2:2}$ -P ₃)] (1-Ni)1	1
	1.9	Synthesis of [{(Cp*Fe)(Cp'''Ni) ₂ (μ_3 , $\eta^{2:1:1}$ -P ₂)(μ_3 , $\eta^{2:2:2}$ -P ₃)}Ag] ₂ [FAI] ₂ (3-Ag)1	2
	1.10	Synthesis of [(Cp*Fe)(Cp'''Ni) ₂ (μ_3 , $\eta^{3:2:2}$ -As ₄)(μ_3 -As)] (2-Ni)1	3
2	NM	R spectroscopic investigations1	4
	2.1	1-Cr1	4
	2.2	2-Cr1	5
	2.3	1-Mn1	5
	2.4	2-Mn1	8
	2.5	1-Fe1	9
	2.6	2-Fe2	1
	2.7	1-Ni2	1
	2.8	2-Ni2	3
	2.9	3-Ag2	4
	2.10	Syntheses starting from $[K(dme)_2]_2[Cp^*Fe(\eta^4-P_5)]$ 2	5
3	EPF	R studies2	7
	3.1	1-Cr2	7
	3.2	2-Cr2	8
	3.3	Impurities within 1-Fe and 2-Fe2	8
4	Deta	ails on single crystal X-ray structure analysis2	9
	4.1	Crystallographic information	0
	4.2	1-Cr	1

4.3	2-01	
4.4	1-Mn	33
4.5	1-Fe	33
4.6	2-Fe	34
4.7	3-Ag	34
4.8	2-Ni	35
5 C	omputational Details	37
6 R	eferences	72

1 Experimental Part

1.1 Synthetic procedures and experimental details

All manipulations were performed using dry nitrogen standard Schlenk techniques or an argon filled glove box. Solvents and deuterated solvents were dried, degassed, and distilled by using standard procedures. The compounds $[(Cp^*Fe(\eta^5-E_5)]^{[1]} (E = P (1), As (2)), [K(dme)_2]_2[(Cp^*Fe(\eta^4-P_5)],^{[2]} KC_8^{[3]}, [Cp'''Fe(\mu-Br)]_2,^{[4]} [Cp'''Cr(\mu-Cl)]_2^{[5]}, [Cp'''Mn(thf)(\mu-I)]_2,^{[6]} [Cp'''Ni(\mu-Br)]_2^{[7]} and Ag[FAI]^{[8]} ([FAI]^- = [FAI{O(1-C_6F_5)C_6F_{10}}_3]^-) were synthesized according to literature known procedures.$

NMR spectra were recorded on a Bruker Avance 400 (¹H: 400.132 MHz, ¹⁹F: 376.498 MHz, ³¹P: 161.975 MHz) or 300 (¹H: 300.131 MHz) spectrometer. Chemical shifts are referenced to SiMe₄ (¹H NMR), CFCl₃ (¹⁹F NMR) and 85% H₃PO₄ (³¹P NMR) as external standard. Chemical shifts are given in ppm and coupling constants J in Hertz [Hz] without considering their sign.

Magnetic susceptibilities and effective magnetic moments μ_{eff} of paramagnetic compounds in solution were determined by ¹H NMR spectroscopy using the Evans method.^[9]

LIFDI mass spectra were recorded using a Finnigan MAT 95 mass spectrometer and FD mass spectra were recorded using a Jeol AccuTOF GCX mass spectrometer by the analytical department of the University of Regensburg. All compounds were dissolved in the corresponding solvent under inert atmosphere. According to the mass/charge (m/z) ratio and the corresponding isotope pattern the observed fragments were assigned.

Data for elemental analysis (CHN) was accomplished by a Vario micro cube apparatus by the department of central analyses of the University of Regensburg. All compounds were filled in tin capsules under N_2 or Argon atmosphere prior to the measurements.

The X-band EPR measurements were performed with a MiniScope MS400 device with a frequency of 9.44 GHz and a rectangular resonator TE102 of the company Magnettech GmbH. The compounds were dissolved in a glovebox under N₂ inert gas atmosphere, placed in tipsealed pasteur pipettes, and sealed with rubber caps. The measurements were conducted at room temperature and 77 K, respectively.

General Information

To screen the best reaction conditions all reactions were performed at first using 1.0 eq 1 or 2, 2.5 eq KC₈ and 1.0 eq [Cp"M(μ -X)]₂ and then optimized as described for each compound separately.

1.2 Synthesis of [(Cp*Fe)(Cp'''Cr)(μ,η^{5:5}-P₅)] (1-Cr)

a) A freshly prepared solution of $[(Cp*Fe(n^5-P_5)]$ (200 mg, 0.578 mmol, 1.0 eq) and KC₈ (195 mg, 1.445 mmol, 2.5 eq) in THF (5 mL) was cooled to -80°C. Then a dark blue solution of $[Cp'''Cr(\mu-Cl)]_2$ (370 mg, 0.578 mmol, 1.0 eq) in THF (5 mL) was slowly added at -80°C. The mixture turned dark red and was allowed to reach room temperature overnight. The solvent was removed *in vacuo*. Then the residue was dissolved in a small amount of CH₂Cl₂, silica gel was added and the solvent was removed *in vacuo*. The preabsorbed compound was purified by column chromatographic workup (SiO₂, hexane, 8 x 2.5 cm). Using hexane as an eluent **1-Cr** can be obtained as dark red fraction. After removing the solvent in vacuo, the residue was dissolved in CH₂Cl₂ and layered with CH₃CN. After storage at room temperature for a few days, **1-Cr** can be obtained as dark red blocks. The supernatant was decanted off and the crystalline compound dried in vacuo.

Yield:	85 mg (0.134 mmol, 23 %).		
¹ H NMR (CD ₂ Cl ₂ , 293 K):	δ [ppm] = 1.52 (s, br, 27H, C ₅ H ₂ <i>tBu</i> ₃), -0.99 (s, br, 15H, C ₅ <i>Me</i> ₅). Signals for C ₅ <i>H</i> ₂ <i>t</i> Bu ₃ could not be found within the ¹ H NMR spectrum of 1-Cr .		
EPR (X-band, thf solution, 298 K):	<i>g</i> = 1.918.		
Evans-NMR (CD ₂ Cl ₂ , 293 K):	μ_{eff} = 1.21 μ_B corresponding to ~1.0 unpaired electron.		
LIFDI-MS (toluene):	<i>m</i> / <i>z</i> = 631.13 ([1-Cr] ⁺ , 100%).		
Elemental Analysis	calculated (%) for $C_{27}H_{44}CrFeP_5$: C: 51.36, H: 7.02 found [%]: C: 51.40, H: 6.97.		

b) A freshly prepared solution of $[(Cp*Fe(n^5-P_5)]$ (200 mg, 0.578 mmol, 1.0 eq) and KC₈ (195 mg, 1.445 mmol, 2.5 eq) in THF (5 mL) was cooled to -80°C. Then a dark blue solution of $[Cp'''Cr(\mu-Cl)]_2$ (185 mg, 0.289 mmol, 0.5 eq) in THF (5 mL) was slowly added at -80°C. The mixture turned dark red and was allowed to reach room temperature overnight and was filtered over diatomaceous earth. The solvent was removed *in vacuo*. Then the residue was dissolved in a small amount of CH₂Cl₂, and an excess of acetonitrile was added. After 12 hours storage at room temperature **1-Cr** can be obtained as dark red rods. The supernatant was decanted off and the crystalline compound washed with acetonitrile and dried in vacuo.

Yield: 80 mg (0.127 mmol, 44 % related to [Cp'''Cr(µ-Cl)]₂).

The recorded ¹H NMR data and the X-band EPR data (solid and solution) matches the spectroscopic data of **1-Cr** obtained via method a.

1.3 Synthesis of [(Cp*Fe)(Cp'''Cr)₂(μ₃,η^{2:3:3}-As₄)(μ₃-As)] (2-Cr)

a) A freshly prepared solution of $[(Cp*Fe(\eta^5-As_5)]$ (100 mg, 0.177 mmol, 1.0 eq) and KC₈ (55 mg, 0.407 mmol, 2.3 eq) in THF (5 mL) was cooled to -80°C. Then a dark blue solution of $[Cp'''Cr(\mu-Cl)]_2$ (114 mg, 0.177 mmol, 1.0 eq) in THF (3 mL) was slowly added at -80°C. The mixture turned dark brown and was allowed to reach room temperature overnight. The solvent was removed *in vacuo*. Then the residue was dissolved in a small amount of CH₂Cl₂, silica gel was added and the solvent was removed *in vacuo*. The preabsorbed compound was purified by column chromatographic workup (SiO₂, hexane, 8 x 2.5 cm). Using hexane as an eluent **2-Cr** can be obtained as dark brown fraction. After removing the solvent in vacuo, the residue was dissolved in CH₂Cl₂ and layered with CH₃CN. After storage at room temperature for a few days, **2-Cr** can be obtained as light green-blue blocks. The supernatant was decanted off and the crystalline compound dried in vacuo.

Yield:	50 mg (0.044 mmol, 25 %).		
¹ H NMR (CD ₂ Cl ₂ , 293 K):	δ [ppm] = 1.57 (s, br, 30H, C ₅ H ₂ <i>tBu</i> ₃), -3.17 (s, br, 15H, C ₅ <i>Me</i> ₅). Signals for the second Cp ^{'''} ligand (C ₅ H ₂ <i>tBu</i> ₃) and C ₅ H ₂ <i>t</i> Bu ₃ could not be found within the ¹ H NMR spectrum of 2-Cr .		
EPR (X-band):	broad, intense signal with unresolved hyperfine coupling in thf solution (293 K or 77 K) or as solid (298 K and 77 K) (see Figure S 27).		
Evans-NMR (CD ₂ Cl ₂ , 293 K):	μ_{eff} = 1.36 μ_{B} corresponding to ~1.0 unpaired electron.		
FD-MS (CH ₂ Cl ₂):	<i>m/z</i> = 1136.12 ([2-Cr] ⁺ , 100%).		

1.4 Synthesis of [(Cp*Fe)(Cp'''Mn)(μ,η^{5:5}-P₅)] (1-Mn)

a) A freshly prepared solution of $[(Cp^*Fe(\eta^5-P_5)]$ (103.4 mg, 0.299 mmol, 1.0 eq) and KC₈ (101.1 mg, 0.748 mmol, 2.5 eq) in THF (5 mL) was cooled to -80°C. Then a light greenish solution of $[Cp'''Mn(thf)(\mu-I)]_2$ (292.4 mg, 0.299 mmol, 1.0 eq) in THF (5 mL) was slowly added at -80°C. The mixture turned dark green and was allowed to reach room temperature overnight. The solvent was removed *in vacuo*. Then the residue was extracted with *n*-pentane and filtered over diatomaceous earth. Reducing the solvent in vacuo and storing the concentrated solution at 8°C yielded **1-Mn** as brownish green plates. The supernatant was decanted off and the crystalline compound dried in vacuo. Due to the high sensitivity of this compound towards moisture and oxygen it is not fully characterized, although the ³¹P NMR spectrum of the reaction solution indicates a selective formation of **1-Mn** (cf. Figure S 5).

Yield:	a few crystals
¹ H NMR (C ₆ D ₆ , 293 K):	δ [ppm] = 2.89 (s, 2H, C ₅ H ₂ tBu ₃), 1.34 (s, 18H, C ₅ H ₂ tBu ₃), 1.22 (s, 9H, C ₅ H ₂ tBu ₃), 0.88 (s, 15H, C ₅ Me ₅).
³¹ P{ ¹ H} NMR (C ₆ D ₆ , 298 K):	δ [ppm] = -38.4 (s, 5P, 1-Mn).
³¹ P{ ¹ H} NMR (C ₆ D ₆ , 298 K):	δ [ppm] = -38.4 (s, 5P, 1-Mn).
LIFDI-MS (toluene):	<i>m/z</i> = 345.91 ([1] ⁺ , 100%).

b) A freshly prepared solution of $[(Cp^*Fe(\eta^4-P_5)]^{2-} (0.151 \text{ mmol}, 1.0 \text{ eq}) \text{ in THF } (5 \text{ mL}) \text{ was}$ cooled to -80°C. Then a light greenish solution of $[Cp^{''}Mn(thf)(\mu-I)]_2$ (70.0 mg, 0.076 mmol, 0.5 eq) in THF (5 mL) was slowly added at -80°C. The mixture turned dark green and was allowed to reach room temperature overnight. The ³¹P NMR spectrum of the reaction solution measured with C₆D₆ capillary and PPh₃ (n = 0.016 mmol) shows the formation of **1-Mn** along with signals for **1** and $[(Cp^*Fe)_2(\mu,\eta^{4:4}-P_{10})]^{2-}$ indicating redox processes (cf. Figure S 7).^[2]

1.5 Reaction of [Cp*Fe(η^5 -As₅)], KC₈ and [Cp'''Mn(thf)(μ -I)]₂

A freshly prepared solution of $[(Cp*Fe(\eta^5-As_5)]$ (169.0 mg, 0.299 mmol, 1.0 eq) and KC₈ (101.1 mg, 0.748 mmol, 2.5 eq) in THF (5 mL) was cooled to -80°C. Then a light greenish solution of $[Cp'''Mn(thf)(\mu-I)]_2$ (292.4 mg, 0.299 mmol, 1.0 eq) in THF (5 mL) was slowly added at -80°C. The mixture turned dark green and was allowed to reach room temperature overnight turning dark brown. The solvent was removed *in vacuo*. Then the residue was extracted with *n*-hexane and filtered over diatomaceous earth. Storing a concentrated solution in hexane at -30°C or storing a mixture of hexane and hexamethyldisiloxane (1:1) at -30°C did not lead to single crystals. ¹H NMR spectroscopy suggests the formation of one major compound and one minor compound (see Figure S 8 and Figure S 9). Apart from that a broad singlet for $[(Cp''')_2Mn]$ can be assigned^[10] along with signals for HCp'''. However, we were not able to characterize the product of this reaction due to its sensitivity towards moisture and oxygen and the missing SC-XRD.

