## Supplementary Materials: New palladium(II) β-ketoesterates for Focused Electron Beam Induced Deposition: Synthesis, structures, and characterization

A. Butrymowicz-Kubiak<sup>1</sup>, T.M. Muziol<sup>1</sup>, A. Kaczmarek-Kędziera<sup>1</sup>, C. S. Jureddy<sup>2</sup>, K. Maćkosz<sup>2</sup>, I. Utke<sup>2</sup>, I. B. Szymańska<sup>1</sup>\*

<sup>1</sup>Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland

<sup>2</sup>Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH - 3602 Thun, Switzerland

## X-ray crystal structure determination

| Identification code                                                                                                    | (1)                                                                                                                                                                                                                                    | (2)                                         | (3)                                                                                                                                                                      |  |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Empirical formula                                                                                                      | C16 H26 O6 Pd                                                                                                                                                                                                                          | C14 H22 O6 Pd                               | C12 H18 O6 Pd                                                                                                                                                            |  |
| Formula weight                                                                                                         | 420.77                                                                                                                                                                                                                                 | 392.71                                      | 364.66                                                                                                                                                                   |  |
| Temperature [K]                                                                                                        | 100(2) K                                                                                                                                                                                                                               | 100(2) K                                    | 100.15 K                                                                                                                                                                 |  |
| Wavelength [Å]                                                                                                         | 1.54184 Å                                                                                                                                                                                                                              | 1.54184 Å                                   | 1.54184 Å                                                                                                                                                                |  |
| Crystal system, space group                                                                                            | Triclinic, P-1                                                                                                                                                                                                                         | Monoclinic, P2 <sub>1</sub> /n              | Triclinic, P-1                                                                                                                                                           |  |
| Unit cell dimensions [Å] and [°]                                                                                       | $ \begin{array}{l} a = 10.23141(11) \ \ \mathring{A} & \alpha = 91.9303(9)^{\circ} \\ b = 12.95320(14) \ \ \mathring{A} & \beta = 98.1743(9)^{\circ} \\ c = 14.56071(17) \ \ \mathring{A} & \gamma = 100.3549(9)^{\circ} \end{array} $ |                                             | $ \begin{array}{ll} a=7.0247(2)~\AA & \alpha=89.994(3)^{\circ} \\ b=8.6043(3)~\AA & \beta=80.180(3)^{\circ} \\ c=11.5706(4)~\AA & \gamma=79.606(3)^{\circ} \end{array} $ |  |
| Volume [Å <sup>3</sup> ]                                                                                               | 1875.53(4) Å <sup>3</sup>                                                                                                                                                                                                              | 801.33(4) Å <sup>3</sup>                    | 677.46(4) Å <sup>3</sup>                                                                                                                                                 |  |
| Z, Calculated density [Mg×m <sup>-3</sup> ]                                                                            | 4, 1.490 Mg/m <sup>3</sup>                                                                                                                                                                                                             | 2, 1.628 Mg/m <sup>3</sup>                  | 2, 1.788 Mg/m <sup>3</sup>                                                                                                                                               |  |
| Absorption coefficient [mm <sup>-1</sup> ]                                                                             | 8.207 mm <sup>-1</sup>                                                                                                                                                                                                                 | 9.558 mm <sup>-1</sup>                      | 11.252 mm <sup>-1</sup>                                                                                                                                                  |  |
| F(000)                                                                                                                 | 864                                                                                                                                                                                                                                    | 400                                         | 368                                                                                                                                                                      |  |
| Crystal size [mm]                                                                                                      | 0.140 x 0.060 x 0.030 mm <sup>3</sup>                                                                                                                                                                                                  | 0.130 x 0.040 x 0.020 mm <sup>3</sup>       | 0.1 x 0.03 x 0.02 mm <sup>3</sup>                                                                                                                                        |  |
| Theta range for data collection [°]                                                                                    | 3.072 to 74.503°                                                                                                                                                                                                                       | 4.937 to 74.504°                            | 3.879 to 74.475°                                                                                                                                                         |  |
|                                                                                                                        | -12<=h<=12                                                                                                                                                                                                                             | -5<=h<=4                                    | -8<=h<=8                                                                                                                                                                 |  |
| Limiting indices                                                                                                       | -16<=k<=16                                                                                                                                                                                                                             | -12<=k<=12                                  | -10<=k<=7                                                                                                                                                                |  |
|                                                                                                                        | -16<=1<=18                                                                                                                                                                                                                             | -17<=1<=22                                  | -14<=1<=14                                                                                                                                                               |  |
| Reflections collected/unique                                                                                           | 68027                                                                                                                                                                                                                                  | 5007                                        | 8513                                                                                                                                                                     |  |
| Completeness [%] to theta [°]                                                                                          | 99.9 %                                                                                                                                                                                                                                 | 98.6 %                                      | 99.9 %                                                                                                                                                                   |  |
| Absorption correction                                                                                                  | Gaussian                                                                                                                                                                                                                               | Gaussian                                    | Gaussian                                                                                                                                                                 |  |
| Max. and min. transmission                                                                                             | 0.908 and 0.490                                                                                                                                                                                                                        | 0.942 and 0.422                             | 0.920 and 0.433                                                                                                                                                          |  |
| <b>Refinement method</b>                                                                                               | Full-matrix least-squares on F <sup>2</sup>                                                                                                                                                                                            | Full-matrix least-squares on F <sup>2</sup> | Full-matrix least-squares on F <sup>2</sup>                                                                                                                              |  |
| Data/restraints/parameters                                                                                             | 7650 / 0 / 432                                                                                                                                                                                                                         | 1605 / 0 / 100                              | 2756 / 0 / 179                                                                                                                                                           |  |
| Goodness-of-fit on F <sup>2</sup>                                                                                      | Goodness-of-fit on F <sup>2</sup>                                                                                                                                                                                                      |                                             | 1.092                                                                                                                                                                    |  |
| Final R Indices [I>2sigma(I)]                                                                                          | <b>R Indices [I&gt;2sigma(I)]</b> R1 = 0.0184, wR2 = 0.0500                                                                                                                                                                            |                                             | R1 = 0.0261, wR2 = 0.0746                                                                                                                                                |  |
| R indices (all data)                                                                                                   | R1 = 0.0189, wR2 = 0.0503                                                                                                                                                                                                              | R1 = 0.0384, WR2 = 0.0981                   | R1 = 0.0286, WR2 = 0.0765                                                                                                                                                |  |
| Largest diff. peak and hole [eÅ <sup>-3</sup> ] 0.372 and -0.545 e. Å <sup>-3</sup> 0.980 and 0.006 e. Å <sup>-3</sup> |                                                                                                                                                                                                                                        | $0.010 \text{ and } 0.000 \text{ a } ^{-3}$ |                                                                                                                                                                          |  |

