Monitoring Structure and Coordination Chemistry of Co₄O₄-based Oxygen Evolution Catalysts by Nitrogen-14/-15 and Cobalt-59 NMR Spectroscopy

1. Methods and materials

Benzonitrile (for synthesis), cobalt nitrate hexahydrate (98%), hydrogen peroxide (35%), potassium hexacyanocobaltate(III) (98%), pyridine (98%), {¹⁵N}pyridine (98 atom % 15N), sodium acetate trihydrate (for analysis) and sodium persulfate (reagent grade, \geq 98%) were purchased from Sigma-Aldrich, sodium tetraborate decahydrate (\geq 98%) from Carl Roth and tris(2,2'-bipyridyl)ruthenium(II) Chloride Hexahydrate (>98%) and 2,4,6-tri(4-pyridyl)-1,3,5-triazine (purified by sublimation, \geq 97%) from TCI. All chemicals were used as received. Deuterated solvents were purchased from Deutero or Eurisotop.

Liquid NMR spectra were recorded either on a Bruker Ascend 400 spectrometer (9.4 T, ¹H at 400.13 MHz, ¹³C at 100.61 MHz, ¹⁵N at 40.54 MHz, ⁵⁹Co at 94.94 MHz), a Bruker Avance III 600 HD spectrometer (14.1 T, ¹H at 600.25 MHz, ¹⁵N at 60.82 MHz) or on a JEOL ECX400 spectrometer (9.4 T, ¹H at 399.60 MHz, ¹³C at 100.47 MHz, ¹⁵N at 40.49 MHz, ⁵⁹Co at 93.78 MHz). Proton-1 and carbon-13 spectra were referenced against the residual solvent signal, cobalt-59 spectra were referenced against saturated K_3 [Co(CN)₆] in D₂O, and nitrogen-15 chemical shifts were referenced using the unified scale as recommended by IUPAC.^{1,2}

IR spectra were recorded using a Thermo Scientific[™] Nicolet[™] iS[™]5 FT-IR spectrometer, as KBr pellets in transmission with a resolution of 1 cm⁻¹ and 16 scans per sample.

CHN analysis were performed on a Vario micro cube (Elementar Analysensysteme GmbH).

2. Co₄O₄(OAc)₄Py₄ synthesis

The synthesis was done according to a modified literature procedure:³

In a 100 ml 3-neck round-bottom flask equipped with a reflux condenser 2.96 g (10.0 mmol) $Co(NO_3)_2 \cdot 6 H_2O$ and 2.81 g (20.2 mmol) NaOAc \cdot 3 H₂O were dissolved in 30 ml methanol and heated to reflux. Then 0.8 ml (9.7 mmol) pyridine were added to the stirred reaction mixture and subsequently 5 ml (58 mmol) 35 m% hydrogen peroxide solution were added dropwise using a dropping funnel over a period of 10 minutes. After 4h, the reaction mixture was cooled to room temperature. The aqueous phase was extracted with dichloromethane (3x 20 ml). The combined organic phase was dried over anhydrous MgSO₄ and filtered through a plug of celite. Evaporation of dichloromethane gave a olive green solid. Further purification was done by column chromatography (silica gel 60, gradient $CH_2Cl_2 \rightarrow CH_2Cl_2$: MeOH (95 : 5, V : V)) to yield pure $Co_4O_4(OAc)_4Py_4$ I as green crystalline solid. Yield: 1.50 g (1.8 mmol, 73%).

Suitable crystals for single crystal analysis were obtained by vapour diffusion of diethyl ether into a concentrated solution of I in acetonitrile.

¹H-NMR (300.13 MHz, acetornitrile-d3): δ = 8.37 (dd, J = 6.4, 1.4 Hz, 8H), 7.58 (tt, J = 7.6, 1.6 Hz, 4H), 7.09 (m, 8H), 1.98 (s, 12H) ppm. ¹³C (75.47 MHz, acetornitrile-d3): δ = 186.1, 153.3, 138.2, 124.6, 26.6 ppm. ⁵⁹Co (94.94 MHz, acetornitrile-d3): δ = 11760 ppm.

¹H-NMR (400.13 MHz, D₂O): δ = 8.31 (m, 8H), 7.82 (m, 4H), 7.32 (m, 8H), 2.18 (s, 12H) ppm. ¹³C (100.61 MHz, D₂O): δ = 188.9, 152.1, 139.0, 124.9, 25.7 ppm. ⁵⁹Co (94.94 MHz, D₂O): δ = 12066 ppm.

¹H-NMR (300.13 MHz, MeOH-d4): δ = 8.43 (m, 8H), 7.67 (tt, J = 7.6, 1.4 Hz, 4H), 7.19 (m, 8H), 2.10 (s, 12H) ppm.

Co₄O₄(OAc)₄{¹⁵N}Py₄ **{¹⁵N}I**

The synthesis was done as described for the non-labelled cubane replacing pyridine with ¹⁵N pyridine.

Yield: 484 mg (0.57 mmol, 77%)

Further purification was achieved by layering a solution of 100 mg $\{^{15}N\}I$ in 20 ml CH₂Cl₂ with 10 ml *n*-hexane. After slow evaporation overnight the crystal formed were isolated, washed with *n*-hexane and dried. Typical yield: 50 mg needle-shaped crystals which were used for NMR-experiments.

¹H-NMR (400.13 MHz, acetornitrile-d3): δ = 8.37 (m, 8H), 7.58 (m, 4H), 7.09 (m, 8H), 1.99 (s, 12H) ppm. ¹⁵N (40.54 MHz, acetornitrile-d3): δ = 244.6 ppm ⁵⁹Co (94.94 MHz, acetornitrile-d3): δ = 11761 ppm.

¹H-NMR (400.13 MHz, D₂O): δ = 8.31 (m, 8H), 7.82 (m, 4H), 7.32 (m, 8H), 2.18 (s, 12H) ppm. ¹⁵N (40.54 MHz, D₂O): δ = 233.3 ppm ⁵⁹Co (94.94 MHz, D₂O): δ = 12068 ppm.

¹H-NMR (399.60 MHz, CD₂Cl₂): δ = 8.46 (m, 8H), 7.50 (m, 4H), 7.02 (m, 8H), 2.04 (s, 12H) ppm.
¹³C (100.47 MHz, CD₂Cl₂): δ = 186.4, 153.0, 137.3, 123.8, 26.9 ppm.
¹⁵N (40.49 MHz, CD₂Cl₂): δ = 243.3 ppm
⁵⁹Co (93.78 MHz, CD₂Cl₂): δ = 11772 ppm.

3. Synthesis of Co₄TPT

The synthesis was done according to a modified literature procedure:⁴

50.6 mg (59 μ mol) Co₄O₄(OAc)₄Py₄I and 25.6 mg (79 μ mol) 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT) were placed in a 20 ml quartz ampule. 8 ml of benzonitrile were added, the suspension was ultrasonicated for 10 min and the suspension degassed by 3 freeze-pump-thaw cycles. The ampule was sealed under vacuum and placed in an oven preheated to 100 °C. After four days, the ampule was removed from the oven, opened (after cooling to room temperature), the red gel was transferred to a Soxhlet fumble and purified by Soxhlet extraction with methanol (24 h). Drying under reduced pressure (80°C) gave Co₄TPT as dark red solid. Yield: 40.1 mg (42 μ mol, 71 %).

CHN analysis, expected values: C: 40.36 H: 2.96 N:11.77 experimental results: C: 35.62(4) H: 4.40(3) N: 10.49(4) C:N molar ratio: 3.96(1) expected 4.00

4. Additional Characterisation

To rule out the impact of scalar coupling between the central Co atoms and the surrounding quadrupolar N ligand of pyridine, the molecular complex was analysed both using pyridine with ¹⁵N in natural abundance (0.37%) in $Co_4O_4(OAc)_4Py_4$ and enriched with ¹⁵N in $Co_4O_4(OAc)_4(^{15}N)Py_4$. For ligand atoms with non-zero spin scalar coupling can contribute to line broadening. While in $Co_4O_4(OAc)_4Py_4$ it is supposed that no scalar coupling is observed due to the quadrupolar nature of ¹⁴N (99.63% natural abundance) causing quadrupolar relaxation, in $Co_4O_4(OAc)_4(^{15}N)Py_4$ scalar coupling between ⁵⁹Co and ¹⁵N might contribute to line-broadening. However, when dissolved in D₂O, the ⁵⁹Co NMR spectra of both complexes show similar linewidth (Figure S1). Thus, scalar coupling between ⁵⁹Co and ¹⁵N does not significantly contribute to line-broadening. The impact of scalar coupling between ⁵⁹Co and ¹⁷O, the only NMR active nuclei of oxygen, can be neglected due to the low natural abundance (0.038%) and the quadrupolar nature of ¹⁷O (spin of 5/2).⁵

Figure S1. Comparison of ⁵⁹Co NMR spectrum of Co₄O₄(OAc)₄Py₄ (grey) and Co₄O₄(OAc)₄Py₄ (red) dissolved in D₂O.

