Electronic Supplementary Information (ESI) for

Multidentate polyoxometalate modification of metal nanoparticles with tunable electronic states

Kang Xia, a Takafumi Yatabe, a Kazuya Yamaguchi a and Kosuke Suzuki *a

^aDepartment of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Cont	Page	
1.	Experimental Section	S2
2.	Supplementary Figures (Fig. S1–S8)	S4
3.	Supplementary Table (Table S1)	S9
4.	Additional References	S9

1. Experimental Section

Instruments

Transmission electron microscope (TEM) observations were conducted by JEM-2000EX and JEM-2010F at an accelerating voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) spectra were measured on ULVAC-PHI PHI5000 VersaProbeIII at the Advanced Characterization Nanotechnology Platform of The University of Tokyo, and analyzed with a Multipak software (version 9.9.0.8, by Ulvac-phi, inc.) in which the Shirley method was used for the background and a Gauss–Lorentz type function was performed for fitting through calibrating the binding energies by using the C 1s core-level at 284.5 eV. Solution-state ultraviolet-visible (UV-vis) spectra were measured on JASCO V-770 spectrometer with 1 cm quartz cells. Dynamic lighting scattering (DLS) characterizations were performed on Malvern Zetasizer NanoZS at the backscatter mode. Zeta-potential measurements were performed on Malvern Zetasizer NanoZS with a working voltage of 40 V for the later. Infrared (IR) spectra were measured on JASCO NRS-5100.

Materials

Silver nitrate (AgNO₃), hydrogen hexachloroplatinate hexahydrate (K₂PtCl₆), palladium chloride (PdCl₂), sodium chloride (NaCl), and trisodium citrate dihydrate (citrate) were obtained from Kanto Chemical. Potassium pentachlororuthenate hydrate (K₂RuCl₅) and charcoal (carbon support) were obtained from FUJIFILM Wako Chemical. Polyvinylpyrrolidone (PVP) was obtained from Sigma Aldrich. PVP-protected silver nanoparticles (Ag-PVP) were obtained from Tanaka Precious Metals Inc. (Lot No. 160803-1). PVP-protected platinum nanoparticles (Pt-PVP) were obtained from NanoComposix, Inc. (Lot No. JDR004). Pd/C was obtained from N. E. CHEMCAT Co Ltd (E-type, Lot No. 217-183621) and used as received. All substrates for catalytic hydrogenation reactions were obtained from Tokyo Chemical Industry Co., Ltd. These chemicals were directly used without pre-treatment. Na₂PdCl₄ was synthesized by mixing PdCl₂ and NaCl a molar ratio of 1:2.^{S1} Na₁₀SiW₉O₃₄ (sodium salt of SiW9) and K₄SiW₁₂O₄₀ (potassium salt of SiW12) were prepared according to previous report.^{S2}

Synthesis of metal nanoparticles with multidentate polyoxometalate modification (M-SiW9)

Metal nanoparticles and their supported materials were prepared according to our previous method^{S3} with slight modifications. A sodium salt of **SiW9** (Na₁₀SiW₉O₃₄, 150 mg, 50 µmol) was dissolved in water (145 mL) in ice-bath (~ 3 °C), then to this solution was added 0.1 M metal precursor aqueous solution (500 µL, 50 µmol). After stirring the solution for 30 min, a freshly made ice cold aqueous solution of 0.1 M NaBH₄ (5 mL, 500 µmol) was added dropwise in 10 min. For unsupported/colloidal metal nanoparticles (M-POM), the solution was stirred for another 15 min and stored in refrigerator or freeze-dried by liquid nitrogen to obtain solid samples for characterization. Metal nanoparticles modified with other protecting ligands (K₄SiW₁₂O₄₀, PVP, and citrate) were prepared using similar procedures as that for M-**SiW9**, except for using different protecting ligands.

Immobilisation of metal nanoparticles modified with multi-dentate polyoxometalates on carbon supports (M-SiW9/C)

To the freshly made synthesis aqueous solution (ca. 150 mL) of M-SiW9 without any pre-treatment, carbon supports (300 mg) were added, and the resulting suspension was stirred for 20 min for dispersion and immobilization of M-SiW9 on the support. Then, the suspension was transferred into a 300 mL-sized round-bottom flask, and the solvent was completely removed by using a rotary evaporator under reduced pressure at 40 °C for 60 min to obtain the supported metal nanoparticles with multi-dentate polyoxometalate modifications (M-SiW9/C). For hydrogenation reactions, as-prepared Pd-SiW9/C was directly used.

