Efficient recovery of gold from solution with thiocyanate-modified

Zr-MOF: adsorption properties and DFT calculations

Yu-juan Xie,^{a,‡} Tang-ming Li,^{a,‡} Zhao-ting Shang,^a Wang-ting Lu,^a Fan Yu,^{a,*}

^a College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China.

Email: yufan0714@163.com;

[‡] These authors contribute equally

Supporting Information

1.Experimental section

1.1 Materials

Zirconium tetrachloride (ZrCl₄), 2-amino-terephthalic acid, ethanol, and dimethylformamide (DMF) were purchased from Shanghai Aladdin Reagent Co., LTD. HAuCl₄·3H₂O was obtained from Anaiji Chemical Technology Co., LTD. Analytical-grade reagents were available without additional purification. We used deionized water to prepare all solutions.

1.2 Equipment and Characterization

Bruker TENSOR27 was used on the collection Fourier transform infrared (FT-IR) data. The produced materials' surface morphology and specific surface area were observed using scanning electron microscopy (SU8010, SEM) and ASAP 2020 PLUS HD88, respectively. Data on the distribution and composition of elements were gathered using X-ray photoelectron spectroscopy (XPS) a Thermo ESCALAB 250 XI. Utilizing inductively coupled plasma atomic emission spectroscopy (ICP-OES, AGILENT 5100, USA), precise amounts of all metals ion were confirmed.

1.3 Relevant calculation formulas

The adsorption capacity value at equilibrium (q_e) of Zr-MOF might be calculated by Eqn. (S1). adsorption efficiency might be calculated by Eqn. (S2) Where C_0 and C_e (mg/L) represented the initial and equilibrium Au(III) contents, respectively, V (L) and m (g) represented reaction liquid volume, and the mass of Zr-MOFs, respectively.

$$q_e = \frac{C_0 - C_e}{m} V \qquad \text{Eqn. (S1)}$$

adsorption efficiency =
$$\frac{C_0 - C_e}{C_e} \times 100\%$$
 Eqn. (S2)

In Eqn. (S3) and (S4), k_1 (min⁻¹) and k_2 (g·min⁻¹·mg⁻¹) denoted the rate constants of the pseudo-first-order and pseudo-second-order models, respectively; t (min) represented the adsorption time, q_e and q_t (mg/g) represented the amount of Au(III) at the adsorption equilibrium and anytime;

$$q_t = q_e (1 - e^{-\kappa_1 t})$$
Eqn. (S3)
$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
Eqn. (S4)

The adsorption behavior has been estimated based on models of Langmuir and Freundlich isotherms by Eqn. (S5) and (S6),where q_m was the saturated adsorption capacity, $k_{\rm L}$ and $K_{\rm F}$ denoted the binding constant of the Langmuir and the Freundlich isothermal adsorption systems. C_e is the residual concentration of Au (III). 1/n between 0 and 1, indicates easy adsorption.

$$q_e = \frac{k_L q_m C_r}{1 + k_L C_e}$$
Eqn. (S5)
$$q_e = K_F C_e^{1/n}$$
Eqn. (S6)

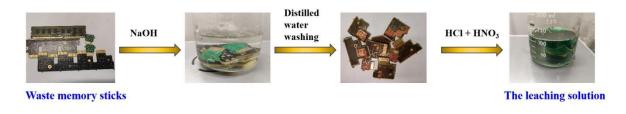
The thermodynamic data were fitted via Eqn (S7) and (S8), including *b*(the adsorption equilibrium constant), *R* (8.314 J/mol/K), *T* (temperature, K), ΔG (Gibbs free energy), ΔH (Enthalpy change), and ΔS (Entropy change).

$$lgb = \frac{-\Delta H}{2.303RT} + \frac{\Delta S}{2.303R}$$
Eqn. (S7)
$$\Delta G = \Delta H - T\Delta S$$
Eqn. (S8)

Q represented the adsorption amount of different ions, C_i and C_e are the initial and equilibrium ions concentration, and m was the mass of Zr-MOF. V was the solution volume. The relative affinity between the ions and Zr-MOF could be expressed as an adsorption distribution coefficient (K_Q) and selectivity coefficient (K), which can be found in Eqn S(9) and S(10)

$$K_{Q} = \frac{Q}{C_{e}} = \frac{C_{i} - C_{e}}{C_{e}} \cdot \frac{V}{m}$$
 Eqn. (S9)

$$K = \frac{K_{Q}(Au^{s+})}{K_{Q}(coexisting \ ions)}$$
 Eqn. (S10)


The Dmol3 module of Material Studio 2020 was utilized to execute the DFT analyses. The interactions between the core and electrons were described using the Perdew-Burke-Ernzerhof (PBE) function in the generalized gradient approximation (GGA) approach. The criteria for force and energy convergence were established at 0.002 Ha Å⁻¹ and 10⁻⁵ Ha, correspondingly.