5. Solid-state NMR spectroscopy

5.1. ¹⁵N NMR spectroscopy

Solid-state ¹⁵N NMR measurements were performed on an Infinity_{plus} spectrometer system (Agilent) operated at 7 T, equipped with a variable-temperature Chemagnetics-Varian 6 mm pencil CPMAS probe. ¹⁵N{¹H} static and MAS CP NMR spectra were recorded using a 90° pulse length of 5.0 μ s. The cross-polarization contact times and relaxation delays were 3 ms and 10 s. The spectra were indirectly referenced to CH₃NO₂ using solid ¹⁵NH₄Cl (δ = -341.3 ppm). To convert these values to the liquid ammonia scale, 380.6 ppm must be added to them. All ¹⁵N chemical shifts are reported with respect to liquid NH₃. The numerical NMR parameters have been extracted from the experimentally obtained spectra using the WSolids1 program package,⁶ DMFit and ssNake.^{7,8}

Table S 1: Overview of experimental ¹⁵ N NMR chemical shift tensor (δ_{ref} ⁽¹⁵ NH ₃ liq.) = 0 ppm).								
material / conditions	δ_{iso} / ppm	δ_t / ppm	$^{\delta_r}$ / ppm	$^{\delta}{}_{\perp}$ / ppm				
{ ^{15}N }-pyridine in D ₂ O	297							
Co ₄ O ₄ (OAc) ₄ { ¹⁵ N}Py ₄ in D ₂ O	233							
Co ₄ O ₄ (OAc) ₄ { ¹⁵ N}Py ₄ polycrystalline (MAS)	259(2) 248(2) 239(3)	465(5)	405(5)	-54(1)				

5.2. DFT calculations

The Gaussian 09.D.01 program package was used for geometry optimizations and NMR calculations. The TPSSH⁹ and ω B97XD¹⁰ DFT hybrid functional and the def2tzvp and def2qzvp¹¹ basis sets were used. Geometry optimization was done at the very tight convergence criteria. The atom positions obtained from geometry optimisation of Co₄O₄OAc₄Py₄ (*Pnnm*, see section 6), Co₄O₄OAc₄Py₄ (chloroform solvate, *Pnma*, CCDC 1280106¹², hydrogen positions were optimized using the ω B97XD/def2tzvp approximation) and pyridine are provided in **Table S2**, **Table S3** and **Table S4** respectively. The chloroform solvate of Co₄O₄OAc₄Py₄ was used as a reference system in which slightly longer N···Co distances have been reported (**Table S5** - **Table S8**), to evaluate the impact of N···Co distances on the calculated ¹⁵N chemical shift.

NMR calculations were carried out using the GIAO approach. All calculations were done using the PCM approximation with water as the solvent. This choice is arbitrary. The outcomes of the PCM approximation are not very sensitive to the value of the dielectric constant.¹³ However, this correction is necessary in order to at least approximately consider the effect of the crystal field.

The chemical shift is a relative value. It is calculated based on the absolute shielding of the nucleus in the molecule of interest, σ , and in a reference compound, σ^{ref} . With a high level of accuracy: $\delta \approx \sigma^{ref} - \sigma$.^{14–16} The numerical value of σ^{ref} depends on both the DFT functional and the basis set used. For the ω B97XD/def2tzvp and ω B97XD/def2qzvp approximations these values in the CH₃NO₂ chemical shift scale are: σ^{ref} (¹⁵N, CH₃NO₂, ω B97XD/def2tzvp) = -143±3 ppm and σ^{ref} (¹⁵N, CH₃NO₂, ω B97XD/def2qzvp) = -148±3 ppm.¹⁷ To convert these values to the NH₃ chemical shift scale, 380.6 ppm must be added to them. Thus: σ^{ref} (¹⁵N, NH₃, ω B97XD/def2tzvp) = 238±3 ppm and σ^{ref} (¹⁵N, NH₃, ω B97XD/def2qzvp) = 233±3 ppm.

For elements beyond the third row of the periodic table, corrections for relativistic effects are necessary when calculating NMR parameters. Such corrections may be necessary even for light atoms due to the shielding effect of a neighboring heavy atom. Nevertheless, in coordination complexes involving pyridine, the heavy-atom effect on the ¹⁵N shielding tensor is small, and the primary contribution to the calculation error arises from inaccuracies in determining the molecular structure.¹⁸

Table S2. DFT	optimized	atomic	coordinates	of	Co ₄ O ₄ (OAc ₄)Py
---------------	-----------	--------	-------------	----	--

Atom	х	у	Z	Atom	x	У	Z
N	5.99027	11.81245	8.43345	н	8.92723	7.34122	9.97901
N	5.99027	11.81245	5.08475	н	8.92723	7.34122	3.53919
N	5.30759	5.91912	6.7591	С	1.57721	10.72812	3.31984
N	2.28673	7.16314	6.7591	С	1.57721	10.72812	10.19836
Со	5.22463	10.0194	8.17247	н	1.09768	11.60158	3.72856
Со	5.22463	10.0194	5.34573	н	1.09768	11.60158	9.78964
Со	5.84912	7.8034	6.7591	н	2.09248	10.99317	2.412
Со	3.23423	8.87308	6.7591	н	2.09248	10.99317	11.1062
0	4.51494	8.32073	7.97907	н	0.8346	9.97817	3.10529
0	4.51494	8.32073	5.53913	н	0.8346	9.97817	10.41291
0	6.36514	9.60058	6.7591	С	4.62259	3.96836	5.57819
0	4.10299	10.53942	6.7591	С	4.62259	3.96836	7.94001
0	6.46011	9.28451	9.4833	н	4.44634	3.47973	4.62789
0	6.46011	9.28451	4.0349	н	4.44634	3.47973	8.89031
0	7.12272	7.49866	8.2394	С	5.75442	14.15967	8.85026
0	7.12272	7.49866	5.2788	С	5.75442	14.15967	4.66794
0	3.79353	10.41233	4.06704	н	5.10798	14.99954	9.07302
0	3.79353	10.41233	9.45116	н	5.10798	14.99954	4.44518
0	2.10086	9.56822	5.31401	С	7.31638	11.97191	8.36153
0	2.10086	9.56822	8.20419	С	7.31638	11.97191	5.15667
С	7.13292	8.23882	9.27386	н	7.94446	11.10721	8.18635
С	7.13292	8.23882	4.24434	н	7.94446	11.10721	5.33185
С	2.57115	10.18177	4.32334	С	7.90223	13.21201	8.5053
С	2.57115	10.18177	9.19486	С	7.90223	13.21201	5.0129
С	4.39705	3.29588	6.7591	н	8.97768	13.31631	8.43164
н	4.05269	2.26909	6.7591	н	8.97768	13.31631	5.08656
С	5.07517	5.27037	5.61894	С	7.11258	14.32221	8.74384
С	5.07517	5.27037	7.89926	С	7.11258	14.32221	4.77436
н	5.24919	5.78789	4.68364	н	7.55902	15.30372	8.84495
н	5.24919	5.78789	8.83456	н	7.55902	15.30372	4.67325
С	5.23269	12.88424	8.66353	С	0.81974	4.82592	6.7591
С	5.23269	12.88424	4.85467	н	0.20841	3.93196	6.7591
н	4.15823	12.75576	8.70724	С	1.94191	6.57445	5.62694
н	4.15823	12.75576	4.81096	С	1.94191	6.57445	7.89126
С	8.05611	7.8208	10.39264	н	2.24323	7.03127	4.69238
С	8.05611	7.8208	3.12556	н	2.24323	7.03127	8.82582
н	8.3569	8.68966	10.95347	С	1.21675	5.40649	7.93304
н	8.3569	8.68966	2.56473	С	1.21675	5.40649	5.58516
н	7.54288	7.13326	11.04365	н	0.96319	4.95208	8.88283
н	7.54288	7.13326	2.47455	н	0.96319	4.95208	4.63537

