Supporting Information

Exo- or Endo- 1*H*-Pyrazole Metal Coordination Modulated by Polyamine Chain length in [1+1] Condensation Azamacrocycles. Binuclear Complexes with Remarkable SOD activity.

Irene Bonastre-Sabater, Alberto Lopera, Álvaro Martínez-Camarena, Salvador Blasco, Antonio Doménech-Carbó, Hermas Jiménez, Begoña Verdejo, Enrique García-España, M. Paz Clares.

Contents

I. Figures

Figure S1. Distribution diagrams of the protonated species formed by L1overlapped with the absorbance at 205 nm.

Figure S2. Distribution diagrams of the protonated species formed by L2 overlapped with the absorbance at 205 nm.

Figure S3. Distribution diagrams of the protonated species formed by L3 overlapped with the absorbance at 205 nm.

Figure S4. Distribution diagram for the system Cu²⁺- L2 molar ratio M:L 1:1 and 2:1.

Figure S5. Distribution diagram for the system Cu²⁺- L3 molar ratio M:L 1:1 and 2:1.

Figure S6. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[CuL1]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S7. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the [CuL2]²⁺ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S8. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[CuL3]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S9. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[CuL1(Cl)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S10. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[CuL2(Cl)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S11. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the [CuL3(Cl)]⁺ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S12. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[CuL1(ClO_4)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S13. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[CuL2(ClO_4)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S14. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[CuL3(ClO_4)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S15. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the [CuH₁L1]⁺ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S16. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the [CuH₁L3]⁺ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S17. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_1L2(Cl)]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S18. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_1L3(Cl)]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S19. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_1L2(ClO_4)]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S20. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_1L3(ClO_4)]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S21. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_2L1]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S22. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_2L2]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S23. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_2L3]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S24. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_2L1(Cl)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S245. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_2L2(Cl)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S26. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_2L3(Cl)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S27. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_2L2(ClO_4)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S28. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_2L3(ClO_4)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S29. Paramagnetic ¹H NMR spectrum of the system Cu^{2+} –L1 in a 2:1 molar ratio recorded in D₂O at pH=7.

Figure S30. Paramagnetic ¹H NMR spectrum of the system Cu^{2+} -L3 for 2:1 molar ratio in D₂O at 298 K at pH=6.

Figure S31. ESR spectrum for the system Cu^{2+} –L1. [L] $1 \cdot 10^{-3} \cdot M$; = [Cu^{2+}] = $2 \cdot 10^{-3} M$. H₂O. v = 9.47 GHz. T = 77 K. pH 3, 6, 9 y 11.

Figure S32. ESR spectrum for the system Cu^{2+} -L1. [L] = [Cu^{2+}] = 1·10⁻³ M compared to [L]= 1· 10⁻³ M, [Cu] = 2·10⁻³ at different pH. H₂O. v = 9.47 GHz. T = 77 K. pH 6, 9 y 11.

Figure S33. Cyclic voltammograms at the glassy carbon electrode of $1.0x10^{-3}$ M aqueous solutions for the mononuclear (a) Cu-L2, (b) Cu-L3 and binuclear (b) Cu₂L2, (b)Cu-L3 systems, in 0.15 M NaCl at pH 7.0. Potential scan initiated at 0.25 V vs. Ag/AgCl in the negative direction. Scan rate 50 mV/s.

Figure S34. ¹H NMR spectrum of L1 in D_2O .

Figure S35. 13 C NMR spectrum of L1 in D₂O.

II. Tables

Table S1. Chemical shift values, linewidths at half-height, transversal relaxation time values (T2) and assignments.

Table S2. The hyperfine-shifted resonances, linewidth and half-height and T2 values.

 Table S3. Crystallographic data of crystal structures of complex 1 and 2.

Figure S1. Distribution diagrams of the protonated species formed by L1 overlapped with the absorbance at 205 nm

Figure S2. Distribution diagrams of the protonated species formed by L2 overlapped with the absorbance at 205 nm

Figure S3. Distribution diagrams of the protonated species formed by L3 overlapped with the absorbance at 205 nm

Figure S4. Distribution diagram for the system Cu²⁺- L2 molar ratio M:L 1:1 and 2:1

Figure S5. Distribution diagram for the system Cu²⁺- L3 molar ratio M:L 1:1 and 2:1

Figure S6. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[CuL1]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S7. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[CuL2]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S8. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[CuL3]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S9. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the [CuL1(Cl)]⁺ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S10. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[CuL2(Cl)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S11. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the **[CuL3(Cl)]**⁺ system, in H₂O/CH₃OH (50/50 vol/vol)

Figure S12. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[CuL1(ClO_4)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S13. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[CuL2(ClO_4)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S14. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[CuL3(ClO_4)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S15. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the [CuH. $_1L1$]⁺ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S16. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the [CuH₁L3]⁺ system, in H_2O/CH_3OH (50/50 vol/vol).

Figure S17. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_1L2(Cl)]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S18. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the [Cu₂H.

₁L3(Cl)]²⁺ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S19. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_1L2(ClO_4)]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S20. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_1L3(ClO_4)]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S21. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_2L1]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S22. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_2L2]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S23. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_2L3]^{2+}$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S24. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_2L1(Cl)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S245. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_2L2(Cl)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S26. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_2L3(Cl)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S27. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the [Cu₂H.

₂L2(ClO₄)]⁺ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S28. Experimental (top) and calculated (bottom) HR-ESI-Mass Spectra for the $[Cu_2H_2L3(ClO_4)]^+$ system, in H₂O/CH₃OH (50/50 vol/vol).

