Two histidine-templated metal phosphate-oxalates: solvent-free

synthesis, luminescence, and proton-conducting properties

Ying Li,^a Yulin Wang,^a Juan Cheng,^b Ling Huang,^a Daojiang Gao,^a Guohong Zou,^b Yan Zhao^{*a} and Zhien Lin^{*b}

^a College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China.

^b College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

* To whom correspondence should be addressed. Tel: +86-28-85412284. E-mail: zhaoyan@sicnu.edu.cn, zhienlin@scu.edu.cn.

Synthesis

 Ga_2O_3 (99.99%, ALADDIN), In(OH)₃ (99.8%, ALADDIN), $H_2C_2O_4 \cdot 2H_2O$ (AR, ALADDIN), L-histidine (99%, MACKLIN), H_3PO_4 (85%, ALADDIN), were used without further treatment.

In₂(C₆H₁₀N₃O₂)₂(HPO₄)₂(C₂O₄)₂ (1) was prepared by heating a mixture of In(OH)₃ (0.166 g, 1 mmol), H₃PO₄ (68 μ L, 1 mmol), H₂C₂O₄·2H₂O (0.378 g, 3 mmol), and L-histidine (0.155 g, 1 mmol) in a 25 mL Teflon-lined stainless steel autoclave at 120 °C for 7 days. After cooling to room temperature, dull yellow crystals of compound 1 were separated from the resulting product by filtration, washed with distilled water, and dried in air (58% yield based on In).

 $[(C_6H_{11}N_3O_2)_2(H_2C_2O_4)][Ga_2(HPO_4)_2(C_2O_4)_3]$ (2) was prepared by heating a mixture of Ga_2O_3 (0.094 g, 0.5 mmol), H₃PO₄ (135 µL, 2 mmol), H₂C₂O₄·2H₂O (0.378 g, 3 mmol), and L-histidine (0.208 g, 1.25 mmol) in a 25 mL Teflon autoclave at 120 °C for 5 days. After cooling to room temperature, colourless crystals of compound 2 were separated from the resulting product by filtration, washed with distilled water, and dried in air (64% yield based on Ga).

Single crystal X-ray diffraction

Single crystal X-ray diffraction data were collected on an Agilent Gemini E diffractometer at room temperature. The structures were refined on F^2 by full-matrix least-squares methods using the *SHELXTL* program package.^{1,2}

Powder X-ray diffraction

Powder X-ray diffraction data were obtained using a Shimazu XRD-6100 diffractometer with Cu-K α radiation ($\lambda = 1.5418$ Å), in the angular range of $2\theta = 5-50^{\circ}$ (step width: 0.02°).

Elemental analysis

The elemental analysis was carried out on a Vario EL Cube analyzer.

Thermogravimetric analysis

The thermogravimetric analysis was performed on a Netzsch STA 409 PC thermal analyzer, with a heating rate of 10 °C /min in the range of RT-800 °C at N_2 atmosphere.

UV-vis diffuse reflectance spectroscopy

UV-vis diffuse reflectance spectra of compounds **1** and **2** were recorded by using Shimadzu UV-2600 UV-vis spectrophotometer at room temperature. The Kubelka-Munk function is used to calculate the absorption spectrum from the reflection spectrum: $F(R) = \alpha/S = (1-R)^2/2R$, where R is the reflectance, α is the absorption coefficient, and S is the scattering coefficient.^{3,4}

Photoluminescent spectroscopy

The excitation spectra, emission spectra and photoluminescence quantum yield (PLQY) were measured using an Edinburgh FS-5 fluorescence spectrometer with a calibrated integrating sphere system. Time-resolved PL decay curves were measured using a Fluoromax-3 fluorescence spectrometer.

Alternating current impedance spectroscopy

Alternating current impedance measurements were carried out with a Solartron SI 1260 impedance/gain-phase analyzer over the frequency range from 0.1 Hz to 10MHz with an applied voltage of 10 mV. The relative humidity was controlled by a STIK Corp. CIHI-150B incubator. The sample was pressed to form a cylindrical pellet of crystalline powder sample (~2 mm thickness ×5 mm ϕ) coated with C-pressed electrodes. Two silver electrodes were attached to both sides of pellet to form four end terminals (quasifour-probe method).

Computational descriptions

The first-principles calculations were carried out on compounds **1** and **2** by using the CASTEP software package.⁵ The band structures and density of states (DOSs) / partial density of states (PDOSs) of compounds **1** and **2** were calculated. The gradient-corrected functional (GGA) with Perdew-Burke-Ernzer (PBE) was used for all the calculations.⁶ All the atoms were performed by Norm-conserving pseudopotentials (NCP), with H 1s¹, C 2s²2p², N 2s²2p³, O 2s²2p⁴, P 3s²3p³, Ga 3d¹⁰4s²4p¹, In 5s²5p¹ treated as valence electrons.⁷ The kinetic energy cutoff of 750eV and the k-point sampling of $3 \times 2 \times 1$ were chosen for the compound **1**. The kinetic energy cutoff of 800eV and the k-point sampling of $4 \times 3 \times 3$ were chosen for the compound **2**.⁸ All other parameter settings are CASTEP default values.