1.6 Synthesis of [(Cp*Fe)(Cp'''Fe)₂(μ₃,η^{2:1:1}-P₂)(μ,η^{3:3}-P₃)] (1-Fe)

a) $[(Cp^*Fe(n^5-P_5)]$ (200 mg, 0.578 mmol, 1.0 eq), KC₈ (195 mg, 1.445 mmol, 2.5 eq) and $[Cp'''Fe(\mu-Br)]_2$ (340 mg, 0.460 mmol, 0.8 eq) were weighed in a Schlenk tube and DME (10 mL) was added. The mixture turned dark brown and was stirred for 3 hours at room temperature. The solvent was removed *in vacuo*. Then the residue was dissolved in a small amount of CH₂Cl₂, silica gel was added and the solvent was removed *in vacuo*. The preabsorbed compound was purified by column chromatographic workup (SiO₂, hexane, 7 x 2.5 cm). Using hexane as an eluent **1-Fe** can be obtained as dark brown fraction. After removing the solvent in vacuo, the residue was dissolved in CH₂Cl₂ and layered with CH₃CN. After storage at room temperature for a few days, **1-Fe** can be obtained as dark brown blocks. The supernatant was decanted off and the crystalline compound dried in vacuo.

Yield:	115 mg (0.124 mmol, 21 %).		
¹ H NMR (thf-d ₈ , 293 K):	δ [ppm] = 2.93 (s, br, 2H, C ₅ H ₂ tBu ₃), 2.46 (s, br, 2H, C ₅ H ₂ tBu ₃), 1.64 (s, 36H, C ₅ H ₂ tBu ₃), 1.59 (s, 18H, C ₅ H ₂ tBu ₃), 1.01 (s, 15H, C ₅ Me ₅).		
³¹ P{ ¹ H} NMR (thf-d ₈ , 293 K):	δ [ppm] = 385.4 (d, J _{PP} = 98 Hz, 2P, P _A), 376.5 (d, J _{PP} = 371 Hz, 1P, P _B), -66.6 (dt, J _{PP} = 382 Hz, J _{PP} = 99 Hz, 1P, P _M), -231.8 (t, J _{PP} = 382 Hz, 1P, P _X).		
³¹ P NMR (thf-d ₈ , 293 K):	δ [ppm] = 385.4 (d, J _{PP} = 98 Hz, 2P, P _A), 376.5 (d, J _{PP} = 371 Hz, 1P, P _B), -66.6 (dt, J _{PP} = 382 Hz, J _{PP} = 99 Hz, 1P, P _M), -231.8 (t, J _{PP} = 382 Hz, 1P, P _X).		
FD-MS (CH ₂ Cl ₂):	<i>m/z</i> = 924.92 ([1-Fe] ⁺ , 100%).		
Elemental Analysis	calculated (%) for C₄₄Hァ₃Fe₃P₅: C: 57.17, H: 7.96 found [%]: C: 57.11, H: 8.01.		

b) When a 1.0:2.5:0.8 stoichiometry of $[(Cp^*Fe(n^5-P_5)] (0.144 \text{ mmol})$ to KC₈ (0.360 mmol) to $[Cp'''Fe(\mu-Br)]_2 (0.106 \text{ mmol})$ is used, even after column chromatography traces of $[Cp'''Fe(\mu-Br)]_2$ are still present, which can just be determined by X-band EPR spectroscopy (cf. Figure S 28). To obtain analytically pure **1-Fe** 0.8 eq $[Cp'''Fe(\mu-Br)]_2$ must be used. In that case, after 3 hours stirring the X-band EPR spectrum remains silent and pure **1-Fe** is isolated. Nevertheless, in some cases minor impurities of $[Cp'''Fe(\mu-Br)]_2$ can still be detected by X-band EPR spectroscopy.

c) When 0.5 eq of $[Cp'''Fe(\mu-Br)]_2$ are used in the same one pot reaction in DME and the reaction is stirred at room temperature for 16 hours, no formation of **1-Fe** is observed. The ³¹P

NMR spectrum of the reaction solution in dme with C_6D_6 capillary shows solely signals for $[(Cp^*Fe)_2(\mu,\eta^{4:4}-P_{10})]^{2-}$ (see Figure S 12).^[2]

1.7 Synthesis of [(Cp*Fe)(Cp'''Fe)₂(μ_3 , $\eta^{2:1:1}$ -As₂)(μ , $\eta^{3:3}$ -As₃)] (2-Fe)

a) $[(Cp^*Fe(n^5-As_5)]$ (163 mg, 0.289 mmol, 1.0 eq), KC₈ (98 mg, 0.723 mmol, 2.5 eq) and $[Cp'''Fe(\mu-Br)]_2$ (170 mg, 0.231 mmol, 0.8 eq) were weighed in a Schlenk tube and DME (10 mL) was added. The mixture turned dark green brown and was stirred for 3 hours at room temperature. The solvent was removed *in vacuo*. Then the residue was dissolved in a small amount of CH₂Cl₂, silica gel was added and the solvent was removed *in vacuo*. The preabsorbed compound was purified by column chromatographic workup (SiO₂, hexane, 7 x 2.5 cm). Using hexane as an eluent **2-Fe** can be obtained as dark brown fraction. After removing the solvent in vacuo, the residue was dissolved in CH₂Cl₂ and layered with CH₃CN. After storage at room temperature for a few days, **2-Fe** can be obtained as dark brown plates. The supernatant was decanted off and the crystalline compound dried in vacuo.

Yield:	65 mg (0.057 mmol, 20 %).	
¹ H NMR (CD ₂ Cl ₂ , 293 K):	$δ$ [ppm] = 1.56 (s, br, $C_5H_2tBu_3$), 1.48 (s, br, $C_5H_2tBu_3$), 1.41 (s, br, $C_5H_2tBu_3$), 0.83 (s, br, C_5Me_5). The signals at 1.56, 1.48 and 1.41 ppm are overlapping. Due to the overlap of the signals and the broad shape no rational integration of the signals is possible (see Figure S 13).	
FD-MS (CH ₂ Cl ₂):	<i>m/z</i> = 1144.02 ([2-Fe] ⁺ , 100%).	
Elemental Analysis	calculated (%) for C44H73Fe3As5: C: 46.19, H: 6.43	

When a 1.0:2.5:0.8 stoichiometry of $[(Cp^*Fe(\eta^5-As_5)]$ to KC₈ to $[Cp^{"'}Fe(\mu-Br)]_2$ (0.106 mmol) is used, even after column chromatography traces of $[Cp^{"'}Fe(\mu-Br)]_2$ are still present, which can just be determined by X-band EPR spectroscopy (cf. Figure S 28). To obtain analytically pure **2-Fe** 0.8 eq $[Cp^{"'}Fe(\mu-Br)]_2$ must be used. In that case, after 3 hours stirring the X-band EPR spectrum remains silent and pure **2-Fe** is isolated. Nevertheless, in some cases minor impurities of $[Cp^{"'}Fe(\mu-Br)]_2$ can still be detected by X-band EPR spectroscopy.

found [%]: C: 46.58, H: 6.29.

1.8 Synthesis of [(Cp*Fe)(Cp'''Ni)₂(μ₃,η^{2:1:1}-P₂)(μ₃,η^{2:2:2}-P₃)] (1-Ni)

[(Cp*Fe(η^5 -P₅)] (1000 mg, 2.89 mmol, 1.0 eq), KC₈ (1000 mg, 7.40 mmol, 2.5 eq) and [Cp'''Ni(μ -Br)]₂ (2150 mg, 2.89 mmol, 1.0 eq) were weighed in a Schlenk tube and DME (50 mL) was added. The mixture turned dark red and was stirred for 30 min at room temperature. The solvent was removed *in vacuo*. Then the residue was dissolved in pentane and filtered over diatomaceous earth. Then the solvent was removed *in vacuo*. Then the residue was dissolved in *vacuo*. Then the residue was dissolved in a small amount of CH₂Cl₂, silica gel was added and the solvent was removed *in vacuo*. The preabsorbed compound was purified by column chromatographic workup (SiO₂, pentane, 15 x 4.5 cm). Using toluene as an eluent **1-Ni** can be obtained as dark red fraction. After removing the solvent in vacuo, a dark red-brown powder was obtained. Despite several attempts no single crystals of **1-Ni** could be obtained. Structural proof of the proposed complex **1-Ni** was done by coordination to silver (see Synthesis of [{(Cp*Fe)(Cp'''Ni)₂(μ 3, η 2^{:1:1-P2})(μ 3, η 2^{:2:2-P3})}Ag]₂[FAI]₂ (3-Ag)).

Yield:	1530 mg (1.64 mmol, 57 %)		
¹ H NMR (tol-d ₈ , 253 K):	δ [ppm] = 5.61 (s, br, 2H, C ₅ H ₂ tBu ₃), 5.58 (s, br, 2H, C ₅ H ₂ tBu ₃), 1.83 (s, 15H, C ₅ Me ₅), 1.55 (s, 18H, C ₅ H ₂ tBu ₃), 1.50 (s, 18H, C ₅ H ₂ tBu ₃), 1.47 (s, 18H, C ₅ H ₂ tBu ₃).		
³¹ P{ ¹ H} NMR (tol-d ₈ , 253 K):	δ [ppm] = 390.0 (t, J _{PP} = 156 Hz, 1P, P ₃), 280.7 (d, J _{PP} = 156 Hz, J _{PP} = 24 Hz, 2P, P ₃), 152.8 (s, 2P, P ₂).		
³¹ P NMR (tol-d ₈ , 253 K):	δ [ppm] = 390.0 (t, J _{PP} = 156 Hz, 1P, P ₃), 280.7 (d, J _{PP} = 156 Hz, J _{PP} = 24 Hz,2P, P ₃), 152.8 (s, 2P, P ₂).		
FD-MS (CH ₂ Cl ₂):	<i>m</i> / <i>z</i> = 928.18 ([1-Ni] ⁺ , 100%).		
Elemental Analysis	calculated (%) for C ₄₄ H ₇₃ FeNi ₂ P ₅ : C: 56.82, H: 7.91 found [%]: C: 57.29, H: 7.75.		

When the reaction is performed using a stoichiometry of $[(Cp^*Fe(\eta^5-P_5))]$ (200 mg, 0.578 mmol, 1.0 eq), KC₈ (198 mg, 1.445 mmol, 2.5 eq) and $[Cp'''Ni(\mu-Br)]_2$ (215 mg, 0.289 mmol, 0.5 eq) in dme for 30 min, the ³¹P{¹H} NMR spectrum of the reaction solution shows no set of signals for **1-Ni**. Instead, small multiplets for $[(Cp^*Fe)_2(\mu,\eta^{4:4}-P_{10})]^{2-}$ can be assigned^[2] and a broad signal at $\delta = 32.9$ ppm is observed (see Figure S 17). Purification by column chromatography (SiO₂, hexane, 12 x 2.5 cm) eluted an orange-brown fraction using a 1:1 mixture of hexane/CH₂Cl₂. From a concentrated solution in CH₂Cl₂ layered with acetonitrile no single crystals could be formed. The formed compound could not be unequivocally characterized.

1.9 Synthesis of [{(Cp*Fe)(Cp'''Ni)₂(μ_3 , $\eta^{2:1:1}$ -P₂)(μ_3 , $\eta^{2:2:2}$ -P₃)}Ag]₂[FAI]₂ (3-Ag)

A solution of Ag[FAI] (160 mg, 0.107 mmol, 1 eq) in *o*-DFB (5 mL) was added to a stirred solution of **1-Ni** (100 mg, 0.107 mmol, 1 eq) in *o*-DFB (5 mL). The brown mixture was stirred for 2 h at room temperature. Then the solvent was removed in vacuo and the residue washed with hexane. The residue was dried in vacuo, dissolved in *o*-DFB and layered with hexane. After storage at room temperature for 2 days, **3-Ag** can be obtained as dark brown blocks. The supernatant was decanted off and the crystalline compound dried in vacuo.

Yield:	57 mg (0.055 mmol, 51 %)			
¹ H NMR (thf-d ₈ , 293 K):	Signals can not be properly assigned due to decomposition in solution and rearrangement processes (see Figure S 19 to Figure S 20).			
³¹ P NMR (thf-d ₈ , 293 K):	δ [ppm] = 430.6 (t, J _{PP} = 151 Hz, br), 248.8 (d, J _{PP} = 151 Hz, br), 88.2 (br).			
¹⁹ F{ ¹ H} (thf-d ₈ , 293 K):	δ [ppm] = -112.0 (d, J _{FF} = 275 Hz, 6F), -116.2 (d, J _{FF} = 281 Hz, 6F), -121.2 (d, J _{FF} = 281 Hz, 3F), -127.0 (s, 6F), -129.8 (d, J _{FF} = 281 Hz, 6F), -136.9 (d, J _{FF} = 281 Hz, 6F), -141.0 (d, J _{FF} = 281 Hz, 3F), -154.8 (s, 3F), -165.2 (t, J _{FF} = 20 Hz, 6F), -170.7 (s, 1F).			
ESI-MS (CH ₂ Cl ₂ , pos. mode):	<i>m/z</i> = 928.18 ([3-Ag] ²⁺ , 100%)			
ESI-MS (CH ₂ Cl ₂ , neg. mode):	<i>m</i> / <i>z</i> = 1037.15 ([FAI] ⁻ , 100%)			
Elemental Analysis	calculated (%) for C ₁₆₀ H ₁₄₆ Fe ₂ Ni ₄ P ₁₀ O ₆ Al ₂ F ₉₂ Ag ₂ : C: 39.72, H: 3.04 found [%]: C: 39.86, H: 3.16.			

Compound **3-Ag** is hard to re-dissolve after crystallization even in thf. Apart from that, **3-Ag** shows decomposition over time in solution at room temperature, which was monitored in the ³¹P{¹H} and ³¹P NMR spectrum. Therefore, the data quality for the corresponding NMR spectra are of poor quality as many species can be observed (see Figure S 19 and Figure S 20). Dissolving crystals of **3-Ag** in thf-d₈ at -80°C and measuring an ¹H NMR spectrum at -80°C did not improve the spectrum quality. As the solubility of **3-Ag** at lower temperatures is very poor and in the corresponding spectrum already at -80°C many signals can be observed an attribution of the signals is not possible (see Figure S 21). Presumably, in solution rearrangement processes and decomposition is present.