Atom	x	у	Z	Atom	x	у	Z
Со	0.916052	-1.409742	-0.003225	С	4.8875	2.074541	-1.212917
Со	-0.895596	-0.000034	-1.396217	С	3.536122	1.864447	-1.196184
Со	-0.863785	-0.000035	1.421579	С	-0.076657	3.599061	3.481068
0	-0.928388	-1.191034	0.034547	С	-4.863628	1.245182	1.91237
0	0.928903	-0.000042	-1.293835	С	-3.53338	1.178076	1.714163
0	1.01448	-0.000043	1.230096	С	-4.900658	1.180183	-1.911626
0	0.649596	-2.717741	-1.408585	С	-3.550213	1.134777	-1.672361
0	-0.718394	-1.446535	-2.714126	С	-0.171831	3.646763	-3.425226
0	0.748975	-2.683042	1.458396	н	-1.080809	4.025333	3.439893
0	-0.652581	-1.474736	2.731036	н	0.649215	4.389108	3.301452
Ν	2.865216	-1.686951	-0.039601	н	0.062582	3.185979	4.479108
Ν	-2.857908	-0.000026	-1.581244	н	2.929728	1.862934	-2.090298
Ν	-2.827447	-0.000027	1.677564	н	5.389145	2.231917	-2.1578
С	-0.0542	-2.522838	-2.468189	н	6.642461	2.11655	-0.082157
С	-0.171862	-3.646737	-3.425228	н	5.489547	1.775372	2.071313
С	0.023058	-2.516339	2.469566	н	2.994217	1.472219	2.009771
С	-0.076688	-3.599039	3.481066	н	0.649226	-4.389056	3.301487
С	3.582261	-1.645754	1.120258	н	0.062478	-3.185952	4.479114
С	4.941365	-1.82116	1.142083	н	2.994204	-1.472221	2.009769
С	5.564477	-1.996562	-0.068556	н	5.489532	-1.775397	2.071312
С	4.887482	-2.074559	-1.212918	н	6.642443	-2.116583	-0.082159
С	3.536106	-1.864453	-1.196185	н	5.389126	-2.231938	-2.157801
С	-3.550223	-1.134723	-1.672361	н	2.929712	-1.862932	-2.090298
С	-4.900668	-1.180117	-1.911626	н	-2.962473	-2.036656	-1.562294
С	-5.500467	-0.000014	-2.018405	н	-5.421529	-2.121899	-1.98974
С	-3.53339	-1.178024	1.714163	н	-6.572055	-0.000009	-2.20813
С	-4.863639	-1.245118	1.912369	н	-2.913209	-2.059035	1.62054
С	-5.544321	-0.000015	1.966462	н	-5.395095	-2.183172	1.957494
0	-0.928378	1.191066	0.034547	н	-6.620454	-0.000011	2.091872
Со	0.916064	1.409758	-0.003224	н	-2.913151	2.059048	1.620533
0	0.649619	2.717759	-1.408583	н	-5.395107	2.183222	1.957495
С	-0.054178	2.522862	-2.468187	н	-0.361684	-3.283115	-4.432773
0	-0.718381	1.446565	-2.714125	н	0.719147	-4.270369	-3.406631
0	-0.652569	1.474764	2.731036	н	-1.023039	-4.260556	-3.121058
С	0.023079	2.516361	2.469567	н	-1.080819	-4.025355	3.439833
0	0.748998	2.683058	1.458398	н	-2.962415	2.036673	-1.562281
Ν	2.86523	1.686949	-0.0396	н	-5.421544	2.12195	-1.989741
С	3.582275	1.645746	1.120258	н	-0.361631	3.28314	-4.432775
С	4.941381	1.82114	1.142084	н	0.719172	4.270404	-3.406612
С	5.564494	1.996538	-0.068555	н	-1.023019	4 260575	-3 121073

Table	S4.	DFT	optimized	atomic	coordinates	of	Py.
Atom	x	y		Atom	x	v	Z
С	1.142559	0.719172	-0.000001	Н	2.150471	-1.178513	0.000002
С	1.195157	-0.670484	0	н	-0.000021	-2.463056	0.000001
С	-0.000013	-1.380496	-0.000001	н	-2.150495	-1.178472	0.000002
С	-1.195168	-0.670464	0	н	-2.057699	1.301575	0.000003
С	-1.142546	0.719193	-0.000001	Ν	0.000013	1.416486	0
н	2.057722	1.301539	0.00003				

Table S5. ¹⁵ N NMR chemical shift tensors of the selected structures calculated at the GIAO wB97XD/def2tzvp PCM = water approximation (δ_{ref} ⁽¹⁵ NH ₃ liq.) = 0 ppm).								
structure	N…Co distance, Å	δ_{iso} , ppm	$\delta_{t_{i}}$ ppm	$^{\delta_r}$, ppm	${}^{\delta}{}_{^{\perp}}$, ppm			
	1.96911	284	473	450	-72			
Co ₄ O ₄ (OAc ₄)Py ₄	1.97102	269	459	426	-77			
(chloroform solvate	1.98028	284	469	447	-63			
CCDC 1200100)	1.96911	284	473	450	-72			
	1.96707	270	450	438	-78			
/	1.96707	270	450	438	-78			
Co ₄ O ₄ (OAc ₄)Py ₄	1.96055	265	446	431	-80			
	1.95490	260	437	428	-85			
Pyridine		321	605	419	-61			

able S6. ¹⁵ N NMR shielding tensors of the selected structures calculated at the GIAO wB97XD/def2tzvp PCM = water approximation (δ_{ref} (¹⁵ NH ₃ liq.) = 0 ppm).									
structure	N…Co distance, Å	σ_{iso} , ppm	$\sigma_{t, { m ppm}}$	σ_{r} , ppm	$^{\sigma}{}_{^{\perp}}$, ppm				
	1.96911	-45.7	-235.0	-212.2	310.0				
$Co_4O_4(OAc_4)Py_4$	1.97102	-31.3	-221.3	-187.6	315.1				
(CDC 1280106 ¹²)	1.98028	-46.1	-230.6	-209.0	301.3				
	1.96911	-45.7	-235.0	-212.2	310.0				
	1.96707	-32.0	-211.9	-200.0	315.8				
	1.96707	-32.0	-211.9	-200.0	315.8				
Co ₄ O ₄ (OAc ₄)Py ₄	1.96055	-27.4	-207.6	-192.6	317.9				
	1.95490	-22.0	-199.2	-189.7	323.0				
Pyridine		-82.9	-366.7	-180.9	298.8				

Fable S7. ¹⁵ N NMR chemical shift tensors of the selected structures calculated at the GIAO wB97XD/def2qzvp PCM = water approximation (δ_{ref} ⁽¹⁵ NH ₃ liq.) = 0 ppm								
structure	N…Co distance, Å	δ_{iso} , ppm	$^{\delta_{t}}$, ppm	$\delta_{r, \; {\sf ppm}}$	$^{\delta}{}_{^{\perp}}$, ppm			
	1.96911	286	476	454	-72			
Co ₄ O ₄ (OAc ₄)Py ₄	1.97102	271	462	429	-78			
(chloroform solvate CCDC 1280106 ¹²)	1.98028	286	471	449	-62			
	1.96911	286	476	454	-72			
	1.96707	270	454	441	-84			
	1.96707	270	454	441	-84			
Co ₄ O ₄ (OAc ₄)Py ₄	1.96055	266	480	436	-86			
	1.95490	260	439	433	-91			
Pyridine		320	605	420	-64			

structure	N…Co distance, Å	σ_{iso} , ppm	σ_{t} , ppm	σ_{r} , ppm	$^{\sigma_{\perp}}$, ppm
	1.96911	-52.8	-242.5	-220.8	304.7
Co ₄ O ₄ (OAc ₄)Py ₄	1.97102	-38.2	-229.0	-196.1	310.6
(chloroform solvate CCDC 1280106 ¹²)	1.98028	-53.2	-238.0	-216.4	294.7
	1.96911	-52.8	-242.5	-220.8	304.7
	1.96707	-37.2	-220.7	-207.9	317.1
	1.96707	-37.2	-220.7	-207.9	317.1
$CO_4O_4(OAC_4)PY_4$	1.96055	-32.6	-214.0	-203.0	319.1
	1.95490	-27.1	-205.8	-199.7	324.0
Pyridine		-87.4	-371.7	-187.3	296.8

5.3. Fast MAS NMR spectroscopy

Solid-state NMR spectra were acquired using JEOL 600 MHz spectrometer (14.09 T) under MAS conditions with rotation rate of 70.0 and 62.5 kHz MAS (1.0 mm zirconia rotor) and Bruker Avance III 800 MHz (18.79 T) at 50 and 55 kHz MAS (1.3 mm zirconia rotor). Magic angle was calibrated using KBr external sample. All experiments were performed at room temperature of approximately 23°C without temperature regulation.

The ¹H-¹³C and ¹H-¹⁴N correlation spectra were acquired using double cross-polarisation (DCP) experiment and TRAPDOR-HMQC,¹⁹ respectively, after 0.8 μ s (90°) ¹H excitation pulse. In the DCP ¹H-¹³C we used 1.0 and 0.3 ms forward and backward CP mixing time, respectively. In the TRAPDOR-HMQC coherence transfer was assured by two 2ms high-power ¹⁴N pulses on resonance with 1st rotation sideband. The ¹H and ¹³C 1D spectra were acquired using spin-echo and CPMAS experiments, respectively. Repetition time of 2.0 and 0.5 s (1.5x *T*₁) was used for Co₄O₄(OAc)₄Py₄ and Co₄TPT, respectively.

