Supporting Information

Ultra-thin Two-dimensional (2D) Manganese-based Metal-Organic Framework Nanosheets for Photocatalytic Selective Oxidation Thioether

Jing Zhu¹, Cuimeng Huo², Jin Chen², Xiaoxing Ma¹, Xiangjun Zhu², Yan Li², Guofang Li², Haitao Chen², Xianying Duan², Fujiao Han², Hongjun Kong², Fuwei Zheng^{2*}, Aiyun Jiang^{1*}

¹ Huanghe Science and Technology College, Zhengzhou, Henan 450063, China

² Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, P. R. of China
 *Correspondence Email: aiyunjiang@126.com; 15938783487@163.com

Experimental Section

Materials and Measurements.

All reagents and solvents are commercially available (Beijing innoChem Science & Technology Co. Ltd.), and they were further dried by the vacuum rotary evaporator to remove all traces of water and then stored in the N₂-filled glovebox. The 15 mL Schlenk tube charged with a magnetic stirrer, which was used as the reactor in the trifluoromethylation reaction. The light was provided by a 30 W 425 nm LED light.

The chemical structures of the products were confirmed by comparison with standard chemicals and GC-MS (Agilent Technologies, GC 7890B, MS 5977A) data. GC equipped with a FID detector (Agilent Technologies, GC 7890 B) and a HP-5 5% phenyl methyl siloxane column ($30m \times 0.32mm$) \times 0.5 µm), which was used for the quantifiable measure of trifluoromethoxybenzene. The size and morphology of catalysts were measured by a Hitachi New Generation SU8010 field emission scanning electron microscope (FE-SEM, JSM-670 F). The transmission electron microscopy (TEM) images, high-resolution transmission electron microscopy (HRTEM) images (with an acceleration voltage of 200 kV), and selected area fast Fourier transform (FFT) pattern were measured on a JEOL JEM-3000F microscope, which with a CCD camera as the detector. A Varian Cary 500 UV-Vis spectrophotometer was used to record the UV-Vis diffuse reflectance spectra (DRS) of various solid samples. The photoelectrochemical characterization was performed on a Metrohm-Autolab AUT302N Electrochemical workstation. Photocurrent measurements were carried out in a typical three-electrode configuration with an Ag/AgCl electrode, a coiled Pt wire as the reference and counter electrode, respectively. X-ray diffraction (XRD) studies of catalyst were carried out with a Bruker D8 Advance instrument. The electron paramagnetic resonance (EPR) experiments were carried out on Bruker A300 instrument operating in the X-band at room temperature. Diffuse Reflectance Infra-Red Fourier Transform (DRIFT)-pyridine measurements were performed by Vertex-70 from BRUKER.

Single-crystal X-ray crystallography.

Diffraction data for all complexes were measured on a Bruker SMART CCD diffractometer (Mo K α radiation and $\lambda = 0.71073$ Å) in Φ and ω scan modes. All structures were solved by direct methods, followed by difference Fourier syntheses, and then refined by full-matrix least-squares techniques on F^2 using SHELXL.^[1] All other non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed in the calculated position and refined in the isotropic direction using a riding model. Table S1 summarizes X-ray crystallographic data and refinement details for the complexes. The CCDC reference numbers are 2370446 for HSTC 3.

[1] Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8.

Synthesis of complexes HSTC 3 and HSTC 3-NS.

HSTC 3: Adding 30 mg H₄L1 ligand (0.05 mmol), and 99 mg MnCl₂·4H₂O (0.5 mmol) in 9 mL DMF and 1 mL H₂O, then stirred 30 minutes in 20 mL ampulla. Then, the ampulla was heated at 80 °C for 48 h, and the reaction was terminated, colorless strip crystals were obtained. **HSTC 3**: yield: 80% (based on H₄L1). Elemental analyses *calc*. (%) for $[Mn_2(C_{30}H_{16}O_8)(H_2O)_2(DMF)_2]_n$ ·(CH₃CH₂OH)_n (**HSTC 3**): C 51.69, H 5.85, N 5.24. Found: C 51.45, H 5.76, N 5.36.

HSTC 3-NS: The sample of **HSTC 3-NS** (100 mg) was ultrasonically treated in 50 mL EtOH for 30 minutes at room temperature. Afterwards, the sample was ultrasonically treated for 10 hours. Then, the powder of **HSTC 3-NS** was separated by centrifugation and washed by 10 mL acetone thrice, and dried in air at room temperature (yield: 92%). Ultrasonic stripping of **HSTC 3** was peeled out Granbo Ultrasonic Cleaner (GX0410) under room temperature. The ultrasonic frequency is 40 KHz, the ultrasonic power is 240 W.