1.10 Synthesis of [(Cp*Fe)(Cp'''Ni)₂(µ₃,η^{3:2:2}-As₄)(µ₃-As)] (2-Ni)

[(Cp*Fe(η^5 -As₅)] (100 mg, 0.177 mmol, 1 eq) and [Cp'''Ni(μ -Br)]₂ (132 mg, 0.177 mmol, 1.0 eq) were weighed in a Schlenk tube and DME (10 mL) was added. Then a suspension of KC₈ (68 mg, 0.400 mmol, 2.3 eq) in DME (10 mL) was added at room temperature to afford a dark brown color change. The mixture was stirred for 3 hours at room temperature. Then the solvent was removed *in vacuo*. Then the residue was dissolved in pentane and filtered over diatomaceous earth. After removing the solvent in vacuo, the residue was dissolved in CH₂Cl₂ and layered with CH₃CN. After storage at room temperature for a few days, **2-Ni** can be obtained as dark brown blocks. The supernatant was decanted off and the crystalline compound washed with CH₃CN (5 x 3 mL) and dried in vacuo.

Yield:	71 mg (0.061 mmol, 35 %).		
¹ H NMR (C₀D₀, 293 K):	$\begin{split} &\delta \text{ [ppm]} = 5.47 \text{ (s, br, 2H, } C_5H_2tBu_3)\text{, 5.34 (s, br, 2H,} \\ &C_5H_2tBu_3)\text{, 1.70 (s, 18H, } C_5H_2tBu_3)\text{, 1.53 (s, 15H, } C_5Me_5)\text{,} \\ &1.52 \text{ (s, 18H, } C_5H_2tBu_3)\text{, 1.44 (s, 18H, } C_5H_2tBu_3)\text{.} \end{split}$		
LIFDI-MS (toluene):	<i>m</i> / <i>z</i> = 1147.99 ([2-Ni] ⁺ , 100%).		
Elemental Analysis	calculated (%) for C ₄₄ H ₇₃ FeNi ₂ As ₅ : C: 45.96, H: 6.40 found [%]: C: 45.50, H: 6.19.		

2 NMR spectroscopic investigations

2.1 1-Cr

Figure S 1. ¹H NMR spectrum for **1-Cr** in CD_2Cl_2 recorded at room temperature. 8.0 mg of **1-Cr** were dissolved in 2.2 mL CD_2Cl_2 and filled in an Evans NMR tube with pure CD_2Cl_2 in the outer tube in order to determine the number of unpaired electrons via Evans NMR method.

Figure S 2. ¹H NMR spectrum for **2-Cr** in CD₂Cl₂ recorded at room temperature. 10.0 mg of **2-Cr** were dissolved in 1.8 mL CD₂Cl₂ and filled in an Evans NMR tube with pure CD₂Cl₂ in the outer tube in order to determine the number of unpaired electrons via Evans NMR method.

Figure S 3. ¹H NMR spectrum for 1-Mn in C_6D_6 recorded at room temperature. Minor impurities of 1 can be observed.

Figure S 4. ³¹P NMR spectrum for 1-Mn in C_6D_6 recorded at room temperature. Minor impurities of 1 can be observed.

Figure S 5. ³¹P NMR spectrum for the reaction solution of **1-Mn** in thf with a C_6D_6 -capillary and 0.02 mmol PPh₃ recorded at room temperature (signal marked with * = PPh₃, signal marked with + = unidentified by-product).

Figure S 6. Variable temperature ${}^{31}P{}^{1}H$ NMR spectra for the reaction solution of 1-Mn recorded in thf-d₈.

Figure S 7. ³¹P NMR spectrum for the reaction solution of 1.0 eq $[Cp^*Fe(\eta^4-P_5)]^{2-}$ (0.151 mmol) and 0.5 eq $[Cp'''Mn(THF)(\mu-I)]_2$ (0.076 mmol) in thf with a C_6D_6 -capillary containing 0.016 mmol PPh₃ recorded at room temperature (signal marked with * = redox by-product = $[(Cp^*Fe)_2(\mu,\eta^4:\eta^4-P_{10})]^{2-}$).^[2]

2.4 2-Mn

Figure S 8. ¹H NMR spectrum for the reaction of [Cp*Fe(η^5 -As₅)], KC₈ and [Cp^{'''}Mn(THF)(μ -I)]₂ after extraction with hexane in C₆D₆ recorded at room temperature. Signal at δ [ppm] = 15.07 can be assigned to the formation of [(Cp^{'''})₂Mn].^[10]

Figure S 9. ¹H NMR spectrum for the reaction of [Cp*Fe(η^5 -As₅)], KC₈ and [Cp^{'''}Mn(THF)(μ -I)]₂ after extraction with hexane in C₆D₆ recorded at room temperature. Only the area between δ /ppm = 10 ppm to -4 is depicted. Signals for HCp^{'''} are marked with *.

Figure S 10. ¹H NMR spectrum for 1-Fe in thf-d₈ recorded at room temperature.

Figure S 11. ³¹P NMR spectrum for 1-Fe in thf-d₈ recorded at room temperature.

Figure S 12. ³¹P NMR spectrum for the reaction solution of 1.0 eq $[Cp^*Fe(\eta^4-P_5)]^{2-}$ (0.144 mmol) and 0.5 eq $[Cp^{''}Fe(\mu-Br)]_2$ (0.072 mmol) in dme with a C₆D₆-capillary recorded at room temperature (signal marked with * = redox product = $[(Cp^*Fe)_2(\mu,\eta^4:\eta^4-P_{10})]^{2-}$).^[2]

2.6 2-Fe

Figure S 13. ¹H NMR spectrum for 2-Fe in CD₂Cl₂ recorded at room temperature.

Figure S 14. ¹H NMR spectrum for 1-Ni in tol-d₈ recorded at 253 K.

Figure S 15. ^{31}P NMR spectrum for 1-Ni in tol-d_8 recorded at 253 K.

Figure S 16. Variable temperature ${}^{31}P$ NMR spectra for 1-Ni recorded in thf-d₈.

Figure S 17. ³¹P{¹H} NMR spectrum for the reaction solution of 1.0 eq $[Cp^*Fe(\eta^4-P_5)]^{2^-}$ (0.578 mmol) and 0.5 eq $[Cp^{''}Ni(\mu-Br)]_2$ (0.289 mmol) in DME with a C₆D₆-capillary recorded at room temperature (signal marked with * = redox product = $[(Cp^*Fe)_2(\mu,\eta^4:\eta^4-P_{10})]^{2^-}$.^[2]

Figure S 18. ¹H NMR spectrum for 2-Ni in C₆D₆ recorded at room temperature.

Figure S 19. ³¹P{¹H} (top, black) and ³¹P (bottom, blue) NMR spectra for **3-Ag** in thf-d₈ recorded at 273 K. The signal at δ = -22 ppm is attributed to an impurity. The signals at δ /ppm = 430.6, 249.1 and 86.6 in the ³¹P{¹H} NMR spectrum are assigned to the complex **3-Ag**. Upon measurement of the ³¹P NMR spectrum of the same sample already changes in the spectrum can be observed within a few hours.

Figure S 20. a) ¹H NMR spectra for **3-Ag** in thf-d₈ recorded at 273 K of a freshly prepared sample (top, black) and after 14h (bottom, blue); b) zoom for a better view in the aliphatic C-H region.

Figure S 21. ¹H NMR spectrum for 3-Ag in THF-d₈ recorded at 193 K. The sample was freshly prepared and dissolved at 193 K prior to the measurement.

Figure S 22. Experimental ³¹P{¹H} NMR spectrum (dme|C₆D₆ capillary) for the reaction mixture of $[K(dme)_2]_2[Cp^*Fe(\eta^4-P_5)]$ with $[Cp'''Ni(\mu-Br)]_2$ recorded at room temperature.

2.10 Syntheses starting from [K(dme)₂]₂[Cp*Fe(η⁴-P₅)]

Figure S 23. Experimental ¹H (top) and ³¹P (bottom) NMR spectrum (C_6D_6) for the reaction mixture of $[K(dme)_2]_2[Cp^*Fe(\eta^4-P_5)]$ with $[Cp'''Cr(\mu-Cl)]_2$ recorded at room temperature. Signal marked with * corresponds to **1**.

Figure S 24. Experimental ³¹P NMR spectrum (C₆D₆) for the reaction mixture of $[K(dme)_2]_2[Cp^*Fe(\eta^4-P_5)]$ with $[Cp'''Fe(\mu-Br)]_2$ recorded at room temperature. Signal marked with * corresponds to **1**. No signals for **1-Fe** observed.

3 EPR studies

3.1 1-Cr

Figure S25. X-band EPR spectrum for **1-Cr** in thf solution at 298 K (black, top) or at 77 K (blue, bottom). *g* value for the sample at 298 K: $g_{iso} = 1.918$.

Figure S 26. X-band EPR spectrum for 1-Cr in solid state at 298 K (black, top) or at 77 K (blue, bottom).

3.2 2-Cr

Figure S 27. X-band EPR spectrum for 2-Cr in thf solution at 298 K (a) and 77 K (b).

3.3 Impurities within 1-Fe and 2-Fe

Figure S 28. Comparison of X-band EPR spectra for samples of (a) **1-Fe** (thf solution of crystals at 77 K, using 1.0 eq $[Cp'''Fe(\mu-Br)]_2$), (b), **2-Fe** (crystals at 77 K, using 1.0 eq $[Cp'''Fe(\mu-Br)]_2$) with (c) solid $[Cp'''Fe(\mu-Br)]_2$ at 77 K.

4 Details on single crystal X-ray structure analysis

The X-ray diffraction experiments were performed on either a Xcalibur, AtlasS2, Gemini ultra (2-Ni) or GV1000 TitanS2 (3-Ag) diffractometer applying Cu- K_{α} radiation ($\lambda = 1.54178$ Å) or using a XtaLAB Synergy R, DW System with a HyPix-Arc 150 detector using Cu-K α radiation from a rotating anode (1-Cr, 2-Cr, 1-Mn, 1-Fe, 2-Fe, 2-Ni). All measurements were performed at 123 K, except for 1-Mn (100 K). Data collection and reduction were performed with CrysAlisPro 1.171.40.14a (3-Ag), CrysAlisPro 1.171.41.83a (1-Mn) or 171.43.36a (1-Cr, 2-Cr, 1-Mn, 1-Fe, 2-Fe, 2-Ni). For the compounds (1-Cr, 2-Cr, 1-Fe, 2-Fe, 2-Ni, 3-Ag) a numeric absorption correction based on gaussian integration over a multifaceted crystal model was used. All structures were solved by direct methods with ShelXT^[11] and Olex2^[12] and refined by full-matrix least-squares method against F^2 in anisotropic approximation using ShelXL.^[11] All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined in calculated positions riding on pivot atom model for all compounds. Visualisation of the crystal structures was performed with Olex2 (1.3alpha).^[12]

CCDC-2347421 (1-Cr), CCDC-2347422 (2-Cr), CCDC-2347423 (1-Mn), CCDC-2347424 (1-Fe), CCDC-2347425 (2-Fe) CCDC-2347426 (2-Ni) and CCDC-2347427 (3-Ag) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: + 44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).

4.1 Crystallographic information

 Table S1. Crystallographic data for all compounds.

	1-Cr	2-Cr	1-Mn	1-Fe
CCDC	2347421	2347422	2347423	2347424
Formula	$C_{27}H_{44}FeCrP_5$	$C_{44}H_{73}\text{FeCr}_2\text{As}_5$	$C_{27}H_{44}FeMnP_5$	$C_{44}H_{73}Fe_{3}P_{5}$
D _{calc.} / g cm ⁻³	1.393	1.607	1.405	1.358
µ/mm⁻¹	9.454	10.306	9.935	9.500
Formula Weight	631.32	1136.47	634.26	924.42
Colour	Dark red	Light green blue	Brownish green	Dark brown
Shape	Block shaped	Block shaped	Plate shaped	Block shaped
Size/mm ³	0.42 x 0.27 x 0.21	0.46 x 0.13 x 0.11	0.26 x 0.23 x 0.12	0.13 x 0.10 x 0.05
T/K	123.01(10)	123.00(10)	100.00(10)	123.00(10)
Crystal System	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space Group	P21/n	P21/n	P21/n	P21/n
a/Å	12.1473(10)	19.5158(2)	12.14780(10)	19.23420(10)
b/Å	13.60100(10)	10.89260(10)	13.55300(10)	10.87860(10)
c/Å	18.5936(2)	22.9447(2)	18.5913(2)	22.55640(10)
α /°	90	90	90	90
β /°	101.4680(10)	105.5730(10)	101.6500(10)	106.6420(10)
γ/°	90	90	90	90
V∕Å ³	3010.62(5)	4698.47(8)	2997.80(5)	4522.03(6)
Ζ	4	4	4	4
Z'	1	1	1	1
Wavelength/Å	1.54184	1.54184	1.54184	1.54184
Radiation type	Cu K _α	Cu K _a	Cu K _a	Cu Kα
θ _{min} /°	4.011	2.645	4.007	2.669
θ _{max} /°	74.178	71.657	75.220	75.254
Measured Refl.	61137	39500	59246	39583
Independent Refl.	5942	8904	6140	8917
Reflections with $I > 2(I)$	5673	8450	5702	8333
R _{int}	0.0496	0.0283	0.0573	0.0229
Parameters	321	492	321	492
Restraints	0	0	0	0
Largest Peak	0.621	0.580	0.558	0.365
Deepest Hole	-0.626	-0.654	-0.471	-0.308
GooF	1.026	1.059	1.056	1.080
wR ₂ (all data)	0.0908	0.0725	0.0962	0.0617
wR ₂	0.0900	0.0717	0.0939	0.0609
R₁ (all data)	0.0328	0.0296	0.0376	0.0254
R ₁	0.0318	0.0278	0.0345	0.0231