The ⁵⁹Co spectra were acquired using single pulse experiment (pulse duration of 2.5 and 0.35 μ s for 600 and 800MHz spectrometer, resp.) with direct FID detection. Quadrupolar coupling (approx. 40 MHz) constant as well as pure isotropic ⁵⁹Co chemical shift were obtained from linear dependence of the position of the isotropic-signal centre of gravity on the square of ⁵⁹Co resonance frequency.²⁰ The isotropic signal was identified by measurement at different MAS rates. Zero asymmetry was assumed. Repetition delay was set to 0.5 s.

Chemical shifts were referenced using external sample of alanine (¹H at 1.237 ppm), adamantane (¹³C at 37.8 ppm) and solution of Co(acac)₃ in chloroform (⁵⁹Co at 12500 ppm with respect to saturated K_3 [Co(CN)₆] in D₂O),²¹ the ¹⁴N spectra were referenced with respect to liquid NH₃ by unified scale as recommended by IUPAC^{1,2}

In case of ¹⁴N/¹⁵N MAS NMR spectra of Co₄O₄(OAc)₄Py₄, the comparison of ¹⁵N chemical shift ($\delta_{15N} = 248.6$ ppm, mean value from Table S 1) and observed centre of gravity of the signal in the ¹⁴N projection of the TRAPDOR-HMQC spectra $\delta_{14N} = 576$ ppm (Figure 2D) gives second-order quadrupolar shift δ_{iso} : $\delta_{iso} = \delta_{14N} - \delta_{15N} = 327$ ppm

which can be used for calculation of the quadrupolar product P_Q :

$$P_Q = v_{14N}^0 \sqrt{10^{-6} \times \frac{40}{3} \delta_{iso}^Q} = 2.86 \text{ MHz},$$

where $v_{14N}^{0} = 43.354$ MHz corresponds to Larmor frequency of ¹⁴N nucleus. Under an assumption of zero quadrupolar-coupling asymmetry, the value of the quadrupolar product is equivalent to the coupling constant $C_{Q,22}$

Figure S2. Solid-state ¹³C CPMAS spectra of Co₄O₄(OAc)₄Py₄ (grey) and Co₄TPT (red) acquired at B₀ 14.09 T under 62.5 and 70 kHz, respectively.

6. Photocatalytic OER and catalyst characterization

OER experiments were carried out in a home built 48 ml front irradiation quartz reactor,^{23,24} equipped with a stirring bar and connected to a FireSting-O₂ Fiber-Optic Oxygen Meter (Robust Oxygen Probe OXROB10, both PyroScience GmbH) to measure the oxygen content in the gas phase. For a typical experiment using Co-TPT, ~10 mg of the solid catalyst were placed inside the reactor. The reactor was carefully evacuated and back-filled with Ar to remove air. Under a counterflow of Ar, 20 ml of a fresh, deaerated solution containing 5 mM of Na₂S₂O₈ and 1 mM Ru(bpy)₃Cl₂ in a borate buffer (0.05 M, adjusted to pH 8 with sulfuric acid) were added. The reactor was sealed with rubber stoppers. The measurement was started under dark conditions and after approx. 180 s the reactor was irradiated using a 100 W Xe lamp (Siemens) equipped with a 420 nm bandpass filter, with a fixed distance of 10 cm between the light source and the reactor.

Figure S3. Comparison of OER activity for of $Co_4O_4OAc_4Py_4$ (dark grey, 12 µmol) fresh Co-TPT (red, 8.7 µmol) in the presence of $Ru(bpy)_3Cl_2$ (21 µmol) as a photosensitizer in aqueous borate buffer (pH 8, ~0.1 mmol $Na_2S_2O_8$), 1 h.

Figure S4. ¹⁵N, ⁵⁹Co and ¹H NMR spectra of a solution of $Co_4O_4(OAc)_4(^{15}N)Py_4$ in D_2O (0.05M Na2B2O7, adjusted with DCl to pH 7.9) containing 5 mM Ru(bpy)₃Cl₂ and 30 mM Na₂S₂O₈ before (grey) and after photocatalysis (cyan, irradiation for 1h with a 100 W lamp).

<u>.</u>							
material	n _{cubane} / μmol	n _{o2} / μmol	yield / %	ΤΟΝ	TOF	R / μmol/g/s	ref
Co ₄ O ₄ OAc ₄ Py ₄	12.5±0.1	14.7±2.5	27±4	1.2±0.2	(1.2±0.2)·10 ⁻³	1.5±0.1	this work
	0.332			40±2	2.0·10 ^{-2 b}		25 c
	1.08	2.5	7	2.3	0.2·10 ⁻³		26 d
	0.036	5.0	100	140	1.0·10 ⁻³		27 e
	0.02 - 0.2				~3.10-2		28 f
CoTPT (av)	8.7±0.3	20.9±0.9	37±3	2.4±0.1	(3.2±0.1)·10 ⁻³	2.8±0.2	this work
1 st cycle ^a	8.4	20.0±0.9	33±3	2.4±0.1	(3.5±0.1)·10 ⁻³	3.0±0.2	this work
2 nd cycle ^a	8.4	15.9±0.7	32±3	1.9±0.1	(3.0±0.1)·10 ⁻³	3.0±0.2	this work
3 rd cycle ^a	8.4	24.1±1.1	34±3	2.9±0.1	(3.4±0.1)·10 ⁻³	3.0±0.2	this work
4 th cycle ^a	8.4	22.0±1.0	37±3	2.6±0.1	(3.4±0.1)·10 ⁻³	2.9±0.2	this work

Table S9. Overview of catalytic activity and comparison to literature. For each standard experiment at least two independent catalytic experiments were performed.

^a for estimation of the error on recycling experiments the relative error η observed for CoTPT, was used to calculate the error bar for each point, even if this procedure overestimates the errors for some experimen^{29,30}

^b from dissolved oxygen determined using a Clark electrode; ^c pH 7, carbonate buffer, 250 W lamp; ^d pH 8, borate buffer, 450 nm LEDs; ^e pH 8, borate buffer, acetonitrile : water (1:1), 50 W halogen lamp; ^f pH 8, borate buffer LEDs

For recycling experiments, the solid catalyst was allowed to settle. Under a counterflow of Ar, the supernatant was carefully removed with a syringe. The supernatant was evaporated to dryness and redissolved in deionised water for ICP analysis of the amount of Co. 20 ml of a fresh, deaerated solution containing 5 mM of Na₂S₂O₈ and 1 mM Ru(bpy)₃Cl₂ in a borate buffer (0.05 M, adjusted to pH 8 with sulfuric acid) were added, and the next cycle of OER was conducted. Over this series of 4 cycles, the TOF varied only slightly (Figure S5). To confirm the heterogeneous nature of the catalyst the liquid supernatant after each cycle was analysed by inductively coupled plasma optical emission spectroscopy. After each cycle small amounts of Co are leached in the supernatant (**Table S10**). Note that traces of decomposed cubane, their presence depending on the reaction conditions, have been reported to be catalytically inactive.²⁶ In line with those results, the IR spectrum of the spent catalyst confirms the stable nature of the framework, i.e. the cubane TPT coordinative bonds (Figure S6). After four cycles of catalysis the acetate ligands are completely replaced most likely by water and OH groups.^{4,31} The absence of any additional bands in the 1200 – 1000 cm⁻¹ and 650 – 550 cm⁻¹ regions rule out the coordination of borate or sulfate (from S₂O₈²⁻) to the Co centres. This is further confirmed by the ⁵⁹Co NMR investigations of the homogeneous complex, where we did not observe any indication of such coordination. The stability of the Co-cubane core after catalysis is further evidenced by the characteristic bands around 670, 640 (v_s ($Co - \mu_3 O$) and 580 cm⁻¹, which has been defined as the cubane's markers.³

Figure S5. Catalytic activity over four cycles of catalysis using Co-TPT (\sim 8.4 µmol) in the presence of Ru(bpy)₃Cl₂ (21 µmol) as a photosensitizer in aqueous borate buffer (pH 8, ~0.1 mmol Na₂S₂O₈), 1 h. After each run, the solid was isolated by sedimentation and reused with a fresh solution of buffer solution containing Ru(bpy)₃Cl₂ and Na₂S₂O₈.

Figure S6. IR spectra of Co₄O₄(OAc)₄Py₄ (black), fresh Co-TPT (red) and spent Co-TPT after four cycles of photocatalysis (purple).