Figure S29. Paramagnetic ¹H NMR spectrum of the system Cu²⁺–L1 in a 2:1 molar ratio recorded in D₂O at pH=7

Figure S30. Paramagnetic ¹H NMR spectrum of the system Cu^{2+} -L3 for 2:1 molar ratio in D₂O at 298 K at pH=6

Figure S31. ESR spectrum for the system Cu^{2+} –L1. [L] $1 \cdot 10^{-3} \cdot M$; = [Cu^{2+}] = $2 \cdot 10^{-3} M$. H₂O. v = 9.47 GHz. T = 77 K. pH 3, 6, 9 y 11

Figure S32. ESR spectrum for the system Cu^{2+} -L1. [L] = [Cu^{2+}] = 1·10⁻³ M compared to [L]= 1· 10⁻³ M, [Cu] = 2·10⁻³ at different pH. H₂O. v = 9.47 GHz. T = 77 K. pH 6, 9 y 11.

Figure S33. Cyclic voltammograms at the glassy carbon electrode of 1.0×10^{-3} M aqueous solutions for the mononuclear (a) Cu-L2, (b) Cu-L3 and binuclear (b) Cu₂L2, (b)Cu-L3 systems, in 0.15 M NaCl at pH 7.0. Potential scan initiated at 0.25 V vs. Ag/AgCl in the negative direction. Scan rate 50 mV/s

Figure S34. ¹H NMR spectrum of L1·6HBr in D_2O .

Figure S35. ¹³C NMR spectrum of L1·6HBr in D_2O .

II. Tables

Table S1. ¹H NMR hyperfine-shifted resonances of Cu_2 -(L1) complex in D_2O at 298 K and pH 7.

System	Signal	δ(ppm)	N⁰ of protons	Assignments	Temperature Dependence	Δν _{1/2} (Hz)	T ₂ ª (ms)
Cu ₂ (L1)	а	48.0			Curie	2960	0.11
	b	20.6			Curie	1700	0.19
	с	14.4			Indep. of T	1178	0.27
	d	6.1	20	αCH₂	Curie	b	b
	h	-3.1			Curie	1006	0.32
	i	-7.4			Curie	850	0.37
	j	-11.2			Curie	1121	0.28
	k	-19.7			Curie	1811	0.18
	е	2.9			anti-Curie	b	b
	E∘	3.0			Indep. of T	b	b
	f	1.9			anti-Curie	65	4.9
	g	1.6	5	βCH_2	anti-Curie	86	3.7
				H _m -Pz			

^aMeasured from the line width at half-height. ^bOverlap prevents measurement of this value.

^cMeasured at 313 K.

Sustam	Signal	δ(ppm)	№ of protons	Assignments	Temperature	$\Delta v_{1/2}$	T ₂ a
System					Dependence	(Hz)	(ms)
		10 -					
Cu ₂ (L3)	а	46.5			Curie	4140	0.08
	b	9.8			Curie	1060	0.30
	е	-7.0			Curie	b	b
	f	-8.5			Curie	b	b
			24	αCH_2			
	g	-14.9			Curie	1044	0.31
	Ŀ	40.0			Quiria	Ŀ	h
	n	-18.0			Curie	D	D
	С	7.3			b	b	b
	d	2.5			b	b	b
			11	$\beta CH_{2}, H_{m}-Pz$			

Table S2. ¹H NMR hyperfine-shifted resonances of Cu_2 -(L3) complex in D_2O at 298 K and pH 6.

^aMeasured from the line width at half-height. ^bOverlap prevents measurement of this value.

Structure	1	2		
Composition	$\hline C_{15}H_{33.75}Br_{2.87}Cl_{0.13}CuN_7O_{1.}\ C_{20}H_{45}Cl_3Cu_2N_8O_{10}$			
	38			
Formula weight / $g \cdot mol^{-1}$	631.94	791.07		
Size / mm	0.202×0.126×0.075	0.253×0.172×0.146		
Space group	P bca	P ₋₁		
Unit cell				
• <i>a</i> / Å	14.263(4)	11.925(3)		
• <i>b</i> / Å	14.560(4)	11.935(3)		
• c / Å	21.837(6)	13.621(4)		
 α / degrees 	90	66.818(7)		
• β / degrees	90	69.337(8)		
• γ / degrees	90	65.348(12)		
• $V/Å^3$	4535(2)	1577.8(7)		
Density / g·cm ⁻³	1851	1,67		
Z	8	2		
μ / mm ⁻¹	6.063	1.67		
F000	2524	820		
Diffraction Limits	$-23 \le h \le 23$	$-14 \le h \le 14$		
	$-24 \le k \le 24$	$-14 \le k \le 14$		
	$-36 \le l \le -28$	$-16 \le l \le 16$		
<i>R</i> (int)	0.1048	0.0956		
R(sigma)	0.0668	0.0623		
Reflections				
• Total	110405	40075		
• Unique	10964	5547		
Parameters	321	421		
Constraints	0	0		
Restraints	24	14		
RI	0.1100	0.1742		
• total	0.1100	0.1/43		
• $F^2 > 2\sigma(F^2)$	0.0459	0.1161		
wR2	0.0004	0 2025		
• total	0.0772	0.2923		
• $F^2 > 2\sigma(F^2)$	1.065	1.050		
Goodnes of Fit	1.005	1.030		
CCDC deposition	2240668	2215780		

 Table S3. Crystallographic data of crystal structures of complex 1 and 2.