	2-Fe	3-Ag	2-Ni
CCDC	2347425	2347427	2347426
Formula	C44H73Fe3As5	C ₈₀ H ₇₃ FeNi ₂ P ₅ AgAIF ₄₆ O ₃	C44H73FeNi2As5
D _{calc.} / g cm ⁻³	1.649	1.674	1.624
µ/mm ⁻¹	11.670	5.352	7.484
Formula Weight	1144.17	2419.35	1149.89
Colour	Dark brown	Dark brown	Dark brown
Shape	Plate shaped	Block shaped	Block shaped
Size/mm ³	0.19 x 0.05 x 0.05	0.21 x 0.14 x 0.12	0.44 x 0.18 x 0.15
<i>T/</i> K	123.00(10)	122.98(10)	123.01(10)
Crystal System	Monoclinic	Triclinic	Triclinic
Space Group	P21/n	<i>P</i> -1	<i>P</i> -1
a/Å	19.3733(2)	14.9140(6)	12.4331(2)
b/Å	10.87080(10)	19.2206(9)	12.5276(2)
c/Å	22.7856(2)	19.5632(9)	17.9814(3)
α /°	90	63.886(4)	72.5910(10)
β /°	106.2280(10)	79.623(4)	70.5950(10)
γ/°	90	72.650(4)	64.918(2)
V∕Å ³	4608.48(8)	4798.5(4)	2351.07(8)
Ζ	4	2	2
Z'	1	1	1
Wavelength/Å	1.54184	1.54184	1.54184
Radiation type	Cu K _α	Cu K _a	Cu Kα
θ _{min} ∕°	2.653	2.643	3.965
θ _{max} /°	73.487	74.270	73.011
Measured Refl.	40677	31575	33114
Independent Refl.	8821	18494	8990
Reflections with $I > 2(I)$	7899	14896	8889
Rint	0.0342	0.0225	0.0228
Parameters	492	1275	502
Restraints	0	0	18
Largest Peak	0.573	0.767	0.519
Deepest Hole	-0.457	-0.508	-0.653
GooF	1.052	0.902	1.155
wR ₂ (all data)	0.0630	0.0593	0.0663
wR ₂	0.0614	0.0583	0.0661
R₁ (all data)	0.0316	0.0314	0.0265
R ₁	0.0268	0.0254	0.0260

4.2 1-Cr

Compound **1-Cr** crystallizes in the monoclinic space group $P2_1/n$ in form of dark red block shaped crystals from a concentrated solution in CH_2Cl_2 layered with acetonitrile at room temperature. The asymmetric unit contains one molecule of **1-Cr**.

Figure S 29. Molecular structure of 1-Cr in solid state. Thermal ellipsoids are drawn with 50 % probability level.

4.3 2-Cr

Compound **2-Cr** crystallizes in the monoclinic space group $P_{2_1/n}$ in form of light green-blue block shaped crystals from a concentrated solution in CH_2Cl_2 layered with acetonitrile at room temperature. The asymmetric unit contains one molecule of **2-Cr**.

Figure S 30. Molecular structure of 2-Cr in solid state. Thermal ellipsoids are drawn with 50 % probability level.

4.4 1-Mn

Compound **1-Mn** crystallizes in the monoclinic space group $P2_1/n$ in form of brownish green plate shaped crystals from a concentrated solution in pentane at 8°C. The asymmetric unit contains one molecule of **1-Mn**.

Figure S 31. Molecular structure of 1-Mn in solid state. Thermal ellipsoids are drawn with 50 % probability level.

4.5 1-Fe

Compound **1-Fe** crystallizes in the monoclinic space group P_{2_1}/n in form of dark brown block shaped crystals from a concentrated solution in CH₂Cl₂ layered with acetonitrile at room temperature. The asymmetric unit contains one molecule of **1-Fe**.

4.6 2-Fe

Compound **2-Fe** crystallizes in the monoclinic space group $P2_1/n$ in form of dark brown plate shaped crystals from a concentrated solution in CH₂Cl₂ layered with acetonitrile at room temperature. The asymmetric unit contains one molecule of **2-Fe**.

4.7 3-Ag

Compound **3-Ag** crystallizes in the triclinic space group *P*-1 in form of dark brown block shaped crystals from a concentrated solution in *o*-DFB layered with hexane at room temperature. The asymmetric unit contains one half molecule of **3-Ag** and one anion.

Figure S 34. Molecular structure of 3-Ag in solid state. Thermal ellipsoids are drawn with 50 % probability level.

4.8 2-Ni

Compound **2-Ni** crystallizes in the triclinic space group *P*-1 in form of dark brown block shaped crystals from a concentrated solution in CH_2CI_2 layered with acetonitrile at room temperature. The asymmetric unit contains one molecule of **2-Ni**. Within the solid-state structure As1 is slightly disordered over two positions (occupancy of 0.91 and 0.09). A solvent mask was calculated, and 9 electrons were found in a volume of 328 Å³ in 1 void per unit cell. This is consistent with the presence of 0.2 CH₃CN molecules per asymmetric unit which account for 9 electrons per unit cell.

Figure S 35. Molecular structure of 2-Ni in solid state depicting the part with the higher occupancy. Thermal ellipsoids are drawn with 50 % probability level.
5 Computational Details

The Gaussian 16^[13] program was used for all calculations. Density functional theory (DFT) in form of BP86^[14] (Becke's exchange and Perdew 86 correlation functional) with TZVP basis set was employed.^[15] Subsequent analytical frequency analysis was carried out to confirm the presence of true minima on the potential energy surface. For **3-Ag** no frequency analysis was calculated due to computational costs. Electronic densities were analysed by Natural Bond Orbital analysis (NBO 7.0)^[16] at the same level of theory. Long range empirical dispersion correction in form of GD3BJ^[17] was applied. Figures concerning the DFT calculations for the supporting information were created with Chemcraft.^[18]

	E _{total} [Ha]	H _{total} [Ha]	G _{total} [Ha]
1-Cr doublet	-5071.1398997	-5071.1389555	-5071.2557023
2-Cr triplet	-16254.842309	-16254.8413648	-16255.0067975
2-Cr singlet	-16254.8474274	-16254.8464832	-16255.0077907
1-Mn singlet	-5177.6788506	-5177.6779064	-5177.7938715
1-Fe singlet	-7219.6216898	-7219.6207456	-7219.7794774
2-Fe singlet	-16693.419148	-16693.4182038	-16693.5849332
2-Ni singlet	-17182.7572175	-17182.7562733	-17182.92398
1-Ni singlet	-7708.918155	-7708.9172108	-7709.0799273

Table S 2. Total energies for the optimized geometries (BP86/TZVP level of theory).

1-Cr (doublet)

Fe	1.097300000	3.406300000	7.643700000
Cr	3.034200000	3.430000000	5.333700000
Ρ	0.625800000	3.253700000	5.328700000
Ρ	3.108800000	4.638300000	7.440400000
Ρ	1.527700000	5.125800000	6.021800000
Ρ	1.752500000	1.609500000	6.207400000
Ρ	3.303100000	2.469400000	7.498900000
С	3.856300000	2.322100000	3.641300000
Н	3.608000000	1.422700000	3.462300000
С	3.849300000	4.588600000	3.676700000
Н	3.597800000	5.491800000	3.523500000
С	4.950400000	4.172400000	4.502200000
С	4.957900000	2.714600000	4.475000000
С	2.207200000	3.475900000	1.965200000

С	3.191000000	3.459300000	3.122800000
С	-0.847700000	3.901800000	8.225700000
С	-0.626100000	2.500100000	8.414800000
С	0.905900000	3.644300000	9.712600000
С	0.096500000	4.610200000	9.028200000
С	5.994300000	1.626400000	4.816300000
С	5.977500000	5.206300000	4.992700000
С	1.399500000	2.174400000	1.883900000
Н	2.012800000	1.410800000	1.852700000
Н	0.846900000	2.182900000	1.074600000
Н	0.822700000	2.098200000	2.672500000
С	0.464900000	2.340800000	9.325200000
С	6.409400000	5.094700000	6.465100000
Н	5.722500000	5.495000000	7.038200000
Н	7.258100000	5.567700000	6.593300000
Н	6.522600000	4.150500000	6.701700000
С	1.258200000	4.681000000	2.022600000
Н	0.666000000	4.593700000	2.798600000
Н	0.720900000	4.713000000	1.203700000
Н	1.781700000	5.505600000	2.102300000
С	5.305600000	0.311000000	5.220700000
Н	4.799700000	0.448300000	6.048800000
Н	5.983400000	-0.382300000	5.363100000
Н	4.695000000	0.029400000	4.507800000
С	3.068100000	3.594600000	0.695500000
Η	3.585300000	4.426400000	0.728100000
Η	2.487100000	3.601900000	-0.093600000
Η	3.680300000	2.831200000	0.643400000
С	6.755200000	1.371300000	3.491500000
Η	6.124100000	1.069000000	2.805400000
Η	7.437400000	0.682300000	3.634100000
Н	7.185400000	2.201000000	3.196800000
С	-1.927600000	4.498700000	7.383800000
н	-1.624800000	5.359200000	7.025800000

Н	-2.729500000	4.636100000	7.930100000
Н	-2.137100000	3.892200000	6.643000000
С	7.201600000	5.091800000	4.065100000
Н	7.636500000	4.224600000	4.203700000
Н	7.834900000	5.811200000	4.269700000
Н	6.912400000	5.166800000	3.131800000
С	7.007000000	1.929900000	5.910800000
Н	7.523000000	2.726500000	5.666700000
Н	7.613500000	1.167200000	6.015300000
Н	6.536800000	2.091400000	6.755300000
С	5.414400000	6.628200000	4.840600000
Н	5.221000000	6.803600000	3.896000000
Н	6.073400000	7.276900000	5.165000000
Н	4.589800000	6.710700000	5.363700000
С	1.970800000	3.954900000	10.709500000
Н	2.688600000	3.291400000	10.638200000
Н	1.590700000	3.929000000	11.612400000
Н	2.333000000	4.848200000	10.533000000
С	1.013300000	1.039900000	9.822000000
Н	0.955900000	0.368200000	9.110700000
Н	0.493100000	0.740600000	10.596700000
Н	1.950200000	1.159100000	10.083800000
С	0.181600000	6.096700000	9.160900000
Н	1.111200000	6.356800000	9.330200000
Н	-0.381000000	6.390700000	9.907500000
Н	-0.129500000	6.517000000	8.332100000
С	-1.446500000	1.403100000	7.821300000
Н	-1.725700000	1.656800000	6.916800000
Н	-2.239100000	1.250600000	8.377100000
н	-0.913300000	0.581900000	7.780400000

2-Cr (triplet)

As	2.664400000	4.639300000	16.633600000
As	1.366800000	4.637800000	14.433000000
As	4.326800000	2.376400000	14.167200000
As	3.484700000	6.043000000	14.662500000
As	5.293000000	4.735300000	13.589600000
Fe	2.332600000	2.685300000	15.347400000
Cr	4.878500000	4.107900000	15.899400000
Cr	3.076400000	4.099000000	12.843700000
С	1.983100000	3.218300000	11.126200000
Н	1.388900000	2.489300000	11.260800000
С	1.022600000	1.104000000	14.775400000
С	2.203200000	1.104600000	16.769100000
С	2.164300000	0.561600000	15.444400000
С	2.813700000	5.360200000	10.973900000
С	1.597600000	4.595300000	11.159800000
С	3.867700000	4.406200000	10.802300000
Н	4.780400000	4.630800000	10.664500000
С	3.134700000	0.677000000	17.866300000
Н	3.990900000	0.399700000	17.478500000
Н	2.739500000	-0.074200000	18.356200000
Н	3.281800000	1.426300000	18.480600000
С	1.085700000	1.971000000	16.913700000
С	6.364600000	5.384000000	17.042400000
С	4.600200000	7.124300000	10.624000000
Н	4.944700000	6.634700000	9.848200000
Н	5.058900000	6.817600000	11.433900000
Н	4.759200000	8.083600000	10.502000000
С	3.042700000	-0.540500000	14.922200000
Н	3.078400000	-0.493900000	13.944000000
Н	2.676000000	-1.407400000	15.194800000
Н	3.946400000	-0.438700000	15.287300000
С	0.499400000	0.685700000	13.435400000
н	0.031400000	1.438700000	13.017900000

Н	-0.121900000	-0.063900000	13.546700000
Н	1.246600000	0.408700000	12.864900000
С	3.368500000	3.086800000	10.865400000
С	0.358300000	1.974400000	15.688800000
С	3.081500000	6.867100000	10.763000000
С	7.038400000	4.453900000	16.190900000
н	7.593100000	4.696300000	15.458800000
С	6.766600000	3.122700000	16.587500000
С	5.872500000	3.226800000	17.676100000
н	5.479600000	2.485700000	18.122100000
С	5.637400000	4.594500000	18.017600000
С	-0.969700000	2.650200000	15.508400000
н	-0.926100000	3.558800000	15.873000000
н	-1.661800000	2.141700000	15.980500000
н	-1.188400000	2.691300000	14.554000000
С	0.613800000	2.645900000	18.174400000
Н	1.347300000	2.674800000	18.823700000
Н	-0.137600000	2.143000000	18.552600000
Н	0.324500000	3.559100000	17.967500000
С	5.077000000	4.920500000	19.425200000
С	0.093300000	4.943100000	10.991100000
С	2.453000000	7.282900000	9.415700000
н	1.476200000	7.273100000	9.494100000
н	2.731000000	6.653900000	8.717600000
н	2.752700000	8.185700000	9.180200000
С	5.605600000	1.942500000	10.592900000
н	5.949000000	2.754700000	10.165200000
н	6.043700000	1.157600000	10.202700000
н	5.791500000	1.976100000	11.554500000
С	6.648000000	6.896100000	16.916100000
С	2.581100000	7.798900000	11.878500000
Н	2.393200000	8.684900000	11.504200000
Н	3.268900000	7.876600000	12.572300000
Н	1.762300000	7.429300000	12.270100000