Table S 1 Crystal data and structure refinement for (1–3).

| Pd(1)-O(12)       | 1.9657(11) |
|-------------------|------------|
| Pd(1)-O(2)        | 1.9710(11) |
| Pd(1)-O(6)        | 1.9947(11) |
| Pd(1)-O(16)       | 1.9978(11) |
| Pd(2)-O(22)       | 1.9628(11) |
| Pd(2)-O(32)       | 1.9660(11) |
| Pd(2)-O(36)       | 1.9972(11) |
| Pd(2)-O(26)       | 2.0010(11) |
| O(12)-Pd(1)-O(2)  | 85.30(5)   |
| O(12)-Pd(1)-O(6)  | 179.55(5)  |
| O(2)-Pd(1)-O(6)   | 94.70(4)   |
| O(12)-Pd(1)-O(16) | 94.88(4)   |
| O(2)-Pd(1)-O(16)  | 179.71(5)  |
| O(6)-Pd(1)-O(16)  | 85.11(4)   |
| C(2)-O(2)-Pd(1)   | 122.69(10) |
| C(4)-O(6)-Pd(1)   | 122.82(10) |
| C(12)-O(12)-Pd(1) | 122.83(10) |
| C(14)-O(16)-Pd(1) | 122.59(10) |
| O(22)-Pd(2)-O(32) | 84.38(5)   |
| O(22)-Pd(2)-O(36) | 178.04(5)  |
| O(32)-Pd(2)-O(36) | 94.34(5)   |
| O(22)-Pd(2)-O(26) | 94.95(5)   |
| O(32)-Pd(2)-O(26) | 175.70(5)  |
| O(36)-Pd(2)-O(26) | 86.44(5)   |
| C(22)-O(22)-Pd(2) | 122.88(10) |
| C(24)-O(26)-Pd(2) | 121.38(10) |
| C(32)-O(32)-Pd(2) | 123.17(10) |
| C(34)-O(36)-Pd(2) | 122.89(10) |
|                   |            |

Table S 2 Bond lengths [Å] and angles  $[\circ]$  for  $[Pd(tbaoac)_2](1)$ .