A typical procedure for catalytic hydrogenation reactions using Pd nanoparticle catalysts

Ethynylbenzene **1a** (0.5 mmol), an internal standard substance biphenyl (0.1 mmol), Pd-**SiW9**/C (25 mg, Pd: 0.5 mol% with respect to **1a**), diglyme (2 mL) and a magnetic stirrer bar were added to a 20 mL Schlenk tube. After removing air in the Schlenk tube by freezing and degassing, a balloon filled with H₂ gas was attached to maintain a constant gas atmosphere in the Schlenk tube during the reaction. The reaction solution was stirred at room temperature ($\sim 25 \,^{\circ}$ C) in a thermostat reactor and started the reaction. Sampling was performed using a syringe at predetermined time intervals with removal of the catalyst by filtration, and then the conversion of **1a** and the yields of products were determined by GC analysis.

2. Supplementary Figures

Fig. S1 DLS analysis of metal nanoparticles with multidentate POM modification. (a) Ag-**SiW9**, (b) Pt-**SiW9**, (c) Pd-**SiW9**, and (d) Ru-**SiW9**.

Fig. S2 IR spectra of metal nanoparticles with multidentate POM modification (M-SiW9).

Fig. S3 Raman spectra of metal nanoparticles with multidentate POM modification (M-SiW9).

Fig. S4 (a) UV-vis spectra and (b) photos of aqueous solution of silver nanoparticles modified with different protecting ligands (**SiW9**, **SiW12**, citrate, and PVP).

Fig. S5 Photos of aqueous solution of Pd, Pt, and Ru nanoparticles modified with PVP and citrate.

Fig. S6 Histograms of size distribution of (a) Ag-**SiW9**/C and (b) Pd-**SiW9**/C corresponding to the TEM images shown in Fig. 4.

Fig. S7 (a) TEM image and the corresponding histograms of size distribution, and (b) XPS spectra of Ag-SiW12/C.

Fig. S8 (a) TEM images and corresponding histograms of size distribution and (b) XPS spectra of Au-SiW9 and Au-SiW9/C.

3. Supplementary Table

	O H 1b	Pd catalyst (Pd: 0.5 mol%) Diethyl ether, H ₂ (1 atm) Room temperature (~25 °C)	\bigcirc	0 H + (2b	OH H 3b	+ H 4b	
Catalys		Conversion of 1b (%)	26) <u> </u>	Yield (%)			
	Catalyst		/0)	2b	3 b	4b	
	Pd-SiW9/C	82		71	n.d.	8	
Pd/C		84		63	n.d.	18	
C	^{<i>i</i>} Reaction con	ditions: 1h (0.5 mmol) ca	atalyst	$(Pd \cdot 0.5 \text{ mol }\%)$) diethyl ether	(3 mL) room	

Table S1 Hydrogenation of cinnamaldehyde (1b) using Pd nanoparticle catalysts.^a

^{*a*} Reaction conditions: **1b** (0.5 mmol), catalyst (Pd: 0.5 mol%), diethyl ether (3 mL), room temperature (~ 25 °C), H₂ (1 atm), 18 h. Conversions and yields were determined by GC using biphenyl as an internal standard (n.d. = not detected).

4. Additional References

- S1 D. Choueiry and E. Negishi, "II.2.3 Pd(0) and Pd(II) Complexes Containing Phosphorus and Other Group 15 Atom Ligands" in E. Negishi (ed.). Handbook of Organopalladium Chemistry for Organic Synthesis. (John Wiley & Sons, Inc, 2002)
- S2 A. P. Ginsberg (Ed), Inorg. Synth. 27, Ch. 3 (John Wiley & Sons, Inc, 1990).
- S3 K. Xia, T. Yatabe, K. Yonesato, T. Yabe, S. Kikkawa, S. Yamazoe, A. Nakata, K. Yamaguchi and K. Suzuki, *Angew. Chem. Int. Ed.* 2022, 61, e202205873.