С	4.094200000	1.847600000	10.368300000
С	-0.203200000	4.876100000	9.477300000
Н	-1.159700000	5.025000000	9.324800000
Н	0.048800000	3.993500000	9.133800000
Н	0.313200000	5.567200000	9.012400000
С	7.546800000	1.887700000	16.156300000
С	-0.359300000	6.309400000	11.522300000
Н	0.122500000	7.019700000	11.049300000
Н	-0.166900000	6.367000000	12.481500000
Н	-1.322500000	6.414300000	11.375400000
С	7.428600000	7.189000000	15.625700000
Н	7.562000000	8.155800000	15.536900000
Н	6.922300000	6.857000000	14.855100000
Н	8.299500000	6.741100000	15.661900000
С	4.381700000	6.275300000	19.600500000
Н	5.019600000	6.996100000	19.416300000
Н	4.052800000	6.357100000	20.520000000
Н	3.628100000	6.338800000	18.977100000
С	6.273800000	4.854700000	20.391700000
Н	6.718300000	3.985900000	20.302600000
Н	5.956800000	4.966500000	21.312300000
Н	6.908000000	5.569800000	20.175500000
С	6.754700000	0.598000000	16.359800000
Н	6.499500000	0.516600000	17.302500000
Н	7.308200000	-0.169200000	16.103800000
Н	5.948000000	0.618900000	15.803600000
С	4.063400000	3.856300000	19.877500000
Н	3.323700000	3.816100000	19.235900000
Н	3.715500000	4.091900000	20.762900000
Н	4.505100000	2.982600000	19.922000000
С	3.564200000	0.561800000	11.002000000
Н	3.704900000	0.593100000	11.971400000
Н	4.041300000	-0.207900000	10.627400000
Н	2.606300000	0.475500000	10.813700000

С	7.569100000	7.310100000	18.081600000
Н	8.310700000	6.673500000	18.153800000
Н	7.057600000	7.311800000	18.917500000
н	7.924400000	8.207900000	17.914200000
С	8.002100000	1.981000000	14.702600000
н	7.218100000	1.987000000	14.114500000
н	8.566400000	1.209400000	14.486800000
н	8.514000000	2.806500000	14.573000000
С	5.404300000	7.819700000	16.883100000
н	5.641000000	8.699400000	17.244300000
н	4.689900000	7.425100000	17.425700000
н	5.095300000	7.918700000	15.958300000
С	-0.799300000	3.897600000	11.677000000
н	-1.740300000	4.146800000	11.564100000
н	-0.583600000	3.860100000	12.632300000
н	-0.643300000	3.018800000	11.272200000
С	8.791200000	1.829400000	17.066000000
н	9.315900000	2.649600000	16.954700000
н	9.339400000	1.055100000	16.820400000
н	8.508900000	1.746500000	18.000800000
С	3.815000000	1.788100000	8.848500000
н	2.855500000	1.657900000	8.697400000
н	4.312100000	1.041300000	8.454000000
н	4.100500000	2.627400000	8.430800000

2-Cr (singlet)

As	2.664400000	4.639300000	16.633600000
As	1.366800000	4.637800000	14.433000000
As	4.326800000	2.376400000	14.167200000
As	3.484700000	6.043000000	14.662500000
As	5.293000000	4.735300000	13.589600000
Fe	2.332600000	2.685300000	15.347400000
Cr	4.878500000	4.107900000	15.899400000
Cr	3.076400000	4.099000000	12.843700000
С	1.983100000	3.218300000	11.126200000
Н	1.388900000	2.489300000	11.260800000
С	1.022600000	1.104000000	14.775400000
С	2.203200000	1.104600000	16.769100000
С	2.164300000	0.561600000	15.444400000
С	2.813700000	5.360200000	10.973900000
С	1.597600000	4.595300000	11.159800000
С	3.867700000	4.406200000	10.802300000
Н	4.780400000	4.630800000	10.664500000
С	3.134700000	0.677000000	17.866300000
Н	3.990900000	0.399700000	17.478500000
Н	2.739500000	-0.074200000	18.356200000
Н	3.281800000	1.426300000	18.480600000
С	1.085700000	1.971000000	16.913700000
С	6.364600000	5.384000000	17.042400000
С	4.600200000	7.124300000	10.624000000
Н	4.944700000	6.634700000	9.848200000
Н	5.058900000	6.817600000	11.433900000
Н	4.759200000	8.083600000	10.502000000
С	3.042700000	-0.540500000	14.922200000
Н	3.078400000	-0.493900000	13.944000000
Н	2.676000000	-1.407400000	15.194800000
Н	3.946400000	-0.438700000	15.287300000
С	0.499400000	0.685700000	13.435400000
Н	0.031400000	1.438700000	13.017900000

Н	-0.121900000	-0.063900000	13.546700000
Н	1.246600000	0.408700000	12.864900000
С	3.368500000	3.086800000	10.865400000
С	0.358300000	1.974400000	15.688800000
С	3.081500000	6.867100000	10.763000000
С	7.038400000	4.453900000	16.190900000
н	7.593100000	4.696300000	15.458800000
С	6.766600000	3.122700000	16.587500000
С	5.872500000	3.226800000	17.676100000
н	5.479600000	2.485700000	18.122100000
С	5.637400000	4.594500000	18.017600000
С	-0.969700000	2.650200000	15.508400000
Н	-0.926100000	3.558800000	15.873000000
н	-1.661800000	2.141700000	15.980500000
н	-1.188400000	2.691300000	14.554000000
С	0.613800000	2.645900000	18.174400000
н	1.347300000	2.674800000	18.823700000
н	-0.137600000	2.143000000	18.552600000
Н	0.324500000	3.559100000	17.967500000
С	5.077000000	4.920500000	19.425200000
С	0.093300000	4.943100000	10.991100000
С	2.453000000	7.282900000	9.415700000
н	1.476200000	7.273100000	9.494100000
Н	2.731000000	6.653900000	8.717600000
н	2.752700000	8.185700000	9.180200000
С	5.605600000	1.942500000	10.592900000
н	5.949000000	2.754700000	10.165200000
н	6.043700000	1.157600000	10.202700000
н	5.791500000	1.976100000	11.554500000
С	6.648000000	6.896100000	16.916100000
С	2.581100000	7.798900000	11.878500000
Н	2.393200000	8.684900000	11.504200000
Н	3.268900000	7.876600000	12.572300000
Н	1.762300000	7.429300000	12.270100000

С	4.094200000	1.847600000	10.368300000
С	-0.203200000	4.876100000	9.477300000
Н	-1.159700000	5.025000000	9.324800000
Н	0.048800000	3.993500000	9.133800000
Н	0.313200000	5.567200000	9.012400000
С	7.546800000	1.887700000	16.156300000
С	-0.359300000	6.309400000	11.522300000
Н	0.122500000	7.019700000	11.049300000
Н	-0.166900000	6.367000000	12.481500000
Н	-1.322500000	6.414300000	11.375400000
С	7.428600000	7.189000000	15.625700000
Н	7.562000000	8.155800000	15.536900000
Н	6.922300000	6.857000000	14.855100000
Н	8.299500000	6.741100000	15.661900000
С	4.381700000	6.275300000	19.600500000
Н	5.019600000	6.996100000	19.416300000
Н	4.052800000	6.357100000	20.520000000
Н	3.628100000	6.338800000	18.977100000
С	6.273800000	4.854700000	20.391700000
Н	6.718300000	3.985900000	20.302600000
Н	5.956800000	4.966500000	21.312300000
Н	6.908000000	5.569800000	20.175500000
С	6.754700000	0.598000000	16.359800000
Н	6.499500000	0.516600000	17.302500000
Н	7.308200000	-0.169200000	16.103800000
Н	5.948000000	0.618900000	15.803600000
С	4.063400000	3.856300000	19.877500000
Н	3.323700000	3.816100000	19.235900000
Н	3.715500000	4.091900000	20.762900000
Н	4.505100000	2.982600000	19.922000000
С	3.564200000	0.561800000	11.002000000
Н	3.704900000	0.593100000	11.971400000
Н	4.041300000	-0.207900000	10.627400000
Н	2.606300000	0.475500000	10.813700000

С	7.569100000	7.310100000	18.081600000
н	8.310700000	6.673500000	18.153800000
н	7.057600000	7.311800000	18.917500000
н	7.924400000	8.207900000	17.914200000
С	8.002100000	1.981000000	14.702600000
н	7.218100000	1.987000000	14.114500000
н	8.566400000	1.209400000	14.486800000
н	8.514000000	2.806500000	14.573000000
С	5.404300000	7.819700000	16.883100000
н	5.641000000	8.699400000	17.244300000
н	4.689900000	7.425100000	17.425700000
н	5.095300000	7.918700000	15.958300000
С	-0.799300000	3.897600000	11.677000000
н	-1.740300000	4.146800000	11.564100000
н	-0.583600000	3.860100000	12.632300000
н	-0.643300000	3.018800000	11.272200000
С	8.791200000	1.829400000	17.066000000
н	9.315900000	2.649600000	16.954700000
н	9.339400000	1.055100000	16.820400000
н	8.508900000	1.746500000	18.000800000
С	3.815000000	1.788100000	8.848500000
н	2.855500000	1.657900000	8.697400000
н	4.312100000	1.041300000	8.454000000
н	4.100500000	2.627400000	8.430800000

1-Mn (singlet)

Mn	-0.849557000	0.221782000	-0.018399000
Fe	2.217497000	-0.096142000	0.001235000
Ρ	0.680504000	0.430374000	1.789726000
Ρ	0.925635000	1.870784000	0.203672000
Ρ	0.610512000	-1.286160000	-1.263800000
Р	0.487335000	-1.529179000	0.876321000
Р	0.702285000	0.829062000	-1.681117000
С	-2.511609000	0.827274000	-1.149194000

Н	-2.461255000	1.163447000	-2.179238000
С	-2.503206000	0.834713000	1.120651000
Н	-2.450381000	1.177235000	2.149131000
С	-2.705251000	-0.533917000	0.722291000
С	-2.401580000	1.684542000	-0.016131000
С	-2.710532000	-0.539525000	-0.740318000
С	-2.460181000	3.200814000	-0.023242000
С	3.974897000	0.627909000	0.844027000
С	3.872857000	-0.517431000	-1.180562000
С	4.003806000	0.786641000	-0.585627000
С	-2.363775000	-1.273654000	3.126954000
Н	-1.280391000	-1.409094000	3.006296000
Н	-2.712307000	-1.984138000	3.891714000
Н	-2.540725000	-0.262665000	3.515754000
С	-1.883694000	3.795907000	1.271376000
Н	-2.428893000	3.437107000	2.156656000
Н	-1.966260000	4.893316000	1.250478000
Н	-0.823022000	3.534245000	1.392445000
С	-3.113896000	-1.546968000	1.804426000
С	3.762601000	-1.481802000	-0.118488000
С	3.819743000	-0.773412000	1.132932000
С	-2.260458000	-2.898699000	-1.766995000
Н	-1.294574000	-2.727499000	-2.260176000
Н	-2.787636000	-3.685715000	-2.329685000
Н	-2.050121000	-3.276636000	-0.765484000
С	4.170544000	2.074073000	-1.324917000
Н	3.657360000	2.045333000	-2.295740000
Н	5.237246000	2.282747000	-1.511202000
Н	3.755537000	2.917618000	-0.756830000
С	4.105487000	1.721455000	1.853214000
Н	3.716036000	2.672474000	1.465233000
Н	5.162344000	1.875130000	2.127889000
Н	3.548820000	1.486035000	2.770555000
С	3.633859000	-2.960805000	-0.283163000

Н	3.052855000	-3.404076000	0.537090000
Н	4.626625000	-3.440686000	-0.293763000
Н	3.125659000	-3.215304000	-1.223142000
С	-4.624341000	-1.325524000	2.068520000
Н	-4.812574000	-0.291776000	2.393180000
Н	-4.975471000	-2.006411000	2.859996000
Н	-5.223401000	-1.508102000	1.166538000
С	-1.728696000	3.796275000	-1.237260000
Н	-0.650156000	3.591732000	-1.193215000
Н	-1.869477000	4.887777000	-1.263072000
Н	-2.114172000	3.386659000	-2.182200000
С	-3.103056000	-1.607048000	-1.776430000
С	-4.596549000	-1.948395000	-1.566178000
Н	-4.766180000	-2.497170000	-0.631522000
Н	-4.958859000	-2.577148000	-2.394622000
Н	-5.204262000	-1.031616000	-1.536620000
С	-3.960579000	3.572877000	-0.115867000
Н	-4.405434000	3.176205000	-1.040492000
Н	-4.085638000	4.667187000	-0.112103000
Н	-4.519350000	3.156720000	0.735508000
С	-2.967069000	-1.032649000	-3.203108000
Н	-3.660780000	-0.198852000	-3.383642000
Н	-3.197715000	-1.823860000	-3.932168000
Н	-1.940394000	-0.686835000	-3.395119000
С	3.882034000	-0.817668000	-2.643928000
Н	3.292306000	-1.716053000	-2.871127000
Н	4.911276000	-0.988321000	-3.001197000
Н	3.456384000	0.012466000	-3.223836000
С	3.765766000	-1.389115000	2.492999000
н	3.327589000	-0.698802000	3.226389000
н	4.777419000	-1.656658000	2.841143000
Н	3.155813000	-2.302612000	2.493287000
С	-2.877351000	-3.027377000	1.478045000
Н	-3.476728000	-3.376357000	0.630178000

Н	-3.160279000	-3.635474000	2.351114000
Н	-1.815517000	-3.220591000	1.267278000

1-Fe (singlet)