7. Single crystal data

Summary of structure solution

Single clear dark green needle-shaped crystals of $Co_4O_4OAc_4Py_4$ were used as supplied. A suitable crystal with dimensions $0.25 \times 0.04 \times 0.04$ mm³ was selected and mounted on a XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer. The crystal was kept at a steady T = 123.00(10) K during data collection. The structure was solved with the ShelXT 2018/2,³² solution program using iterative methods and by using Olex2 1.5-alpha as the graphical interface.³³ The model was refined with olex2.refine 1.5alpha using full matrix least squares minimisation on F^{2} .³⁴

The unit cell was refined using CrysAlisPro $1.171.43.17a^{35}$ on 30562 reflections, 50% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro 1.171.43.17a (Rigaku OD, 2022). The final completeness is 99.97 % out to 75.92° in Θ . A gaussian absorption correction was performed using CrysAlisPro 1.171.43.17a. Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient μ of this material is 14.459 mm⁻¹ at this wavelength (λ = 1.54184Å) and the minimum and maximum transmissions are 0.152 and 0.845.

The structure was solved and the space group *Pnnm* (# 58) determined by the ShelXT 2018/2³² structure solution program using iterative methods and refined by full matrix least squares minimisation on F^2 using version of olex2.refine 1.5-alpha.³⁴ All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined structure at the refined using the riding model.

__exptl_absorpt_process_details: CrysAlisPro 1.171.43.17a. Numerical absorption correction based on gaussian integration multifaceted crystal model. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

The value of Z' is 0.5. This means that only half of the formula unitis present in the asymmetric unit, with the other half consisting ofsymmetryequivalentatoms.

Compound	Co ₄ O ₄ (OAc) ₄ Py ₄
Formula	$C_{30}H_{35}Co_4N_5O_{12}$
D _{calc.} / g cm ⁻³	1.615
µ/mm⁻¹	14.459
Formula Weight	893.372
Colour	clear dark green
Shape	needle-shaped
Size/mm ³	0.25×0.04×0.04
T/K	123.00(10)
Crystal System	orthorhombic
Space Group	Pnnm
a/Å	19.6668(2)
b/Å	13.8232(1)
c/Å	13.5182(1)
α/°	90
β/°	90
γ/°	90
V/Å ³	3675.03(5)
Z	4
Ζ'	0.5
Wavelength/Å	1.54184
Radiation type	Cu Kα
Q _{min} /°	3.91
Q _{max} /°	75.92
Measured Refl's.	60800
Indep't Refl's	3938
Refl's I≥2 s(I)	3602
R _{int}	0.0438
Parameters	341
Restraints	416
Largest Peak	0.5862
Deepest Hole	-0.2986
GooF	1.0400
wR ₂ (all data)	0.0914
wR ₂	0.0893
R ₁ (all data)	0.0351
R ₁	0.0321

A Hirshfeld-Atom-Refinement (HAR) using the software *NoSpherA2*³⁶ was used to obtain non-spherical atomic formfactors for all but hydrogen atoms in the structure. Modelling hydrogen atoms anistropically and with a free distance was not possible for a converged model. We attribute this to the disorder and the coordinated pyridyl groups. Generally, HAR improved the agreement between the measured and calculated data by 0.62% in R1 and 1.35% in wR2, substantially improving the model for this metalorganic compound.

A solvent mask was calculated, and 66 electrons were found in a volume of 216 Å³, which were attributed to the presence of approximately one molecule of acetonitrile (88 electrons) per asymmetric unit. The solvent molecule was heavily disordered and could not be modelled properly without inflicting the part of interest in the crystallographic structure.

Table S11. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for Co₄O₄OAc₄Py₄. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij}.

Atom	x	У	Z	U_{eq}
Co ⁰¹	2656.67(17)	7248.0(2)	6045.8(2)	33.65(11)
C0 ⁰²	2974.2(2)	5645.0(3)	5000	31.94(12)
Co ⁰³	1644.6(2)	6418.7(3)	5000	33.76(12)
O ⁰⁰⁴	2296.0(7)	6017.9(10)	5903.5(10)	33.2(3)
O ⁰⁰⁵	3237.0(10)	6944.7(13)	5000	32.3(4)
O ⁰⁰⁶	2086.4(11)	7623.6(14)	5000	36.3(4)
O ⁰⁰⁷	3285.6(8)	6717.6(10)	7015.0(11)	40.6(3)
O ⁰⁰⁸	3622.5(8)	5424.0(10)	6094.7(11)	40.5(3)
O ⁰⁰⁹	1929.1(8)	7534.6(10)	3008.8(11)	40.8(3)
O ^{00A}	1065.9(8)	6920.9(11)	3931.5(12)	42.9(4)
N ^{00B}	2697.8(13)	4284.6(17)	5000	34.6(5)
C ^{ODE}	3625.2(11)	5960.0(15)	6858.8(17)	39.8(5)
C ^{00F}	1307.8(12)	7366.7(15)	3197.4(17)	41.7(5)
N ^{00G}	5265(2)	8086(3)	5000	70.7(9)
C ^{00H}	2236.7(19)	2388(2)	5000	46.7(8)
C ⁰⁰¹	5227(2)	7262(3)	5000	54.7(9)
C ₀₀₁	2581.9(15)	3809.1(17)	4157.0(18)	51.5(6)
Соок	2659.4(16)	9323.8(16)	6411.7(19)	53.4(6)
C ^{00L}	4091.9(14)	5657.1(19)	7689(2)	57.3(7)
C ^{00M}	5178(2)	6210(3)	5000	55.9(9)
C ^{00N}	799.2(14)	7754.4(18)	2459(2)	56.3(7)
C ⁰⁰⁰	2347.9(17)	2872.4(18)	4127(2)	58.7(7)
C ^{00Q}	2930.6(19)	10239.4(19)	6547(2)	67.1(8)
COOR	3701(5)	8726(8)	6011(8)	54.5(18)
C ^{00T}	3561(6)	10429(8)	6322(9)	69.1(19)
C ^{00W}	3981(5)	9649(6)	6056(8)	66.1(17)
N ^{00E}	3045.0(11)	8544.6(13)	6238.0(14)	44.4(4)
C ⁴	3741(5)	8605(6)	6332(7)	58.1(17)
C ^{00X}	4053(4)	9485(5)	6505(8)	74.2(17)
C000	3663(5)	10292(7)	6588(8)	72.1(18)
N ²	1165.1(13)	5180.9(19)	5000	42.7(6)
C ³	888(9)	4868(11)	5823(10)	41(2)
C1	485(6)	4043(8)	5831(8)	37(2)
C ⁵	384(11)	3531(14)	5000	36(2)
C ⁶	690(8)	3823(11)	4132(10)	43(2)
C7	1080(9)	4658(10)	4152(10)	42(2)
C ^{3a}	832(9)	4763(12)	5681(11)	43(2)
C ^{1a}	470(7)	3841(10)	5543(10)	44(2)
C ^{5a}	448(6)	3442(8)	4775(7)	31(2)
C ^{6a}	803(7)	3851(10)	3920(10)	41.3(19)
C ^{7a}	1152(9)	4731(11)	4019(11)	41(2)

Table S12. Anisotropic Displacement Parameters (×10⁴) for Co₄O₄OAc₄Py₄. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$.