 ΔE , which is the binding energy, was calculated with the equation shown in Eqn. (S11)

$$\Delta E(kcal/mol) = 627.5 \times [E_{total}(Ha) - E_{MOF}(Ha) - E_{AuCL^{-}}(Ha)] \qquad \text{Eqn. (S11)}$$

 E_{total} , E_{MOF} , and E_{AuCl4} are the energy of system, UiO-66-NCS and AuCl₄, respectively.

2. Characterizations

Scheme.S1 The treatment processes of actual e-waste

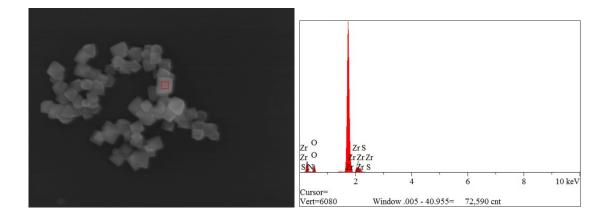


Fig. S1. EDS analysis of UiO-66-NCS

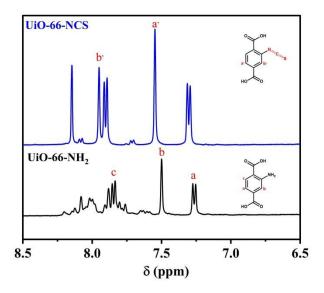


Fig. S2. HNMR analysis of UiO-66-NCS and UiO-66-NH $_{\rm 2}$

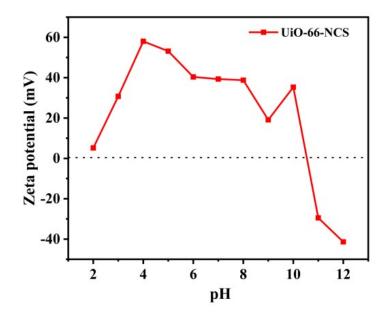


Fig. S3. Effects of pH on the zeta potential of UiO-66-NCS

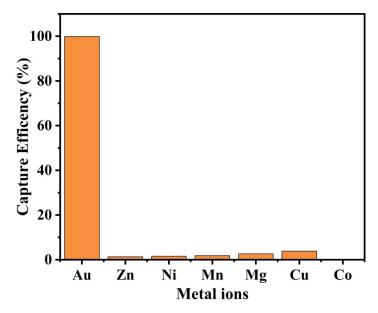


Fig.S4 The efficiency to capture Au(III) from the mixed metal ions in simulated the leach solution.

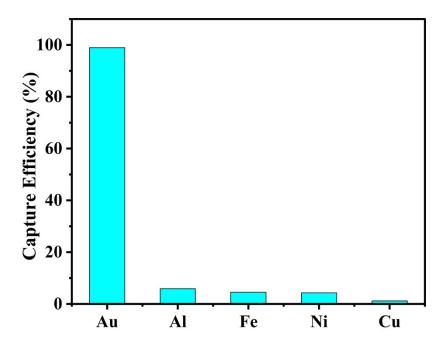


Fig.S5. The efficiency to capture Au(III) from actual e-waste leaching solution by UiO-66-NCS

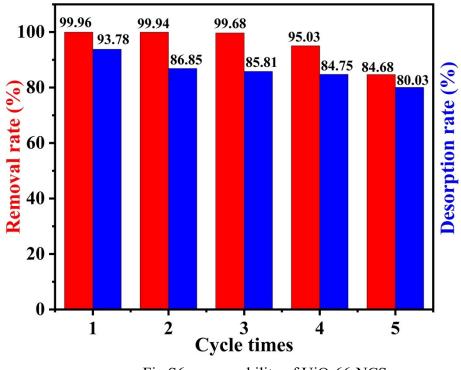


Fig.S6. reusability of UiO-66-NCS

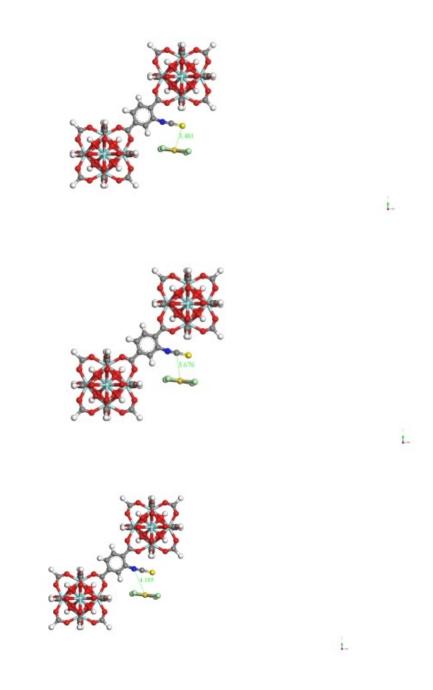


Fig.S7 The optimized geometries of the complexes and the binding energy, as well as the bond length.The grey, white, red, blue, yellow and yellow with green corresponds to C, H, O, N, S and Au,Cl atoms, respectively.