Fe	1.734153000	-0.383390000	0.160603000
Fe	-1.734264000	-0.383109000	0.160315000
Fe	0.000085000	1.728024000	-0.531418000
Ρ	1.109775000	0.283249000	-1.861526000
Ρ	-1.109425000	0.283258000	-1.861811000
Ρ	-0.000268000	-1.478961000	1.278132000
Ρ	-0.000186000	0.707178000	1.417296000
Ρ	-0.000053000	-1.641385000	-0.889128000
С	2.931517000	-1.622166000	1.338229000
Н	2.543617000	-2.398447000	1.987562000
С	3.762036000	-0.526790000	-0.521512000
С	3.626115000	0.396716000	0.578287000
Н	3.893340000	1.445694000	0.537283000
С	3.160711000	-0.276018000	1.743450000
С	3.280353000	-1.818805000	-0.041624000
С	-2.932042000	-1.620857000	1.338656000
Н	-2.544416000	-2.396640000	1.988744000
С	-3.161198000	-0.274381000	1.742735000
С	-3.761901000	-0.526907000	-0.522206000
С	1.163052000	3.497135000	-0.371754000
С	-0.000141000	3.589686000	0.466290000
С	3.197489000	0.218218000	3.176233000
С	-3.198401000	0.220808000	3.175178000
С	-3.626215000	0.397478000	0.576900000
Н	-3.893251000	1.446468000	0.534964000
С	0.718579000	3.351462000	-1.725880000
С	-1.162583000	3.497307000	-0.372816000
С	-0.716842000	3.351455000	-1.726518000
С	-4.631522000	-0.120998000	-1.722172000
С	3.301753000	-3.235386000	-0.639298000

С	4.632096000	-0.120025000	-1.720862000
С	-3.280523000	-1.818611000	-0.041124000
С	-1.545517000	3.404435000	-2.970598000
Н	-1.285634000	4.305839000	-3.550737000
Н	-2.616491000	3.454724000	-2.743955000
Н	-1.378467000	2.531729000	-3.619953000
С	-3.302050000	-3.235773000	-0.637486000
С	-2.953494000	1.731765000	3.254137000
Н	-2.991306000	2.071144000	4.300252000
Н	-3.715400000	2.293082000	2.693318000
Н	-1.960065000	1.966595000	2.847545000
С	1.548290000	3.404642000	-2.969292000
Н	1.384618000	2.530200000	-3.617218000
Н	2.618884000	3.458679000	-2.741666000
Н	1.286144000	4.304105000	-3.551374000
С	2.562464000	3.755926000	0.075036000
Н	2.746547000	3.350669000	1.076366000
Н	2.748872000	4.843349000	0.118091000
Н	3.294607000	3.321827000	-0.614013000
С	6.099991000	-0.347715000	-1.279413000
Н	6.784720000	-0.027303000	-2.080461000
Н	6.301216000	-1.403133000	-1.056840000
Н	6.326791000	0.236839000	-0.375666000
С	-2.562485000	3.756267000	0.072338000
Н	-3.293812000	3.320870000	-0.616771000
Н	-2.749369000	4.843678000	0.113548000
Н	-2.747388000	3.352416000	1.074086000
С	2.952807000	1.729177000	3.256156000
Н	3.714947000	2.290777000	2.695938000
Н	2.990409000	2.067807000	4.302522000
Н	1.959511000	1.964492000	2.849495000
С	2.615918000	-4.226423000	0.326869000
Н	1.583523000	-3.916799000	0.548209000
Н	3.165338000	-4.334215000	1.273626000

Н	2.576550000	-5.217318000	-0.149505000
С	2.579645000	-3.397572000	-1.993740000
н	2.923150000	-4.321916000	-2.484585000
н	2.742187000	-2.563619000	-2.677492000
н	1.496135000	-3.478830000	-1.839822000
С	-6.099590000	-0.348220000	-1.281074000
н	-6.784009000	-0.028581000	-2.082695000
н	-6.326724000	0.237230000	-0.377988000
н	-6.300924000	-1.403412000	-1.057532000
С	-2.616715000	-4.226053000	0.329832000
н	-1.584370000	-3.916370000	0.551318000
н	-2.577300000	-5.217378000	-0.145640000
н	-3.166522000	-4.332931000	1.276467000
С	-2.169734000	-0.504448000	4.057706000
н	-1.147465000	-0.294886000	3.714436000
н	-2.320441000	-1.593458000	4.049109000
н	-2.264637000	-0.162255000	5.099577000
С	4.777295000	-3.681783000	-0.768064000
н	5.319498000	-3.520647000	0.175977000
Н	5.306705000	-3.141804000	-1.562441000
н	4.818644000	-4.755190000	-1.009753000
С	4.467195000	1.379926000	-2.022176000
Н	4.821728000	2.009204000	-1.195258000
Н	3.414559000	1.610315000	-2.226621000
Н	5.057678000	1.645278000	-2.911471000
С	-4.777633000	-3.681996000	-0.766308000
Н	-5.320131000	-3.519822000	0.177388000
Н	-4.819119000	-4.755635000	-1.006947000
н	-5.306664000	-3.142704000	-1.561405000
С	4.384437000	-0.857790000	-3.044001000
н	5.047304000	-0.433633000	-3.813854000
Н	3.346676000	-0.722275000	-3.380370000
Н	4.603718000	-1.928402000	-2.981028000
С	-0.000581000	3.979329000	1.908562000

Н	-0.886969000	3.605861000	2.434966000
н	0.001865000	5.079526000	1.998240000
Н	0.883056000	3.601729000	2.436680000
С	-4.383371000	-0.859867000	-3.044597000
Н	-4.603115000	-1.930342000	-2.980880000
Н	-3.345362000	-0.724994000	-3.380466000
Н	-5.045626000	-0.436088000	-3.815182000
С	-4.466439000	1.378702000	-2.024702000
Н	-5.057093000	1.643416000	-2.914075000
Н	-3.413799000	1.608727000	-2.229617000
Н	-4.820675000	2.008723000	-1.198225000
С	4.620078000	-0.093856000	3.700670000
Н	4.822254000	-1.174669000	3.664968000
Н	4.723623000	0.243331000	4.744050000
Н	5.383272000	0.415520000	3.093444000
С	2.168454000	-0.507489000	4.057949000
Н	1.146306000	-0.297591000	3.714542000
Н	2.263104000	-0.166035000	5.100087000
Н	2.319013000	-1.596515000	4.048635000
С	-2.579573000	-3.399515000	-1.991497000
Н	-2.743078000	-2.567046000	-2.676821000
Н	-2.921969000	-4.325170000	-2.480649000
Н	-1.495984000	-3.479231000	-1.837301000
С	-4.621199000	-0.090713000	3.699350000
Н	-4.725023000	0.247151000	4.742484000
Н	-4.823536000	-1.171515000	3.664262000
Н	-5.384119000	0.418404000	3.091559000

2-Fe (singlet)

As	-1.2277593	0.808852	-1.7237595
As	1.3352953	0.6063032	-1.8278881
As	-0.0599001	0.6339428	1.5351619
As	-0.1138487	-1.8001282	1.0651358
As	-0.0848937	-1.5050013	-1.3459666

Fe	-1.8614425	-0.4054765	0.1869625
Fe	1.7598029	-0.5230184	0.1887848
Fe	0.2440425	1.9818208	-0.3132016
С	0.2953427	3.6844998	0.99207
С	2.8762226	3.801839	0.7055754
Н	3.0056692	3.2069833	1.6189985
Н	3.1240413	4.8477175	0.9576668
Н	3.6096277	3.4591587	-0.033408
С	-2.261277	3.891673	0.5764729
н	-2.9663359	3.604714	-0.2120062
Н	-2.4793622	4.936576	0.8582274
Н	-2.4605257	3.2625186	1.4535043
С	2.8879524	-1.9246468	1.2350879
Н	2.4845967	-2.7836197	1.7590388
С	4.7882207	-0.0530018	-1.4844267
С	-3.9266984	-0.2910894	-0.4787112
С	3.8244512	-0.5985329	-0.4170593
С	-4.7637012	0.3550539	-1.59572
С	1.4813093	3.7038122	0.1817527
С	-3.1884844	-1.7048598	1.1927554
Н	-2.8833497	-2.5963693	1.7288237
С	3.3110491	-1.9357323	-0.1394833
С	-0.8457262	3.7507114	0.1229351
С	-3.7019003	0.458612	0.7341747
Н	-3.8802959	1.5217669	0.8441081
С	-3.5808513	-1.6790672	-0.1848668
С	3.6216502	0.1740522	0.7853794
Н	3.8824481	1.2200397	0.8952019
С	3.0956443	-0.6447121	1.8258435
С	1.077178	3.7723728	-1.1881448
С	-3.2661971	-0.1055228	3.2672086
С	-0.3627223	3.7987001	-1.2281436
С	-2.234733	-0.962522	4.0176212
Н	-2.390099	-2.0363746	3.8399941

Н	-2.3155169	-0.7862991	5.1011948
н	-1.2146054	-0.7051993	3.701538
С	3.0799431	-0.3405795	3.3111709
С	6.2131411	-0.4011894	-0.9820291
Н	6.3866922	0.0318259	0.0140316
н	6.9640087	0.0108122	-1.6744883
Н	6.3694529	-1.4843831	-0.9099915
С	-3.2784008	-0.4044079	1.779713
С	-3.7207729	-2.9868547	-0.9799949
С	-4.5306302	1.877857	-1.6571342
Н	-4.8180113	2.381631	-0.7251054
Н	-5.1415623	2.3067448	-2.4651124
Н	-3.4769431	2.1039812	-1.874916
С	-1.1678865	4.0394463	-2.4657518
н	-0.8179946	3.4248974	-3.3073407
н	-1.0914266	5.0980075	-2.7688831
Н	-2.2307773	3.8149857	-2.3112806
С	1.9826529	-1.1214906	4.0504243
Н	0.986818	-0.7930029	3.7235099
Н	2.0653491	-0.9488881	5.1343547
Н	2.0630807	-2.2041072	3.8763268
С	4.8174968	-3.7124944	-1.058405
Н	5.3908886	-3.0810574	-1.7474952
Н	4.8502155	-4.7425654	-1.4457807
Н	5.3204919	-3.6972914	-0.0797491
С	1.9559605	3.978139	-2.3821886
Н	3.0071517	3.7608891	-2.1570641
Н	1.9003685	5.0271755	-2.7200037
Н	1.6559214	3.3424351	-3.2277896
С	-5.2204218	-3.2802129	-1.2177857
н	-5.787799	-3.2051492	-0.2779339
Н	-5.3400688	-4.3016553	-1.6114437
Н	-5.6690857	-2.5919871	-1.9441274
С	-6.2463651	0.1454765	-1.1942588

Н	-6.5087135	-0.9174144	-1.1335238
Н	-6.9060391	0.6226766	-1.9360933
Н	-6.4455877	0.5986824	-0.2120219
С	3.3457861	-3.2537872	-0.9288278
С	0.2511086	3.8176492	2.4805101
Н	-0.6109033	3.2940879	2.9146222
Н	0.1706349	4.8822337	2.7602866
Н	1.155771	3.4179034	2.9545506
С	-2.9588221	-3.0138771	-2.3215588
Н	-3.0181323	-2.0749306	-2.8753777
Н	-3.3561188	-3.8197303	-2.9589999
Н	-1.8940674	-3.2210846	-2.150294
С	-3.1627371	-4.1666481	-0.1544002
Н	-2.1111055	-3.9969242	0.1222219
Н	-3.20702	-5.0815359	-0.7639014
Н	-3.7455893	-4.3466725	0.7608505
С	-4.5396109	-0.1810526	-3.016962
Н	-3.489201	-0.0638266	-3.3209754
Н	-5.1596043	0.3972258	-3.71916
Н	-4.8237829	-1.2330261	-3.1219952
С	4.7029463	1.4828197	-1.5631802
Н	3.6793515	1.807719	-1.7924121
Н	5.363113	1.8472355	-2.3637909
Н	5.0247853	1.9609004	-0.6289951
С	2.9026908	1.1594719	3.5760595
Н	3.72119	1.7453656	3.1320794
Н	2.8986926	1.3574116	4.6585191
Н	1.9470234	1.5038682	3.1569536
С	2.6839544	-3.1981336	-2.3205472
Н	1.5921075	-3.2648242	-2.2244362
Н	3.0193556	-4.0561638	-2.9242864
Н	2.9020066	-2.2821179	-2.8720754
С	4.4623459	-0.7880535	3.8467362
Н	4.6144081	-1.8659717	3.6879176

Н	4.5367441	-0.5828878	4.9261824
Н	5.2739538	-0.250446	3.3340256
С	4.616479	-0.5809408	-2.9156272
Н	4.7974706	-1.657673	-2.9943561
н	5.3458493	-0.0780981	-3.5689555
н	3.6109376	-0.3595188	-3.3013435
С	2.6024453	-4.3599364	-0.1488053
н	3.1047274	-4.6132466	0.7962461
н	2.5730869	-5.2712035	-0.764384
Н	1.5642538	-4.0669354	0.0690212
С	-2.9943803	1.3788307	3.5469282
н	-3.0317606	1.5737933	4.62942
н	-3.7428406	2.0250554	3.0648289
Н	-1.9952938	1.6565109	3.1815156
С	-4.6829303	-0.4612727	3.781584
Н	-5.4482784	0.1370453	3.2650648
Н	-4.7574328	-0.2642044	4.8626101
Н	-4.9073514	-1.5240132	3.6071753

2-Ni (singlet)

As	13.827557862	8.493666776	14.043328335
As	13.520401637	10.788752040	12.237005312
As	12.530884343	11.144882021	14.884745400
As	15.987246841	10.605287953	13.599278973
As	14.705394396	10.282612939	15.704135760
Ni	15.134566496	8.999916515	12.189441274
Ni	11.841072556	9.536119101	13.382490983
Fe	14.394589558	12.224926097	14.020032234
С	10.347456649	8.090879421	14.015256741
С	9.837167385	9.403689783	14.172096087
Н	9.565130283	9.846561734	15.122816465
С	16.836911736	7.638923414	11.864522181
С	15.032407023	7.791431973	10.399940475
Н	14.128123571	7.551599705	9.856023842

