High-contrast multi-surface imaging of latent fingerprints using color-tunable YOF:Tb³⁺, Eu³⁺ ultrafine nanophosphors with high quantum yield

Sumedha Tamboli, Govind B. Nair*, Robin E. Kroon, Lucas J. B. Erasmus, Hendrik C. Swart#

Department of Physics, University of the Free State, P. O. Box 339, Bloemfontein 9300, South Africa.

*Corresponding author Email: govind1291@yahoo.com; Nair.GB@ufs.ac.za

[#]Corresponding author Email: <u>swarthc@ufs.ac.za</u>

Supporting Information

Figure S1 FE-SEM images of: (a) YOF: 0.01 Tb³⁺, (b) YOF: 0.01 Eu³⁺, (c) YOF: 0.01 Tb³⁺, 0.005 Eu³⁺, (d) YOF: 0.005 Tb³⁺, 0.01 Eu³⁺ nanophosphors.

Figure S2 Histograms showing the particle-size distribution of: (a) YOF: 0.01 Tb³⁺, (b) YOF: 0.01 Eu³⁺, (c) YOF: 0.01 Tb³⁺, 0.005 Eu³⁺, (d) YOF: 0.005 Tb³⁺, 0.01 Eu³⁺ nanophosphors.

Figure S3 EDS of: (a) YOF: 0.01 Tb³⁺, (b) YOF: 0.01 Eu³⁺, (c) YOF: 0.01 Tb³⁺, 0.005 Eu³⁺, (d) YOF: 0.005 Tb³⁺, 0.01 Eu³⁺ nanophosphors.

Figure S4 Elemental mapping of: (a) YOF: 0.01 Tb³⁺, (b) YOF: 0.01 Eu³⁺, (c) YOF: 0.01 Tb³⁺, 0.005 Eu³⁺, (d) YOF: 0.005 Tb³⁺, 0.01 Eu³⁺ nanophosphors.

Figure S5 FTIR spectra for: (a) YOF: 0.01 Tb³⁺, (b) YOF: 0.01 Eu³⁺, (c) YOF: 0.01 Tb³⁺, 0.005 Eu³⁺, (d) YOF: 0.005 Tb³⁺, 0.01 Eu³⁺ nanophosphors.

Figure S6 Optical band gap obtained from the DRS for: (a) YOF: 0.01 Tb³⁺, (b) YOF: 0.01 Eu³⁺, (c) YOF: 0.01 Tb³⁺, 0.005 Eu³⁺, (d) YOF: 0.005 Tb³⁺, 0.01 Eu³⁺ nanophosphors.

Figure S7 High-resolution XPS spectra of different core levels of YOF: 0.01 Tb³⁺ nanophosphors before and after sputtering.

Figure S8 High-resolution XPS spectra of different core levels of YOF: 0.01 Eu³⁺ nanophosphors before and after sputtering.

Figure S9 High-resolution XPS spectra of different core levels of YOF: 0.01 Tb³⁺, 0.005 Eu³⁺ nanophosphors before and after sputtering.

Figure S10 High-resolution XPS spectra of different core levels of YOF: 0.005 Tb³⁺, 0.01 Eu³⁺ nanophosphors before and after sputtering.

Figure S11 High-resolution XPS curve fitting for the Y 3d signals obtained for: (a) YOF: 0.01 Tb³⁺, (b) YOF: 0.01 Eu³⁺, (c) YOF: 0.01 Tb³⁺, 0.005 Eu³⁺, and (d) YOF: 0.005 Tb³⁺, 0.01 Eu³⁺ nanophosphors.

Figure S12 High-resolution XPS curve fitting for the F 1s signals obtained for: (a) YOF: 0.01 Tb³⁺, (b) YOF: 0.01 Eu³⁺, (c) YOF: 0.01 Tb³⁺, 0.005 Eu³⁺, and (d) YOF: 0.005 Tb³⁺, 0.01 Eu³⁺ nanophosphors.

Figure S13 High-resolution XPS curve fitting for the O 1s signals obtained for: (a) YOF: 0.01 Tb³⁺, (b) YOF: 0.01 Eu³⁺, (c) YOF: 0.01 Tb³⁺, 0.005 Eu³⁺, and (d) YOF: 0.005 Tb³⁺, 0.01 Eu³⁺ nanophosphors.

Eu ³⁺	X	У
0	0.2819	0.5395
0.001	0.2956	0.5349
0.002	0.3068	0.5281
0.005	0.3494	0.5104
0.01	0.4084	0.4866
0.02	0.4931	0.4438

Table S1 CIE chromaticity coordinates of YOF: 0.01 Tb³⁺, $x Eu^{3+}$ ($0 \le x \le 0.02$)nanophosphors excited at 241 nm.

Table S2 CIE chromaticity coordinates of YOF: y Tb³⁺, 0.01 Eu³⁺ ($0 \le y \le 0.02$)nanophosphors excited at 241 nm.

Tb ³⁺	X	У
0	0.6401	0.3465
0.001	0.5088	0.3482
0.002	0.4951	0.3552
0.005	0.4318	0.4215
0.01	0.4119	0.4855
0.02	0.4028	0.5286

Figure S14 PLQY evaluation of: (a) YOF: 0.01 Tb³⁺, (b) YOF: 0.01 Eu³⁺, (c) YOF: 0.01 Tb³⁺, 0.005 Eu³⁺, (d) YOF: 0.005 Tb³⁺, 0.01 Eu³⁺ nanophosphors.

Table S3 Fitting parameters obtained for the PL decay curves of YOF: 0.01 Tb³⁺, $x \text{Eu}^{3+}$ ($0 \le x \le 0.02$) nanophosphors excited at 241 nm and monitored at 543 nm.

Eu ³⁺	Decay time τ (ms)
$\mathbf{x} = 0$	2.05 ± 0.003
x = 0.001	1.97 ± 0.003
x = 0.002	1.92 ± 0.003
x = 0.005	1.88 ± 0.003
x = 0.01	1.77 ± 0.003
x = 0.02	1.65 ± 0.003

Eu ³⁺	Decay time τ (ms)
x = 0.001	1.42 ± 0.003
x = 0.002	1.50 ± 0.003
x = 0.005	1.54 ± 0.003
x = 0.01	1.59 ± 0.003
x = 0.02	1.61 ± 0.003

Table S4 Fitting parameters obtained for the PL decay curves of YOF: 0.01 Tb³⁺, x Eu³⁺ ($0 \le x \le 0.02$) nanophosphors excited at 241 nm and monitored at 610 nm.

Figure S15 Variation of energy transfer rate and efficiency of YOF: 0.01 Tb³⁺, $x \text{ Eu}^{3+}$ ($0 \le x \le 0.02$) nanophosphors.

Figure S16 Bright-field image of LFP dusted with YOF: 0.01 Tb³⁺, 0.001 Eu³⁺ nanophosphors captured under a fluorescent lamp.