Complex	HSTC 3		
Formula	C _{65.84} H _{48.02} Mn ₂ NO _{20.57}		
Formula weight	1292.15		
$T(\mathbf{K})$	150.15		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
<i>a</i> (Å)	12.3933 (4)		
<i>b</i> (Å)	13.4724 (4)		
<i>c</i> (Å)	14.8545 (5)		
α (°)	71.856 (3)		
β (°)	69.878 (3)		
γ (°)	75.205 (2)		
$V(Å^3)$	2182.28 (13)		
Z	1		
$D_c(\text{g cm}^{-3})$	0.980		
$\mu (\text{mm}^{-1})$	2.821		
Reflns coll.	25387		
Unique reflns	8564		
$R_{\rm int}$	0.0837		
${}^{a}R_{1}[I \ge 2\sigma(I)]$	0.0625		
$^{b}wR_{2}(all data)$	0.1787		
GOF	1.026		

 Table S1. Crystallographic data of the complex HSTC 3.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, \ {}^{b}wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$

Bond lengths (Å)						
Mn1—O1	2.147 (2)	Mn1—O8 ⁱⁱⁱ	2.143 (2)	Mn1—O9A	2.127 (5)	
Mn1—O3 ⁱ	2.165 (2)	Mn1—O10	2.296 (5)	Mn1—O9	2.277 (5)	
Mn1—O6 ⁱⁱ	2.173 (2)	Mn1—011	2.093 (5)			
Bond angles (°)						
O1—Mn1—O3 ⁱ	87.11 (8)	O6 ⁱⁱ —Mn1—O9	171.32 (16)	O11—Mn1—O6 ⁱⁱ	97.39 (16)	
O1—Mn1—O6 ⁱⁱ	94.04 (9)	O8 ⁱⁱⁱ —Mn1—O1	177.32 (8)	O11—Mn1—O8 ⁱⁱⁱ	84.04 (16)	
O1—Mn1—O10	85.63 (13)	O8 ⁱⁱⁱ —Mn1—O3 ⁱ	94.40 (10)	011—Mn1—O9A	70.5 (2)	
O1—Mn1—O9	92.25 (14)	O8 ⁱⁱⁱ —Mn1—O6 ⁱⁱ	88.18 (9)	O9A—Mn1—O1	85.01 (15)	
O3 ⁱ —Mn1—O6 ⁱⁱ	90.16 (9)	O8 ⁱⁱⁱ —Mn1—O10	93.21 (14)	O9A—Mn1—O3 ⁱ	101.99 (16)	
O3 ⁱ —Mn1—O10	168.61 (15)	O8 ⁱⁱⁱ —Mn1—O9	85.71 (14)	O9A—Mn1—O6 ⁱⁱ	167.74 (16)	
O3 ⁱ —Mn1—O9	84.18 (16)	O11—Mn1—O1	94.17 (15)	O9A—Mn1—O8 ⁱⁱⁱ	92.51 (15)	
O6 ⁱⁱ —Mn1—O10	81.62 (14)	O11—Mn1—O3 ⁱ	172.23 (17)	O9—Mn1—O10	104.9 (2)	
Symmetry codes: (i) - <i>x</i> , - <i>y</i> +1, - <i>z</i> +2; (ii) <i>x</i> -1, <i>y</i> +1, <i>z</i> ; (iii) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> +1; (iv) <i>x</i> +1, <i>y</i> -1, <i>z</i> .						

Table S2. Selected bond lengths (Å) and angles (°) of complex HSTC 3.

Figure S1. The coordinated environment of Mn1 ion of HSTC 3.

Figure S2. The TG curve of HSTC 3 under heating in flowing N₂ at 5 °C·min⁻¹ over the temperature range of 35-800 °C.

Figure S3. The coordinated mode for $L1^{4-}$ ligand for HSTC 3.

Figure S4. The FE-SEM (a) and HRTEM (b) for HSTC 3.

Figure S5. The HRTEM of the nanosheet distribution for HSTC 3-NS.

Figure S6. The mapping of high-resolution TEM images for HSTC 3-NS.

Figure S7. DRIFT spectroscopy with pyridine adsorption of HSTC 3 and HSTC 3-NS.

Conditions				
Entry	Additive	Yield of 3a (%)		
1	None	100		
2	AgNO ₃	11		
3	Ammonium oxalate	29		

Reaction conditions: 0.2 mmol thioanisole, 2 mL CH₃OH, 10 mg **HSTC 3-NS**, 120 min reaction time, air atmosphere. All yield of **1a** determined by GC-MS.