С	10.280926470	9.136151379	11.907606605
С	10.611480387	7.938467460	12.618156630
Н	10.980629469	7.030372202	12.158115248
С	10.421253330	7.033652991	15.099453918
С	15.592152127	13.791032976	13.299929250
С	15.849703486	8.929336234	10.160719846
С	16.954501121	8.813587004	11.059822489
Н	17.762647143	9.532674139	11.130684825
С	14.204624722	14.087833536	13.056018968
С	15.592138119	6.986369320	11.449657200
С	11.016614897	7.617932077	16.393533048
Н	12.054736890	7.945715086	16.238561801
Н	10.440400910	8.484485105	16.746570811
Н	11.009006487	6.861191814	17.192341553
С	13.535217639	14.155637735	14.325218942
С	9.797384490	10.089201684	12.911026008
С	8.976005660	6.558064149	15.379583348
Н	8.350297741	7.389452749	15.734512194
Н	8.513368910	6.150415696	14.469019804
Н	8.973151043	5.771686764	16.149924350
С	17.931881689	7.251308636	12.867867581
С	14.486879142	13.832872114	15.349302367
С	18.557857995	5.894239478	12.478889759
Н	19.425103398	5.684813557	13.123516372
Н	17.859313219	5.057185377	12.585501022
Н	18.905591027	5.913851043	11.435498510
С	9.210040360	11.502293833	12.804964501
С	12.135006429	14.614978238	14.575188897
Н	11.617227814	13.985593248	15.314078139
Н	12.142189228	15.644815864	14.969081686
Н	11.534398076	14.615983310	13.659040845
С	10.221043845	12.529119577	12.265112064
Н	11.092259047	12.580681829	12.932191634
н	10.590408589	12.286046032	11.267393998

Н	9.756814215	13.527364475	12.226635602
С	10.277143612	9.115263842	10.375004017
С	14.982433942	5.606714787	11.727570666
С	17.438441894	7.223804895	14.329218235
н	16.563804124	6.586685395	14.475037659
н	18.241742063	6.857894962	14.987526843
н	17.168372301	8.237258333	14.657698012
С	15.134465166	5.075107076	13.160482415
н	16.176012301	4.901406640	13.446390557
н	14.684404145	5.766767647	13.887343493
н	14.608056447	4.112667594	13.242945944
С	8.791637384	12.004640901	14.203024144
Н	8.009964191	11.372934983	14.648106251
н	9.647807133	12.039334689	14.893054556
Н	8.390799301	13.024776433	14.115361044
С	11.261627476	5.830019045	14.649134913
Н	10.840996543	5.357144047	13.749986933
н	12.297043248	6.127790077	14.429639288
н	11.288429717	5.070173767	15.443944074
С	19.076188734	8.286873169	12.822673782
н	19.851577673	7.996343579	13.546177116
Н	19.545634295	8.336954612	11.829346761
Н	18.723378278	9.291332755	13.098127320
С	7.934996834	11.492300958	11.935097245
Н	8.145356777	11.262074685	10.884934719
Н	7.215710926	10.748985547	12.308324674
н	7.451531410	12.480626510	11.967683952
С	15.629324069	4.605923250	10.739634850
н	15.476354163	4.934591422	9.701728473
н	16.709498476	4.508671590	10.906350307
н	15.174036588	3.610198186	10.856687540
С	11.352040202	8.128622828	9.879111113
Н	11.118585622	7.090209577	10.144522364
н	11.426200745	8.178859017	8.783284087

Н	12.329301254	8.382054044	10.309677433
С	13.602274511	14.392022168	11.722625619
Н	14.080900782	13.808703293	10.924876093
Н	12.530695545	14.156839711	11.700337312
Н	13.717390261	15.460012808	11.471406302
С	13.467296846	5.641408619	11.440327555
Н	12.985589123	6.448303754	12.008309630
Н	13.244969029	5.791583557	10.376519641
Н	13.012543520	4.686743952	11.740762085
С	15.766033681	13.615961267	14.718304965
С	15.715844230	9.951611239	9.050470816
С	8.896737207	8.591592801	9.910754406
н	8.870511573	8.509282571	8.812870512
Н	8.699565125	7.596832266	10.335138875
Н	8.080682056	9.256730719	10.221399893
С	16.682846970	13.796216090	12.278636714
Н	17.471354041	13.068208598	12.516673726
Н	16.302621967	13.561209600	11.277235401
Н	17.156924318	14.791042038	12.227317097
С	14.280449550	9.999110161	8.512230075
Н	14.203578532	10.737939745	7.700600633
н	13.966729229	9.026496408	8.107582076
Н	13.576353344	10.286121868	9.304825487
С	10.569885275	10.454082391	9.682167863
Н	11.522594551	10.878472932	10.029361673
Н	10.650493198	10.287987925	8.597611403
Н	9.778267443	11.194613053	9.834453006
С	16.672338879	9.530275231	7.910138784
Н	16.419252688	8.525635591	7.542064645
Н	16.599784749	10.234933298	7.067513037
Н	17.716175570	9.511503676	8.254852075
С	14.207638676	13.820849247	16.818372946
н	14.306454538	14.830711557	17.250809207
н	13.187676033	13.469529782	17.028946370

Н	14.901751078	13.159946916	17.354505536
С	16.109288215	11.350032311	9.552504378
Н	16.066879000	12.081643877	8.731364650
Н	15.419317820	11.675359719	10.345364310
Н	17.128266710	11.362570084	9.963086480
С	17.059045994	13.360872685	15.424444203
Н	17.568895723	14.306293005	15.673322183
Н	16.900038834	12.810364518	16.361749058
Н	17.747001099	12.766485947	14.806698623

3-Ag (singlet)

Ag	-0.139926000	-1.480459000	-0.010949000
Fe	2.812503000	-0.086361000	-2.462951000
Ni	4.562084000	1.670635000	0.077181000
Ni	3.911493000	-2.090646000	0.375746000
Р	2.479205000	1.107079000	-0.517775000
Р	2.176755000	-1.013501000	-0.457274000
Р	4.296176000	-1.576615000	-1.762068000
Р	4.825333000	0.676535000	-1.913838000
Р	5.393084000	-0.445785000	0.037177000
С	5.504563000	2.557436000	1.791585000
Н	5.609721000	2.076828000	2.756518000
С	3.009577000	-3.266718000	1.857635000
Н	2.006470000	-3.080796000	2.222516000
С	4.388513000	3.362352000	1.389948000
С	6.479036000	2.510606000	0.751581000
С	4.189275000	-2.707913000	2.411681000
С	5.254444000	-3.195387000	1.590347000
Н	6.297831000	-2.930799000	1.720860000
С	4.299737000	-1.871329000	3.664601000
С	1.439108000	0.966654000	-3.699321000
С	3.325184000	-4.138224000	0.736539000
С	4.690441000	3.848422000	0.018970000
С	3.346680000	3.760086000	2.434726000

С	0.886957000	-4.777913000	0.798256000
Н	0.943607000	-5.061785000	1.858808000
Н	0.124251000	-5.406901000	0.319658000
Н	0.532533000	-3.732283000	0.736653000
С	5.952212000	3.294105000	-0.322251000
Н	6.455246000	3.436880000	-1.270896000
С	1.984700000	-4.550461000	-1.398643000
Н	1.596951000	-3.520610000	-1.429450000
Н	1.234503000	-5.210922000	-1.859656000
Н	2.892178000	-4.585024000	-2.005874000
С	1.080290000	-0.417430000	-3.627857000
С	3.902507000	4.999868000	3.180466000
н	3.203903000	5.295861000	3.977604000
Н	4.039601000	5.857143000	2.510304000
н	4.873250000	4.771455000	3.642585000
С	2.768316000	1.056325000	-4.237893000
С	4.768203000	-4.093109000	0.573643000
С	3.188331000	2.620074000	3.457800000
Н	4.104069000	2.443652000	4.036130000
Н	2.911380000	1.685900000	2.953900000
Н	2.399543000	2.880637000	4.176663000
С	2.228313000	-4.968857000	0.063691000
С	8.369699000	1.436378000	-0.529286000
н	7.779571000	0.555434000	-0.821140000
Н	9.423049000	1.130053000	-0.458137000
Н	8.296510000	2.182815000	-1.332610000
С	7.901896000	1.999767000	0.824558000
С	2.634267000	4.356366000	-1.397943000
Н	2.764587000	3.420591000	-1.958211000
Н	2.178339000	5.104087000	-2.064740000
Н	1.934701000	4.153190000	-0.584468000
С	4.004190000	4.851531000	-0.913218000
С	3.035636000	-1.019694000	3.826390000
н	2.875618000	-0.409342000	2,926346000

Н	3.130669000	-0.351032000	4.693961000
Н	2.145276000	-1.642151000	3.981678000
С	5.778287000	-4.818304000	-0.322073000
С	3.224828000	-0.284127000	-4.508218000
С	2.180357000	-1.196912000	-4.128745000
С	5.284185000	-5.165270000	-1.735208000
н	4.446701000	-5.869757000	-1.740503000
Н	6.105856000	-5.636901000	-2.292867000
н	4.989836000	-4.257468000	-2.281815000
С	8.083181000	0.938847000	1.918794000
н	7.772722000	1.311485000	2.905628000
н	9.143699000	0.658785000	1.990056000
н	7.507877000	0.031951000	1.688440000
С	7.039758000	-3.942530000	-0.508737000
н	6.788030000	-2.958510000	-0.932700000
н	7.726853000	-4.444457000	-1.203820000
Н	7.589973000	-3.787991000	0.428751000
С	2.569697000	-6.471684000	0.164575000
н	3.466233000	-6.740230000	-0.402766000
н	1.733947000	-7.068438000	-0.229762000
н	2.731855000	-6.762933000	1.212450000
С	1.944850000	4.073714000	1.894583000
н	1.269221000	4.269353000	2.740001000
н	1.538719000	3.220559000	1.327404000
н	1.920882000	4.957374000	1.249694000
С	0.536183000	2.108932000	-3.379575000
н	-0.136767000	1.856030000	-2.544106000
н	-0.089828000	2.356362000	-4.252538000
н	1.090386000	3.010995000	-3.099429000
С	6.200275000	-6.112331000	0.416555000
н	6.616632000	-5.878052000	1.407008000
Н	6.973517000	-6.637332000	-0.163740000
Н	5.355035000	-6.797871000	0.558637000
С	-0.248096000	-0.948413000	-3.227505000

Н	-0.180873000	-1.982639000	-2.867065000
Н	-0.935701000	-0.943553000	-4.086669000
Н	-0.712752000	-0.341507000	-2.436542000
С	5.519295000	-0.942770000	3.605366000
Н	6.458879000	-1.497897000	3.477857000
Н	5.601220000	-0.367218000	4.539075000
Н	5.420675000	-0.234794000	2.769854000
С	8.761210000	3.241265000	1.180971000
Н	8.675667000	4.020769000	0.410412000
Н	9.818555000	2.947389000	1.256556000
Н	8.453765000	3.673071000	2.144497000
С	4.441633000	-2.838415000	4.863149000
Н	3.577023000	-3.515031000	4.927228000
Н	4.507610000	-2.271644000	5.803822000
Н	5.348651000	-3.452762000	4.769722000
С	4.862687000	5.063951000	-2.178472000
Н	5.847059000	5.491746000	-1.942214000
Н	4.347465000	5.767866000	-2.846955000
Н	5.009946000	4.126006000	-2.732960000
С	3.881634000	6.227581000	-0.222756000
Н	3.192656000	6.215800000	0.628747000
Н	3.505616000	6.967236000	-0.944789000
Н	4.861562000	6.573870000	0.135826000
С	2.180978000	-2.671654000	-4.364534000
Н	3.178517000	-3.108186000	-4.220275000
Н	1.872972000	-2.890878000	-5.399979000
Н	1.485900000	-3.188534000	-3.692209000
С	3.491934000	2.307733000	-4.614629000
Н	3.130015000	3.174443000	-4.048875000
Н	3.342463000	2.523395000	-5.685120000
н	4.574822000	2.219515000	-4.448416000
С	4.526720000	-0.653897000	-5.141243000
Н	5.318435000	0.065892000	-4.892436000
н	4.428091000	-0.673646000	-6.238605000

Н	4.864706000	-1.648825000	-4.820909000
Ag	0.140094000	1.481173000	0.010617000
Fe	-2.811887000	0.087290000	2.462824000
Ni	-4.562142000	-1.670921000	-0.075129000
Ni	-3.911263000	2.089862000	-0.377324000
Р	-2.479040000	-1.107768000	0.519015000
Р	-2.176447000	1.012754000	0.455930000
Р	-4.293754000	1.578257000	1.761326000
Ρ	-4.826322000	-0.673955000	1.914698000
Р	-5.392806000	0.445676000	-0.037130000
С	-5.505356000	-2.557338000	-1.789217000
Н	-5.610798000	-2.076492000	-2.753989000
С	-3.009817000	3.266121000	-1.859611000
Н	-2.006686000	3.080495000	-2.224567000
С	-4.389192000	-3.362325000	-1.388010000
С	-6.479444000	-2.510466000	-0.748891000
С	-4.189402000	2.706775000	-2.413348000
С	-5.254598000	3.194052000	-1.591906000
Н	-6.297921000	2.929096000	-1.722216000
С	-4.299882000	1.869863000	-3.666089000
С	-1.439409000	-0.966896000	3.699522000
С	-3.325495000	4.137642000	-0.738602000
С	-4.690784000	-3.848583000	-0.017007000
С	-3.347662000	-3.759859000	-2.433164000
С	-0.887317000	4.777504000	-0.800339000
Н	-0.943847000	5.061044000	-1.860986000
Н	-0.124693000	5.406670000	-0.321840000
Н	-0.532883000	3.731894000	-0.738352000
С	-5.952335000	-3.294104000	0.324734000
Н	-6.455086000	-3.436969000	1.273518000
С	-1.985182000	4.550771000	1.396511000
Н	-1.597216000	3.521004000	1.427709000
Н	-1.235142000	5.211513000	1.857377000
н	-2.892703000	4.585378000	2.003682000