Atom	U11	U22	U33	U23	U13	U12
Co01	41.1(2)	25.39(17)	34.43(18)	-2.29(12)	0.14(13)	-1.40(12)
Co02	35.6(2)	24.7(2)	35.4(2)	-1.73(17)	-0	0
Co03	35.4(2)	27.8(2)	38.0(2)	-0.55(17)	-0	0
O004	37.2(7)	26.3(6)	36.1(7)	-5.5(5)	-1.1(6)	1.6(5)
O005	34.2(10)	24.6(9)	38.0(10)	-5.1(8)	-0	0
O006	43.6(11)	27.8(9)	37.5(11)	-5.5(8)	-0	0
0007	47.3(8)	35.0(7)	39.5(8)	-3.4(6)	-4.6(7)	-0.9(6)
0008	39.8(8)	33.7(7)	47.9(8)	-0.4(6)	-2.4(7)	0.5(6)
0009	50.7(9)	33.0(7)	38.7(8)	1.8(6)	-3.2(7)	1.4(6)
000A	42.8(8)	37.0(8)	48.7(9)	4.0(6)	-3.3(7)	0.1(7)
NOOB	39.8(13)	28.8(11)	35.0(12)	2.4(10)	-0	0
COOE	39.4(11)	36.0(10)	43.9(11)	-7.4(9)	-4.8(9)	2.4(9)
COOF	52.0(13)	30.5(10)	42.5(12)	4.8(9)	-6.0(10)	-1.5(9)
N00G	80(2)	61(2)	71(2)	1.3(19)	-0	0
C00H	64(2)	30.3(15)	45.2(18)	-6.0(14)	-0	0
C00I	57(2)	62(2)	44.6(19)	-6.0(17)	-0	0
C00J	83.0(18)	38.6(12)	33.0(11)	-14.5(12)	0.5(11)	-0.3(9)
С00К	83.9(18)	29.0(10)	47.4(13)	1.2(10)	4.1(12)	-0.7(9)
COOL	55.7(15)	51.8(14)	64.6(16)	-0.4(12)	-20.2(13)	-0.1(12)
C00M	63(2)	56(2)	48.6(19)	-12.7(18)	-0	0
C00N	59.8(16)	48.1(13)	60.9(16)	12.6(11)	-13.0(13)	5.5(11)
C000	98(2)	39.5(13)	38.8(13)	-16.3(13)	2.6(13)	-3.9(10)
C00Q	108(2)	35.4(12)	58.2(16)	-7.2(12)	8.2(14)	-3.0(10)
COOR	64(3)	44(3)	55(4)	-20.0(18)	0(2)	-7(2)
C00T	103(3)	38(3)	66(4)	-19.4(17)	3(2)	-5(2)
C00W	83(3)	50(3)	65(4)	-25.6(17)	2(2)	-7(2)
NOOE	59.6(12)	33.6(9)	40.1(10)	-7.5(8)	2.3(9)	-4.0(7)
C4	69(3)	45(3)	60(4)	-19.3(18)	4(2)	-4(2)
C00X	87(3)	57(3)	79(4)	-27.0(19)	-1(2)	-3(2)
C00U	107(4)	41(3)	68(4)	-27(2)	0(2)	-7(2)
N2	36.7(13)	34.8(12)	56.6(15)	-0.6(10)	-0	0
C3	38(4)	32(4)	55(4)	-4(2)	2.2(18)	-0.9(17)
C1	32(4)	28(4)	51(4)	0(2)	3.0(18)	-2.2(16)
C5	28(4)	30(4)	48(5)	-3(2)	-0	0
C6	35(4)	42(3)	52(4)	-7(2)	2.8(17)	-1.6(16)
C7	32(4)	40(3)	55(4)	-4(2)	2.1(18)	-0.6(17)
C3a	38(4)	37(4)	53(4)	-4(2)	2(2)	-2(2)
C1a	35(4)	41(5)	57(5)	-4(3)	2(2)	5(2)
C5a	30(4)	18(3)	44(5)	-7(2)	-2(2)	4(2)
C6a	35(4)	39(3)	50(4)	-9(2)	4(2)	-1(2)
C7a	33(4)	38(4)	53(4)	-6(2)	0(2)	-5(2)

Table S13. Bond Lengths in Å	for Co ₄ O ₄ OAc ₄ Py ₄ .
------------------------------	---

Atom	Atom	Length/Å	Atom	Atom	Length/Å	
Co01	Co011	2.8275(7)	С00Н	C000	1.374(3)	
Co01	Co021	2.7016(5)	C00H	C0001	1.374(3)	
Co01	Co031	2.6971(5)	C001	C00M	1.458(5)	
Co01	0004	1.8525(13)	COOJ	C000	1.375(3)	
Co01	O0051	1.8647(13)	СООК	C00Q	1.386(4)	
Co01	00061	1.8778(15)	СООК	NOOE	1.338(3)	
Co01	O007	1.9452(15)	C00Q	COOT	1.303(13)	
Co01	00091	1.9590(15)	C00Q	C00U	1.443(11)	
Co01	NOOE	1.9654(19)	COOR	C00W	1.391(10)	
Co02	Co03	2.8251(6)	COOR	NOOE	1.350(11)	
Co02	0004	1.8806(14)	COOT	C00W	1.405(13)	
Co02	O0041	1.8806(14)	NOOE	C4	1.376(10)	
Co02	O005	1.8694(18)	C4	COOX	1.383(9)	
Co02	00081	1.9771(16)	COOX	C00U	1.358(11)	
Co02	O008	1.9771(16)	N2	C31	1.312(12)	
Co02	NOOB	1.958(2)	N2	C3	1.312(12)	
Co03	O004	1.8547(14)	N2	C7	1.366(12)	
Co03	00041	1.8547(14)	N2	C71	1.366(12)	
Co03	O006	1.879(2)	N2	C3a1	1.269(14)	
Co03	000A	1.9656(16)	N2	C3a	1.269(14)	
Co03	O00A1	1.9656(16)	N2	C7a1	1.465(14)	
Co03	N2	1.954(3)	N2	C7a	1.465(14)	
0007	COOE	1.260(3)	C3	C1	1.388(11)	
O008	COOE	1.271(3)	C1	C51	1.343(11)	
O009	COOF	1.270(3)	C5	C6	1.379(11)	
000A	COOF	1.261(3)	C5	C61	1.379(11)	
NOOB	COOJ	1.335(3)	C6	C7	1.385(11)	
NOOB	C00J1	1.335(3)	C3a	C1a	1.472(15)	
COOE	COOL	1.509(3)	C1a	C5a	1.177(15)	
C00F	COON	1.511(3)	C5a	C6a	1.464(13)	
N00G	C00I	1.141(5)	C6a	C7a	1.404(14)	

Table S14. Bond Angles in ° for Co4O4OAc4Py	4.
---	----

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Co031	Co01	Co021	63.106(14)	Co02	Co03	Co011	58.525(13)
0004	Co01	Co021	44.05(4)	00041	Co03	Co011	43.29(4)
0004	Co01	Co031	43.35(4)	0004	Co03	Co01	43.29(4)
00051	Co01	Co021	43.72(6)	0004	Co03	Co011	87.85(4)
00051	Co01	Co031	87.63(5)	00041	Co03	Co01	87.85(4)
00051	Co01	0004	87.09(7)	00041	Co03	Co02	41.20(4)
00061	Co01	Co021	88.33(5)	0004	Co03	Co02	41.20(4)
00061	Co01	Co031	44.12(6)	0004	Co03	00041	82.38(9)
00061	Co01	0004	86.96(7)	O006	Co03	Co011	44.10(4)
00061	Co01	00051	81.77(7)	0006	Co03	Co01	44.10(4)
0007	Co01	Co021	84.05(5)	O006	Co03	Co02	84.70(7)
0007	Co01	Co031	131.46(4)	O006	Co03	00041	86.87(6)
0007	Co01	0004	88.13(6)	O006	Co03	0004	86.87(6)
0007	Co01	00051	92.11(7)	000A1	Co03	Co011	131.48(5)
0007	Co01	00061	172.33(7)	000A	Co03	Co01	131.48(5)
00091	Co01	Co021	132.54(5)	000A	Co03	Co011	83.80(5)
00091	Co01	Co031	83.62(5)	000A1	Co03	Co01	83.80(5)
00091	Co01	0004	88.49(6)	000A	Co03	Co02	132.04(5)
00091	Co01	00051	170.80(7)	000A1	Co03	Co02	132.04(5)
00091	Co01	00061	89.94(7)	000A	Co03	00041	91.23(6)
00091	Co01	0007	95.81(7)	000A	Co03	0004	171.64(7)
NOOE	Co01	Co021	136.66(6)	000A1	Co03	0004	91.23(6)
NOOE	Co01	Co031	138.04(6)	000A1	Co03	00041	171.64(7)
NOOE	Co01	0004	178.31(7)	000A1	Co03	0006	87.40(7)
NOOE	Co01	00051	93.87(8)	000A	Co03	0006	87.40(7)
NOOE	Co01	00061	94.56(9)	000A1	Co03	000A	94.59(9)
NOOE	Co01	0007	90.44(7)	N2	Co03	Co01	136.76(5)
NOOE	Co01	00091	90.76(7)	N2	Co03	Co011	136.76(5)
Co01	Co02	Co011	63.107(16)	N2	Co03	Co02	96.62(8)
Co03	Co02	Co01	58.369(13)	N2	Co03	00041	94.12(7)
Co03	Co02	Co011	58.369(13)	N2	Co03	0004	94.12(7)
00041	Co02	Co011	43.23(4)	N2	Co03	0006	178.69(10)
0004	Co02	Co01	43.23(4)	N2	Co03	000A1	91.71(7)
00041	Co02	Co01	87.20(4)	N2	Co03	000A	91.71(7)
0004	Co02	Co011	87.20(4)	Co021	0004	Co01	92.72(6)
00041	Co02	C003	40.52(4)	Co031	0004	C001	93.36(6)
0004	Co02	Co03	40.52(4)	Co031	0004	Co021	98.28(7)
0004	CoU2	00041	81.01(9)	Co01	0005	Co011	98.61(9)
0005	C002	C0011	43.59(4)	CoU2	0005	C0011	92.69(7)
0005	CoU2	C001	43.59(4)	Co02	0005	C001	92.69(7)
0005	Co02	00041	83.80(6)	C001	0006	Co011	97.68(10)
0005	C002	00041	86.14(6)	C003	0006	Co01	91.78(7)
0005	Co02	0004	86.14(6)	C003	0006	Co011	91.78(7)
0008	C002	Co01	83.34(4) 121.87(E)	CODE	0007	Co01	122.51(14) 121.20(14)
0008	C002	Co011	131.07(5)	CODE	0008	Co011	121.39(14) 122.34(15)
00081	C002	Co01	131.87(5)	COOF	0009	Co011	122.34(15)
00081	C002	Co011	83.34(4) 120.05(5)	C00F	NOOR	C003	122.17(13)
0008	C002	C003	120.95(5)	C001		C002	121.30(13)
00081	C002	00041	130.35(5)	C00J		C002	121.50(15)
00081	C002	00041	90.78(0) 00.78(6)	0008	CODE	0007	128 2(2)
0008	C002	0004	50.78(0) 170.26(6)	0008	CODE	0007	120.2(2)
00081	C002	0004	170.36(6)	C00L	CODE	0007	115.4(2)
00081	Co02	00041	88 29(6)	0004	COOL	0000	127.6(2)
00081	C002	0005	88.29(6)	COON	COOF	0009	116 1(2)
0008	C002	0003	96 92(9)	COON	COOF	0003	116.3(2)
	C002	Co01	126 26(5)	C0001	C00H	C000A	110.3(2)
NOOR	C002	Co01	126.26(5)	C0001	C001		170 0(5)
NOOR	Co02	C003	96 12(7)	C001VI	C001	NOOR	123 1(2)
NIOOD	Co02	0004	93 80(7)		C00k	C000	122.1(2)
	C002	0004	93 80(7)			C00Q	110 2/2)
NOOR	Co02	00041	179 92(10)	C003	0000	COOK	121 3(6)
NOOR	Co02	0003	91 76(7)		C000	COOK	115 8(5)
NOOR	Co02	00081	91 76(7)	C000	C000	COOT	18 1(6)
Co01	C002	Co011	63 225(17)	NOOF	COOR	C00\//	122 6(9)
Co02	C003	Co01	58 525(13)	C0014/	СООТ	C000	117 7(9)
C002	0000	COOT	50.525(15)	00000	0001	CUUL	±±/·/\J/