1	1			
Compound	RH (%)	T (°C)	$\sigma({ m S~cm^{-1}})$	Reference
$In_2(C_6H_{10}N_3O_2)_2(HPO_4)_2(C_2O_4)_2$ (1)	95	85	3.41×10 ⁻⁵	this work
$[(C_6H_{11}N_3O_2)_2(H_2C_2O_4)][Ga_2(HPO_4)_2(C_2O_4)_3] (2)$	40/70	85	3.71×10 ⁻⁶ /2.43×10 ⁻⁴	this work
SCU-26	95	85	5.83×10 ⁻⁵	9
SCU-27	95	85	9.03×10 ⁻⁴	9
SCU-40	95	85	3.6×10 ⁻⁴	10
SCU-42	95	85	4.2×10 ⁻³	11
$H_2mpip \cdot Sc(H_2PO_4)_2(C_2O_4) \cdot 0.5C_2O_4 \cdot 1.5H_2O$	95	85	2.1×10 ⁻⁵	12
SCU-50	95	75	1.9×10 ⁻⁵	13
SCU-65	80	85	3.0×10 ⁻⁶	14
SCU-25	75	85	8.1×10 ⁻⁶	15
$[(CH_3)_2NH_2]_2[Al_2(HPO_4)_2(H_2PO_4)_2(C_2O_4)]$	98	85	9.09×10 ⁻³	16
$[(CH_3)_2NH_2]_2[Ga_2(HPO_4)_2(H_2PO_4)_2(C_2O_4)]$	98	85	6.43×10 ⁻³	16
$C_4N_2H_{14}$ ·Sc ₂ (HPO ₄)(H ₂ PO ₄) ₂ (C ₂ O ₄) ₂ ·3H ₂ O	95	85	5.4×10-4	17
V ₂ O ₂ (HPO ₄)(HPO ₃)(C ₂ O ₄) ₂ (C ₄ N ₂ H ₁₂) ₂ ·2H ₂ O	98	75	4.35×10 ⁻⁴	18

Table S1. Proton conductivity of compounds 1, 2, and some representative

metal phosphate-oxalates

Fig. S1 Powder X-ray diffraction patterns of compound 1 (a) and compound 2 (b).

Fig. S2 TGA curves of compound 1 (a) and compound 2 (b) under N_2 atmosphere.

Fig. S3 (a) The Tauc plots of compound **1** showing the optical band gap. (b) The Tauc plots of compound **2** showing the optical band gap.

Fig. S4 ORTEP plot of the asymmetric unit of compound **1**, showing the labeling scheme and the 50% probability displacement ellipsoids.

Fig. S5 ORTEP plot of the asymmetric unit of compound **2**, showing the labeling scheme and the 50% probability displacement ellipsoids.

Fig. S6 Calculated band structure of compound 1 (the Fermi level is set at 0 eV).

Fig. S7 Calculated band structure of compound 2 (the Fermi level is set at 0 eV).

Fig. S8 Total and partial DOS of compound 1 (a) and compound 2 (b).

Fig. S9 Nyquist plots of compound **1** at different temperature under 95% relative humidity.

Fig. S10 Nyquist plots of compound **2** at different temperature under 75% relative humidity.

References

- 1. G. M. Sheldrick, Acta Cryst., 2015, A71, 3.
- 2. G. M. Sheldrick, Acta Cryst., 2015, C71, 3.
- 3. P. Kubelka and F. Z. Munk, Tech. Phys., 1931, 12, 593.
- 4. J. Tauc, Mater. Res. Bull., 1970, 5, 721.
- 5. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, *J. Phys. Condens. Matter.*, 2002, **14**, 2717.
- 6. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.
- 7. K. Kobayashi, Comput. Mater. Sci., 1999, 14, 72.
- 8. D. Vanderbilt, Phys. Rev. B., 1990, 41, 7892.
- 9. L. Huang, H. Xu, Y. Zhao, L. Huang, J. Bi, H. Zeng, G. Zou, D. Gao and Z. Lin, *CrystEngComm*, 2021, **23**, 6855.
- 10. J. Zhang, Q. Lei, L. Luan, H. Zeng, G. Zou and Z. Lin, *CrystEngComm*, 2022, 24, 743.
- 11. M. Widelicka, K. Pogorzelec-Glaser, R. Pankiewicz and A. Łapiński, *J. Raman Spectrosc.*, 2019, **50**, 1914.
- 12. Y. Cao, X. Zhou, L. Luan, H. Zeng, G. Zou and Z. Lin, *Inorg. Chem. Commun.*, 2021, **124**, 108403.
- 13. Y. Zhang, H. Jiang, L. Luan, H. Zeng, G. Zou and Z. Lin, J. Solid State Chem., 2020, 292, 121709.
- 14. L. Luan, Y. Zhang, H. Zeng, G. Zou, Y. Dai, X. Zhou and Z. Lin, *Dalton Trans.*, 2019, **48**, 13130.
- 15. M. Yang, Q. Lei, L. Luan, H. Zeng, G. Zou and Z. Lin, *Inorg. Chem. Commun.*, 2021, **133**, 108975.
- 16. T. Y. Pan, W. Y. Wen, W. Ma, S. T. Zheng, M. L. Feng and X. Y. Huang, *Dalton Trans.*, 2024, **53**, 2318.
- 17. J. Zhang, D. Zhu, L. Luan, H. Zeng, G. Zou and Z. Lin, *Inorg. Chem. Commun.*, 2022, **140**, 109430.
- Y. Yang, L. Huang, B. Li, S. Zhao, F. Zhang and Y. Bi, *Inorg. Chem. Commun.*, 2022, 141, 109545.