С	-1.079268000	0.416778000	3.627444000
С	-3.904257000	-4.998770000	-3.179751000
н	-3.205883000	-5.294611000	-3.977148000
н	-4.041794000	-5.856434000	-2.510178000
н	-4.874903000	-4.769481000	-3.641641000
С	-2.768732000	-1.055061000	4.238000000
С	-4.768505000	4.092166000	-0.575513000
С	-3.188751000	-2.619098000	-3.455299000
н	-4.104518000	-2.441362000	-4.033169000
н	-2.910853000	-1.685626000	-2.950608000
н	-2.400420000	-2.879684000	-4.174647000
С	-2.228753000	4.968619000	-0.065985000
С	-8.369424000	-1.435228000	0.532210000
н	-7.779334000	-0.553939000	0.823075000
н	-9.422888000	-1.129204000	0.461441000
н	-8.295573000	-2.181061000	1.336034000
С	-7.902279000	-1.999498000	-0.821497000
С	-2.634177000	-4.357151000	1.399058000
н	-2.764167000	-3.421504000	1.959607000
н	-2.178099000	-5.105097000	2.065497000
н	-1.934887000	-4.153845000	0.585384000
С	-4.004370000	-4.851984000	0.914747000
С	-3.034862000	1.019688000	-3.828849000
Н	-2.873026000	0.410180000	-2.928553000
Н	-3.130163000	0.350306000	-4.695817000
Н	-2.145492000	1.643154000	-3.985694000
С	-5.778744000	4.817383000	0.320050000
С	-3.223848000	0.285993000	4.508012000
С	-2.178481000	1.197586000	4.128192000
С	-5.284612000	5.165470000	1.732904000
н	-4.447204000	5.870059000	1.737614000
Н	-6.106314000	5.637490000	2.290198000
Н	-4.990206000	4.258156000	2.280260000
С	-8.083898000	-0.939246000	-1.916337000

Н	-7.774153000	-1.312653000	-2.903107000
Н	-9.144381000	-0.658925000	-1.987149000
Н	-7.508188000	-0.032347000	-1.686979000
С	-7.039799000	3.941175000	0.507420000
Н	-6.787587000	2.957570000	0.932053000
Н	-7.727068000	4.443285000	1.202200000
Н	-7.590017000	3.785701000	-0.429911000
С	-2.570316000	6.471381000	-0.167514000
Н	-3.467033000	6.739979000	0.399515000
Н	-1.734743000	7.068405000	0.226792000
Н	-2.732276000	6.762199000	-1.215537000
С	-1.945912000	-4.074631000	-1.893485000
Н	-1.270630000	-4.270234000	-2.739194000
Н	-1.539106000	-3.222010000	-1.326011000
Н	-1.922309000	-4.958654000	-1.249086000
С	-0.537261000	-2.109960000	3.380380000
Н	0.133922000	-1.859050000	2.542851000
Н	0.090650000	-2.355327000	4.252561000
Н	-1.092064000	-3.012657000	3.103559000
С	-6.201341000	6.110812000	-0.419264000
Н	-6.617850000	5.875822000	-1.409484000
Н	-6.974614000	6.635918000	0.160896000
Н	-5.356338000	6.796534000	-0.561940000
С	0.249630000	0.946153000	3.226690000
Н	0.183540000	1.980546000	2.866554000
Н	0.937553000	0.940234000	4.085582000
Н	0.713212000	0.338838000	2.435397000
С	-5.518268000	0.939801000	-3.605625000
Н	-6.458388000	1.493760000	-3.477102000
Н	-5.600458000	0.364196000	-4.539285000
Н	-5.417859000	0.231937000	-2.770220000
С	-8.761898000	-3.241107000	-1.176779000
Н	-8.676230000	-4.020103000	-0.405722000
Н	-9.819222000	-2.947117000	-1.252213000

Н	-8.454840000	-3.673614000	-2.140113000
С	-4.443976000	2.836514000	-4.864664000
Н	-3.580342000	3.514296000	-4.929533000
Н	-4.509904000	2.269499000	-5.805193000
Н	-5.351752000	3.449659000	-4.770667000
С	-4.862430000	-5.064492000	2.180286000
н	-5.847033000	-5.491913000	1.944304000
Н	-4.347165000	-5.768770000	2.848354000
Н	-5.009169000	-4.126659000	2.735089000
С	-3.882387000	-6.227917000	0.223957000
Н	-3.193717000	-6.216129000	-0.627794000
н	-3.506291000	-6.967825000	0.945690000
Н	-4.862534000	-6.573887000	-0.134339000
С	-2.177506000	2.672435000	4.363306000
Н	-3.174848000	3.109751000	4.220100000
Н	-1.867969000	2.891912000	5.398241000
Н	-1.482855000	3.188386000	3.689806000
С	-3.493710000	-2.305604000	4.614982000
Н	-3.132553000	-3.172854000	4.049561000
Н	-3.344733000	-2.521106000	5.685571000
н	-4.576467000	-2.216343000	4.448455000
С	-4.525320000	0.657203000	5.141059000
н	-5.317881000	-0.061621000	4.892140000
Н	-4.426694000	0.676673000	6.238426000
Н	-4.862137000	1.652571000	4.820865000

1-Ni (singlet)

Fe	-0.111186000	2.543867000	-0.135982000
Ni	-1.765875000	-0.731756000	-0.318212000
Ni	1.904215000	-0.466625000	0.222781000
Ρ	-1.282612000	0.967540000	1.082916000
Р	0.847564000	1.129662000	1.389275000
Р	1.307431000	1.182940000	-1.161852000
Р	-1.059204000	1.049784000	-1.451415000

Ρ	0.266877000	-0.882465000	-1.241913000
С	-2.613722000	-2.551117000	0.461594000
н	-2.149399000	-3.166090000	1.223255000
С	3.444366000	-0.699279000	1.654511000
н	3.563404000	-0.009536000	2.481031000
С	-3.506563000	-1.454937000	0.719249000
С	-2.448667000	-2.727153000	-0.941779000
С	2.613569000	-1.860231000	1.695462000
С	2.716010000	-2.437649000	0.403701000
Н	2.196020000	-3.334078000	0.084608000
С	1.854103000	-2.407075000	2.886628000
С	-1.336364000	4.213294000	0.311421000
С	4.104687000	-0.573022000	0.378775000
С	-3.919954000	-0.933478000	-0.596951000
С	-4.019636000	-1.245027000	2.151546000
С	5.399522000	1.291384000	1.477206000
н	5.784710000	0.616240000	2.255433000
н	6.151273000	2.075682000	1.305007000
н	4.490218000	1.781398000	1.854877000
С	-3.255206000	-1.733383000	-1.571477000
н	-3.312697000	-1.581949000	-2.642556000
С	4.645766000	1.621557000	-0.843715000
н	3.764617000	2.130739000	-0.430293000
Н	5.435487000	2.374087000	-0.999968000
Н	4.360672000	1.211255000	-1.816092000
С	-0.152610000	4.218186000	1.124389000
С	-5.182278000	-2.248323000	2.351120000
н	-5.569620000	-2.176641000	3.379797000
н	-6.010710000	-2.049069000	1.657474000
н	-4.839151000	-3.279196000	2.180184000
С	-0.931147000	4.256610000	-1.067354000
С	3.625326000	-1.677890000	-0.431670000
С	-2.908164000	-1.583550000	3.168734000
н	-2.592666000	-2.633178000	3.112580000

Н	-2.026552000	-0.945484000	3.012139000
Н	-3.283130000	-1.408683000	4.188104000
С	5.132047000	0.548594000	0.149383000
С	-1.359553000	-3.511155000	-3.077470000
Н	-0.669163000	-2.655168000	-3.084328000
Н	-0.857876000	-4.364190000	-3.558662000
Н	-2.237789000	-3.254037000	-3.687384000
С	-1.762526000	-3.884050000	-1.640558000
С	-4.504521000	1.555377000	-0.516384000
Н	-3.568550000	1.864219000	-1.005411000
Н	-5.284897000	2.289203000	-0.774518000
Н	-4.334987000	1.595057000	0.560800000
С	-4.907070000	0.158369000	-1.021245000
С	1.698926000	-1.335540000	3.977125000
Н	1.166018000	-0.453251000	3.591008000
Н	1.124945000	-1.743023000	4.822925000
Н	2.675346000	-1.006454000	4.363458000
С	3.988854000	-2.193272000	-1.827837000
С	0.504633000	4.300028000	-1.107454000
С	0.989616000	4.275438000	0.249314000
С	4.156735000	-1.079003000	-2.873676000
Н	5.027625000	-0.444269000	-2.677433000
Н	4.297027000	-1.526946000	-3.869223000
Н	3.260982000	-0.440644000	-2.907919000
С	-0.523392000	-4.348927000	-0.862245000
Н	-0.789193000	-4.687002000	0.149315000
Н	-0.039211000	-5.188544000	-1.383293000
Н	0.203938000	-3.530783000	-0.770896000
С	2.884808000	-3.130702000	-2.364616000
Н	1.913123000	-2.617520000	-2.414013000
н	3.152465000	-3.455861000	-3.380858000
Н	2.772807000	-4.035923000	-1.752159000
С	6.485471000	-0.028109000	-0.315596000
Н	6.436062000	-0.443538000	-1.328388000

Н	7.244706000	0.769173000	-0.322442000
Н	6.828352000	-0.821520000	0.364862000
С	-4.509970000	0.166447000	2.510939000
н	-4.817638000	0.172725000	3.567804000
н	-3.701803000	0.901366000	2.390572000
н	-5.374943000	0.484465000	1.919981000
С	-2.734279000	4.251178000	0.836011000
н	-2.862185000	3.555190000	1.677472000
н	-2.983944000	5.264139000	1.194367000
н	-3.464373000	3.980087000	0.064503000
С	5.282910000	-3.035430000	-1.721733000
Н	5.137141000	-3.871308000	-1.021315000
Н	5.540363000	-3.455318000	-2.707140000
н	6.135685000	-2.444997000	-1.367256000
С	-0.121734000	4.219420000	2.618728000
н	0.806028000	3.768994000	2.996974000
Н	-0.190763000	5.246133000	3.016527000
Н	-0.960767000	3.641631000	3.032437000
С	0.460766000	-2.879309000	2.445699000
Н	0.532139000	-3.684431000	1.701855000
н	-0.104738000	-3.263120000	3.308794000
н	-0.101204000	-2.051392000	1.991613000
С	-2.788006000	-5.042489000	-1.689657000
н	-3.692288000	-4.741102000	-2.238610000
н	-2.349966000	-5.916770000	-2.196491000
н	-3.088846000	-5.343800000	-0.675327000
С	2.649942000	-3.603703000	3.454867000
н	3.657542000	-3.291386000	3.767882000
н	2.133188000	-4.028602000	4.329943000
н	2.758694000	-4.396741000	2.700044000
С	-4.949566000	0.264715000	-2.560743000
Н	-5.296921000	-0.667291000	-3.029996000
Н	-5.649113000	1.064769000	-2.845173000
Н	-3.960800000	0.521200000	-2.969332000

С	-6.333512000	-0.212404000	-0.558428000
Н	-6.428819000	-0.242611000	0.532873000
Н	-7.056239000	0.526227000	-0.938672000
Н	-6.616776000	-1.201423000	-0.948586000
С	2.411550000	4.390345000	0.695420000
Н	3.109297000	4.167316000	-0.121566000
Н	2.629799000	5.411794000	1.049968000
Н	2.626184000	3.696036000	1.521085000
С	-1.837558000	4.312511000	-2.255244000
Н	-2.819144000	3.873156000	-2.032611000
Н	-2.001182000	5.354624000	-2.577108000
Н	-1.416854000	3.760537000	-3.107719000
С	1.341904000	4.401111000	-2.342463000
Н	0.868353000	3.885474000	-3.189604000
Н	1.492544000	5.454859000	-2.631553000
Н	2.331552000	3.947150000	-2.196340000

6 References

- [1] a) O. J. Scherer, T. Brück, Angew. Chem. Int. Ed. Engl. 1987, 59; b) O. J. Scherer, C. Blath, G. Wollmershäuser, J. Organomet. Chem. 1990, 387, C21-C24.
- M. V. Butovskiy, G. Balázs, M. Bodensteiner, E. V. Peresypkina, A. V. Virovets, J. Sutter, M. Scheer, *Angew. Chem. Int. Ed.* 2013, 52, 2972.
- [3] J.-M. Lalancette, G. Rollin, P. Dumas, Can. J. Chem. 1972, 50, 3058.
- [4] M. W. Wallasch, F. Rudolphi, G. Wollmershäuser, H. Sitzmann, Z. Naturforsch. 2009, 64b, 11.
- [5] M. Kreye, C. G. Daniliuc, M. Freytag, P. G. Jones, M. D. Walter, *Dalt. Trans.* 2014, 43, 9052.
- [6] M. Maekawa, M. Römelt, C. G. Daniliuc, P. G. Jones, P. S. White, F. Neese, M. D. Walter, Chem. Sci. 2012, 3, 2972.
- [7] M. Schär, D. Saurenz, F. Zimmer, I. Schädlich, G. Wolmershäuser, S. Demeshko, F. Meyer, H. Sitzmann, O. M. Heigl, F. H. Köhler, *Organometallics* **2013**, *32*, 6298.
- [8] T. Köchner, N. Trapp, T. A. Engesser, A. J. Lehner, C. Röhr, S. Riedel, C. Knapp, H. Scherer, I. Krossing, Angew. Chem. Int. Ed. 2011, 50, 11253.
- [9] D. F. Evans, J. Chem. Soc. 1959, 2003.
- [10] M. D. Walter, C. D. Sofield, C. H. Booth, R. A. Andersen, Organometallics 2009, 28, 2005.
- [11] G. M. Sheldrick, Acta Cryst. 2015, C71, 3.
- [12] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
- [13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian Inc. Revision C.01*, Wallingford CT, **2016**.
- [14] a) A. D. Becke, Phys. Rev. A. 1988, 3098; b) J. P. Perdew, Phys. Rev. B. 1986, 8822.
- [15] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- [16] a) Reed A. E., L. A. Curtiss, F. Weinhold, *Chem. Rev.* **1988**, *88*, 899; b) Reed A. E., R.
 B. Weinstock, F. Weinhold, *J. Chem. Phys.* **1985**, 735; c) E. D. Glendening, C. R. Landis, F. Weinhold, *J. Comp. Chem.* **2019**, *40*, 2234.
- [17]a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; b) S.
 Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem. 2011, 32, 1456.
- [18] G. A. Zhurko, Chemcraft graphical program for visualization of quantum chemistry computations. https://chemcraftprog.com.