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C00T	C00W	COOR	118.9(8)	C7a1	N2	Co03	112.4(6)
С00К	NOOE	Co01	122.48(18)	C7a	N2	Co03	112.4(6)
COOR	NOOE	Co01	120.7(5)	C7a	N2	C31	23.8(10)
COOR	NOOE	COOK	115.6(5)	C7a1	N2	C31	128.3(8)
C4	NOOE	Co01	117.0(4)	C7a	N2	C3	128.3(8)
C4	NOOE	COOK	119.9(4)	C7a1	N2	C3	23.8(10)
C4	NOOE	COOR	19.9(5)	C7a1	N2	C71	9.3(10)
C00X	C4	NOOE	120.7(7)	C7a1	N2	C7	122.2(6)
C00U	C00X	C4	119.0(7)	C7a	N2	C71	122.2(6)
C00X	C00U	C00Q	121.3(7)	C7a	N2	C7	9.3(10)
C3	N2	Co03	119.3(6)	C7a	N2	C3a	117.0(9)
C31	N2	Co03	119.3(6)	C7a1	N2	C3a1	117.0(9)
C31	N2	C3	115.9(14)	C7a	N2	C3a1	30.7(11)
C71	N2	Co03	121.5(6)	C7a1	N2	C3a	30.7(11)
C7	N2	Co03	121.5(6)	C7a1	N2	C7a	129.7(13)
C71	N2	C31	119.1(8)	C1	C3	N21	121.0(11)
C7	N2	C31	20.4(12)	C51	C1	C3	120.7(11)
C71	N2	C3	20.4(12)	C1	C5	C11	113.6(15)
C7	N2	C3	119.1(8)	C6	C5	C11	21.4(8)
C71	N2	C7	114.2(12)	C61	C5	C1	21.4(8)
C3a	N2	Co03	130.4(7)	C6	C5	C1	119.5(13)
C3a1	N2	Co03	130.4(7)	C61	C5	C11	119.5(13)
C3a	N2	C31	104.5(7)	C61	C5	C6	116.6(17)
C3a1	N2	C31	11.6(11)	C7	C6	C5	118.0(13)
C3a1	N2	C3	104.5(7)	C6	C7	N2	121.7(12)
C3a	N2	C3	11.6(11)	C1a	C3a	N21	123.5(12)
C3a1	N2	C7	24.0(10)	C5a	C1a	C3a	122.4(11)
C3a	N2	C71	24.0(10)	C6a	C5a	C1a	119.9(10)
C3a	N2	C7	107.7(8)	C7a	C6a	C5a	119.5(11)
C3a1	N2	C71	107.7(8)	C6a	C7a	N2	117.6(11)
C3a1	N2	СЗа	93.0(14)				

_

Table S15. Torsion Angles in	° for Co ₄ O ₄ OAc ₄ Py ₄ .
------------------------------	---

Atom	Atom	Atom	Atom	Angle/°
Co01	0007	COOE	O008	-0.50(17)
Co01	0007	C00E	C00L	179.56(17)
Co011	O009	C00F	000A	-7.78(17)
Co011	O009	C00F	C00N	171.68(16)
Co01	NOOE	C00K	C00Q	-180.0(2)
Co01	NOOE	COOR	C00W	174.4(6)
Co01	NOOE	C4	C00X	-177.6(5)
Co02	O008	COOE	0007	-6.16(17)
Co021	O008	COOE	0007	-6.16(17)
Co02	O008	COOE	C00L	173.78(17)
Co021	O008	COOE	C00L	173.78(17)
Co02	NOOB	C00J1	C0001	176.0(2)
Co02	NOOB	C00J	C000	-176.0(2)
Co03	000A	COOF	O009	2.37(17)
Co031	000A	COOF	O009	2.37(17)
Co03	000A	COOF	C00N	-177.08(16)
Co031	000A	COOF	C00N	-177.08(16)
Co03	N2	C3	C1	173.4(9)
Co03	N2	C31	C11	-173.4(9)
Co03	N2	C7	C6	-174.3(9)
Co03	N2	C71	C61	174.3(9)
Co03	N2	C3a1	C1a1	-177.0(12)
Co03	N2	C3a	C1a	177.0(12)
Co03	N2	C7a	C6a	-178.1(9)
Co03	N2	C7a1	C6a1	178.1(9)
NOOB	COOJ	C000	C00H	-1.1(4)
N00B1	COOJ	C000	C00H	-1.1(4)
СООК	C00Q	C00T	C00W	-7.9(7)
СООК	C00Q	C00U	C00X	-0.5(6)
СООК	NOOE	COOR	C00W	6.6(6)
СООК	NOOE	C4	C00X	-6.7(6)
C00Q	C00T	C00W	COOR	2.3(11)
C00Q	C00U	C00X	C4	3.1(10)
COOR	NOOE	C4	C00X	76(2)
NOOE	C4	C00X	C00U	0.4(9)
N2	C3	C1	C51	2(3)
N2	C31	C11	C5	-2(3)
N21	C7	C6	C5	0.3(18)
N2	C7	C6	C5	0.3(18)
N2	C3a	C1a	C5a	-2(2)
N21	C3a	C1a	C5a	-2(2)
N21	C7a	C6a	C5a	2.5(18)
N2	C7a	C6a	C5a	2.5(18)
C3	C1	C51	C11	-22.4(10)
C3	C1	C51	C6	0.7(13)
C3	C1	C51	C61	89(4)
C11	C5	C6	C7	78(3)
C1	C51	C6	C7	-2(2)
C3a	C1a	C5a	C6a	1.5(17)
C1a	C5a	C6a	C7a	-1.7(17)