Sample	BET surface area	Total pore volume	Average pore width
	(m^{2}/g)	(cm^{3}/g)	(nm)
UiO-66-NH ₂	709.80	0.39	2.08
UiO-66-NCS	620.61	0.34	2.11

Table. S1 BET surface area and Pore characteristics of UiO-66-NH₂ and UiO-66-NCS

Table. 52	The fitting parameters of dy	namic models
Kinetic models	Parameters	Values
Pseudo first-order	q_e	194.33
	k_1	0.03627
	R ²	0.986
Pseudo second-order	q_e	202.43
	k_2	0.000305
	\mathbb{R}^2	0.999

 Table. S2
 The fitting parameters of dynamic models

Adsorbents					
Adsorbents	рН	t (min)	T (K)	Q _e (mg/g)	Ref
UiO-66-ATU	3	1440 min	298	227.68	[44]
UiO-66-MTD	6	180 min	298	301.5	[20]
ZT-MOF	7	480 min	298	333.34	[18]
UiO-66-TA	2	240 min	298	372	[19]
FSUN-50	5.54	1440 min	298	463.85	[31]
FSUN-10	5.58	1440 min	298	611.818	[31]
DONA-MOF	9.17	120 min	303	637.5	[45]
UiO-66-NH ₂ /CTS	5	720 min	298	671	[46]
UiO-66-BTU	2	720 min	308	680.2	[22]
UiO-66-NCS	4	1440 min	298	675.53	This work

Table S3. Comparison of the Adsorption Capacities of Au(III) onto Various

Isotherm model	Parameters	Values
Langmuir	$q_{\rm m}$	665.643
	K _L	0.72682
	R ²	0.908
	R-χ2	2975.82
Freundlich	K _F	358.161
	1/n	0.12461
	R ²	0.854
	R-χ2	4697.13

Table S4 The fitting parameters of isotherm models

Table 35	Thermouyn	Thermoughanne moderning parameters of 010-00-ives			
T (K)	b	ΔG (kJ/mol)	$\Delta H (kJ/mol·K)$	ΔS (kJ/mol)	
298	1.82326	-0.9269			
308	1.99043	-2.3349			
318	3.50045	-3.7429	41.0315	0.1408	
328	6.8125	-5.1509			
338	11.62626	-6.5589			

Table S5Thermodynamic modelling parameters of UiO-66-NCS

	over oth	her cations.		
metal ion	UiO-66-NCS			
	R(%)	$K_Q (L/g)$	К	
Zn	1.30	0.0132	50429.55	
Ni	1.55	0.0157	42399.36	
Mn	1.85	0.0188	35407.978	
Mg	2.65	0.0272	24473.16	
Cu	3.85	0.04	16641.75	
Со	0.05	5*10-4	1331340	
Au	99.85	665.67	-	

Table S6 The distribution coefficient (KD) and selectivity coefficient (K) of Au^{3+}

over other cations.

Table S/	Ionic radii, elec	Tome radii, electronegativity and covalency index of metal ions				
metal ion	ionic radius	electronegativity	covalent index	atomic weight		
Zn	0.74	1.81	2.42	65.38		
Ni	0.69	1.91	2.52	58.69		
Mn	0.67	1.55	1.61	54.94		
Mg	0.72	1.31	1.24	24.31		
Cu	0.73	1.90	2.64	63.55		
Со	0.74	1.88	2.62	58.93		
Au	0.85	2.54	5.48	196.97		

 Table S7
 Ionic radii, electronegativity and covalency index of metal ions

Element(mg/L)	Au	Al	Fe	Ni	Cu
Original content	100.220	254.110	42.690	1027.910	29678.510
Remaining content	1.04	239.17	40.76	983.82	29324.64
Capture efficiency (%)	98.96	5.88	4.52	4.29	1.19

Table. S8. Elemental composition and content of metal ions in actual e-waste leaching solution

E _{total} (Ha)	E _{mof} (Ha)	E _{AuCl4-} (Ha)	$\Delta E(kcal/mol)$
-68665.06682	-48955.56428	-19709.48879	-8.63

Table S9 the binding energy of related models