## Disentangling the "tip-effects" enhanced antibacterial mechanism of

## Ag nanoparticles

Shenli Wang,<sup>a</sup>\* Yanping Zhang,<sup>a</sup> Xuan Chen,<sup>b</sup> Stefanos Mourdikoudis,<sup>c</sup> Shengshi Fan,<sup>b</sup> Haoyu Li,<sup>b</sup> Sergio Gómez-Graña,<sup>c</sup> Shuncheng Ren,<sup>a</sup> Guangchao Zheng<sup>b,d\*</sup>

<sup>a</sup> College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001,

China;

<sup>b</sup> Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou

University, Zhengzhou 450001, P. R. China

<sup>c</sup> CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical

Chemistry, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain

<sup>d</sup> Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046,

China



Fig. S1 (a) SEM image and (b) UV-vis-NIR spectrum of Ag nanospheres

| Table S1 The diamete      | r of antibacterial | zone of nano | silver on E | . coli and S. | aureus |
|---------------------------|--------------------|--------------|-------------|---------------|--------|
| (non-sunshine conditions) |                    |              |             |               |        |

| materials        | conditions | E.coli (mm)            | S.Aureus (mm)            |  |
|------------------|------------|------------------------|--------------------------|--|
| Ag nanospheres   | dark       | -                      | -                        |  |
|                  | normal     | -                      | -                        |  |
|                  | light      | -                      | -                        |  |
| Ag nanotriangles | dark       | 8.67±0.29 <sup>b</sup> | $18.83 \pm 0.29^{\circ}$ |  |
|                  | normal     | $9\pm0^{\mathrm{b}}$   | $19.67 \pm 0.29^{b}$     |  |
|                  | light      | $16.33 \pm 0.58^{a}$   | $20.67 \pm 0.58^{a}$     |  |

Table S2 The MIC and MBC of Ag NPs on the *E. coli* and *S. aureus* (non-sunshine conditions)

| materials        | conditions | E.coli (mm)            | S.Aureus (mm)            |  |
|------------------|------------|------------------------|--------------------------|--|
| Ag nanospheres   | dark       | -                      | -                        |  |
|                  | normal     | -                      | -                        |  |
|                  | light      | -                      | -                        |  |
| Ag nanotriangles | dark       | 8.67±0.29 <sup>b</sup> | $18.83 \pm 0.29^{\circ}$ |  |
|                  | normal     | $9\pm0^{\mathrm{b}}$   | 19.67±0.29 <sup>b</sup>  |  |
|                  | light      | $16.33 \pm 0.58^{a}$   | $20.67 \pm 0.58^{a}$     |  |



**Fig. S2** Effects of Ag nanospheres and nanotriangles with different amounts (a-e: 0.47  $\mu g/mL$ ; 3.75  $\mu g/mL$ ; 7.5  $\mu g/mL$ ; 15  $\mu g/mL$ ; 60  $\mu g/mL$  on the growth curve of Escherichia coli (non-sunshine conditions).



**Fig. S3** Effects of Ag nanospheres and nanotriangles with different amounts (a: 0.24  $\mu g/mL$ ; 3.75  $\mu g/mL$ ; 7.5  $\mu g/mL$ ; 15  $\mu g/mL$ ; 60  $\mu g/mL$  on the growth curve of *S. aureus* (no sunshine).



**Fig. S4** Effects of Ag nanospheres and nanotriangles with different amounts (a: 0.47  $\mu g/mL$ ; 3.75  $\mu g/mL$ ; 7.5  $\mu g/mL$ ; 15  $\mu g/mL$ ; 60  $\mu g/mL$  on the Bactericidal Curve of *E. coli*. (no sunshine).



**Fig. S5** Effects of Ag nanospheres and nanotriangles with different amounts (a: 0.24  $\mu g/mL$ ; 3.75  $\mu g/mL$ ; 7.5  $\mu g/mL$ ; 15  $\mu g/mL$ ; 60  $\mu g/mL$  on the Bactericidal Curve of *S. aureus* (no sunshine).



**Fig. S6** Effects of Ag nanospheres with different amounts (MIC; 1/2 MIC; 1/4 MIC) on the growth curve of *E. coli*. (a) and *S. aureus* (b) (under sunshine irradiation). Effects of Ag nanotriangles with different amounts (MIC; 1/2 MIC; 1/4 MIC) on the growth curve of *E. coli*. (c) and *S. aureus* (d) (under sunshine irradiation).



**Fig. S7** Effects of Ag nanospheres with different amounts (MIC; 1/2 MIC; 1/4 MIC) on the bactericidal curve of *E. coli*. (a) and *S. aureus* (b) (sunshine present). Effects of Ag nanotriangles with different amounts (MIC; 1/2 MIC; 1/4 MIC) on the bactericidal curve of *E. coli*. (c) and *S. aureus* (d) (under sunshine irradiation).



**Fig. S8** The photographs of *E. coli* (a) and *S. aureus* (c) treated with different amounts of Ag nanospheres and their corresponding survival rate (b) and (d), respectively (under sunshine irradiation).



**Fig. S9** ROS generation curves of *E. coli* treated with the Ag nanospheres (a) and Ag nanotriangles (b). ROS generation curves of *S. aureus* treated with Ag nanospheres (c) and Ag nanotriangles (d). The concentration of Ag NPs is at the MIC value.



**Fig. S10** ROS generation efficiency of *E. coli* treated with the Ag nanospheres and nanotriangles (a: 0.47  $\mu g/mL$ ; 3.75  $\mu g/mL$ ; 7.5  $\mu g/mL$ ; 15  $\mu g/mL$ ; 60  $\mu g/mL$ .



**Fig. S11** ROS generation efficiency of *S. aureus* treated with Ag nanospheres and nanotriangles (a: 0.24  $\mu g/mL$ ; 3.75  $\mu g/mL$ ; 7.5  $\mu g/mL$ ; 15  $\mu g/mL$ ; 60  $\mu g/mL$ .