Table S16. Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for Co₄O₄OAc₄Py₄. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	х	У	Z	Ueq
НООН	2086.6(19)	1735(2)	5000	56.0(9)
HOOJ	2664.9(15)	4133.3(17)	3549.2(18)	61.8(7)
НООК	2180.0(16)	9246.1(16)	6443.5(19)	64.1(8)
H00a	4181(9)	6213(4)	8119(9)	86.0(10)
H00b	3876(5)	5141(11)	8074(9)	86.0(10)
H00c	4521(4)	5421(14)	7412(2)	86.0(10)
H00i	5517(12)	5941(3)	4544(19)	83.9(14)
H00I	5263(17)	5965(3)	5669(5)	83.9(14)
H00m	4722(6)	6016(3)	4790(20)	83.9(14)
H00d	1040.8(14)	8085.3(18)	1923(2)	84.4(10)
H00e	533.5(14)	7217.5(18)	2186(2)	84.4(10)
H00f	493.7(14)	8211.8(18)	2789(2)	84.4(10)
H000	2264.2(17)	2563.8(18)	3511(2)	70.4(9)
H00Q	2651.7(19)	10738.6(19)	6809(2)	80.6(9)
H00g	2652.0(19)	10797.6(19)	6609(2)	80.6(9)
HOOR	3983(5)	8202(8)	5813(8)	65(2)
H00T	3731(6)	11072(8)	6337(9)	83(2)
H00W	4448(5)	9750(6)	5908(8)	79(2)
H4	4009(5)	8036(6)	6277(7)	70(2)
H00X	4534(4)	9525(5)	6565(8)	89(2)
H00U	3876(5)	10903(7)	6674(8)	86(2)
H3	964(9)	5211(11)	6422(10)	50(2)
H1	279(6)	3839(8)	6432(8)	45(2)
H5	104(11)	2972(14)	5009.703133	43(3)
H6	636(8)	3463(11)	3539(10)	52(2)
H7	1293(9)	4872(10)	3560(10)	50(2)
H3a	816(9)	5061(12)	6314(11)	51(3)
H1a	246(7)	3557(10)	6094(10)	53(3)
H5a	201(6)	2855(8)	4710(7)	37(3)
H6a	797(7)	3523(10)	3302(10)	50(2)
H7a	1371(9)	5025(11)	3470(11)	50(2)

Table S17. A	tomic Occup	ancies for all at	oms that are no	t fully occur	pied in Co.O.OAc.Pv.
10010 01717	conne occup	uncies for un ut	onno unat are no	cruny occup	neu in co4040/1041 y4.

Atom	Occupancy	Atom	Occupancy
НООК	0.545(14)	C7	0.250000
H00i	0.500000	H7	0.250000
H00I	0.500000	C3a	0.250000
H00m	0.500000	H3a	0.250000
H00Q	0.455(14)	C1a	0.250000
H00g	0.545(14)	H1a	0.250000
COOR	0.455(14)	C5a	0.250000
HOOR	0.455(14)	H5a	0.250000
C00T	0.455(14)	C6a	0.250000
H00T	0.455(14)	H6a	0.250000
C00W	0.455(14)	C7a	0.250000
H00W	0.455(14)	H7a	0.250000
C4	0.545(14)		
H4	0.545(14)		
C00X	0.545(14)		
HOOX	0.545(14)		
C00U	0.545(14)		
H00U	0.545(14)		
C3	0.250000		
H3	0.250000		
C1	0.250000		
H1	0.250000		
C5	0.250000		
H5	0.250000		
C6	0.250000		
H6	0.250000		

No	x	у	Z	V	e	Content
1	0.000	0.000	0.500	107.9	33.0	2MeCN
2	0.500	0.500	0.000	107.9	33.0	2MeCN

8. References

- 1 R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow and P. Granger, *Pure Appl. Chem.*, 2001, 73, 1795–1818.
- 2 R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, P. Granger, R. E. Hoffman and K. W. Zilm, *Pure Appl. Chem.*, 2008, **80**, 59–84.
- 3 R. Chakrabarty, S. J. Bora and B. K. Das, *Inorg. Chem.*, 2007, **46**, 9450–9462.
- 4 A. I. Nguyen, K. M. Van Allsburg, M. W. Terban, M. Bajdich, J. Oktawiec, J. Amtawong, M. S. Ziegler, J. P. Dombrowski, K. V.
- Lakshmi, W. S. Drisdell, J. Yano, S. J. L. Billinge and T. D. Tilley, Proc. Natl. Acad. Sci., 2019, 116, 201815013.
- 5 A. Yamasaki, J. Coord. Chem., 1991, **24**, 211–260.
- 6 WSolids1 ver. 1.20.20, K.Eichele, 2013.
- 7 D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan and G. Hoatson, *Magn. Reson. Chem.*, 2002, **40**, 70–76.
- 8 S. G. J. van Meerten, W. M. J. Franssen and A. P. M. Kentgens, J. Magn. Reson., 2019, 301, 56–66.
- 9 V. N. Staroverov, G. E. Scuseria, J. Tao and J. P. Perdew, J. Chem. Phys., 2003, 119, 12129–12137.
- 10 J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615.
- 11 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297.
- 12 J. K. Beattie, T. W. Hambley, J. A. Klepetko, A. F. Masters and P. Turner, *Polyhedron*, 1998, **17**, 1343–1354.
- 13 I. G. Shenderovich, J. Chem. Phys., 2018, **148**, 124313.
- 14 M. J. Duer, Ed., Solid-State NMR Spectroscopy Principles and Applications, Wiley, 2001.
- 15 D. L. Bryce, G. M. Bernard, M. Gee, M. D. Lumsden, K. Eichele and R. E. Wasylishen, Can. J. Anal. Sci. Spectrosc., 2001, 46, 46–82.
- 16 I. G. Shenderovich and H.-H. Limbach, *Solids*, 2021, **2**, 139–154.
- 17 I. G. Shenderovich, J. Phys. Chem. A, 2023, **127**, 5547–5555.
- 18 I. G. Shenderovich, *ChemPhysChem*, , DOI:10.1002/cphc.202300986.
- 19 I. Hung, P. Gor'kov and Z. Gan, J. Chem. Phys., , DOI:10.1063/1.5126599.
- 20 A. P. M. Kentgens, *Geoderma*, 1997, **80**, 271–306.
- 21 P. Granger, in *Encyclopedia of Magnetic Resonance*, John Wiley & Sons, Ltd, Chichester, UK, 2007.
- 22 B. P. Tatman, H. Modha and S. P. Brown, J. Magn. Reson., 2023, **352**, 107459.
- 23 M. Schwarze, M. Schröder, D. Stellmach, K. Kailasam, A. Thomas and R. Schomäcker, *Chemie Ing. Tech.*, 2013, **85**, 500–507.
- 24 M. Schwarze, D. Stellmach, M. Schröder, K. Kailasam, R. Reske, A. Thomas and R. Schomäcker, *Phys. Chem. Chem. Phys.*, 2013, **15**, 3466.
- 25 N. S. McCool, D. M. Robinson, J. E. Sheats and G. C. Dismukes, J. Am. Chem. Soc., 2011, 133, 11446–11449.
- A. Genoni, G. La Ganga, A. Volpe, F. Puntoriero, M. Di Valentin, M. Bonchio, M. Natali and A. Sartorel, *Faraday Discuss.*, 2015, **185**, 121–141.
- 27 S. Berardi, G. La Ganga, M. Natali, I. Bazzan, F. Puntoriero, A. Sartorel, F. Scandola, S. Campagna and M. Bonchio, *J. Am. Chem. Soc.*, 2012, **134**, 11104–11107.
- 28 P. F. Smith, C. Kaplan, J. E. Sheats, D. M. Robinson, N. S. McCool, N. Mezle and G. C. Dismukes, *Inorg. Chem.*, 2014, 53, 2113–2121.
- 29 S. R. Chaudhari, D. Wisser, A. C. Pinon, P. Berruyer, D. Gajan, P. Tordo, O. Ouari, C. Reiter, F. Engelke, C. Copéret, M. Lelli, A. Lesage and L. Emsley, J. Am. Chem. Soc., 2017, **139**, 10609–10612.
- F. M. Wisser, M. Duguet, Q. Perrinet, A. C. Ghosh, M. Alves-Favaro, Y. Mohr, C. Lorentz, E. A. Quadrelli, R. Palkovits, D. Farrusseng,
 C. Mellot-Draznieks, V. Waele and J. Canivet, *Angew. Chemie Int. Ed.*, 2020, 59, 5116–5122.
- 31 A. I. Nguyen, J. Wang, D. S. Levine, M. S. Ziegler and T. D. Tilley, *Chem. Sci.*, 2017, **8**, 4274–4284.
- 32 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv., 2015, 71, 3–8.
- 33 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339–341.
- L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, Acta Crystallogr. Sect. A Found. Adv., 2015, 71, 59–
 75.
- 35 CrysAlisPro (V43), Rigaku Oxford Diffraction Ltd., 2019.
- F. Kleemiss, O. V. Dolomanov, M. Bodensteiner, N. Peyerimhoff, L. Midgley, L. J. Bourhis, A. Genoni, L. A. Malaspina, D. Jayatilaka,
 J. L. Spencer, F. White, B. Grundkötter-Stock, S. Steinhauer, D. Lentz, H. Puschmann and S. Grabowsky, *Chem. Sci.*, 2021, 12, 1675–1692.