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+1

| Pd(1)-O(1)#1        | 1.9811(19) |
|---------------------|------------|
| Pd(1)-O(1)          | 1.9811(19) |
| Pd(1)-O(4)          | 1.999(3)   |
| Pd(1)-O(4)#1        | 1.999(3)   |
| O(1)#1-Pd(1)-O(1)   | 180.00(9)  |
| O(1)#1-Pd(1)-O(4)   | 85.23(8)   |
| O(1)-Pd(1)-O(4)     | 94.77(8)   |
| O(1)#1-Pd(1)-O(4)#1 | 94.78(8)   |
| O(1)-Pd(1)-O(4)#1   | 85.22(8)   |
| O(4)-Pd(1)-O(4)#1   | 180.0      |
| C(2)-O(1)-Pd(1)     | 122.62(18) |
| C(4)-O(4)-Pd(1)     | 122.20(19) |
|                     |            |

Table S 3 Bond lengths [Å] and angles  $[\circ]$  for  $[Pd(ipaoac)_2]$  (2).

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,-z+1

| 1.9923(15) |
|------------|
| 1.9923(15) |
| 1.9833(15) |
| 1.9833(15) |
| 1.9917(16) |
| 1.9917(16) |
| 1.9881(15) |
| 1.9881(15) |
| 180.0      |
| 85.40(6)   |
| 94.60(6)   |
| 85.40(6)   |
| 94.60(6)   |
| 180.0      |
| 122.01(14) |
| 122.94(16) |
| 180.0      |
| 94.64(6)   |
| 85.36(6)   |
| 94.64(6)   |
| 85.36(6)   |
| 180.0      |
| 122.04(14) |
| 122.60(16) |
|            |

**Table S 4** Bond lengths [Å] and angles  $[\circ]$  for  $[Pd(eaoac)_2]$  (3).

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1 #2 -x,-y+1,-z+2



Figure S 1 Experimental (blue) and calculated (red) XRD patterns of the [Pd(tbaoac)<sub>2</sub>] (1).



Figure S 2 Experimental (blue) and calculated (red) XRD patterns of the [Pd(ipaoac)<sub>2</sub>] (2).



**Figure S 3** C-H... $\pi$  interactions between C8-H8, C23-H23, C38-H38, and chelate ring (green dashed lines) and between chelate rings (blue dashed lines) in the compound [Pd(tbaoac)<sub>2</sub>] (1).



**Figure S 4** Hirshfeld surfaces (left) and fingerprints (right) of selected interactions created in the crystal network of  $[Pd(tbaoac)_2]$  (1) for Pd2 molecule: (A) for H...H (63.5%), (B) for O...H (11.2%), (C) for C...H and H...C (11.1%), and (D) for H...O (10.0%). In brackets, there is a given surface area included as a percentage of the total surface area.



**Figure S 5**  $\pi$ - $\pi$  interactions between palladium ion and chelate ring (orange dashed lines) and O...H hydrogen bonds (magenta dashed lines) in the compound [Pd(ipaoac)<sub>2</sub>] (**2**).



**Figure S 6** Hirshfeld surfaces (left) and fingerprints (right) of selected interactions created in the crystal network of  $[Pd(ipaoac)_2]$  (2): (A) for H...H (67.0%), (B) for H...O (18.1%), and (C) for C...Pd (3.5%). In brackets, there is a given surface area included as a percentage of the total surface area.



**Figure S** 7 Interactions energy: (A) – electrostatic, (B) – van der Waals, and (C) – total in the crystal network of  $[Pd(ipaoac)_2]$  (2).



Figure S 8 The structure of  $[Pd(eaoac)_2]$  (3) with the numbering scheme.



Figure S 9 Hirshfeld surfaces (left) and fingerprints (right) of selected interactions created in the crystal network of  $[Pd(eaoac)_2]$  (3) for Pd1 molecule: (A) for H...H (53.1%), (B) for O...H (29.7%), and (C) for C...H (7.4%). In brackets, there is a given surface area included as a percentage of the total surface area.



**Figure S 10** Hirshfeld surfaces (left) and fingerprints (right) of selected interactions created in the crystal network of  $[Pd(eaoac)_2]$  (3) for Pd2 molecule: (A) for H...H (58.1%), (B) for H...O (25.9%), (C) for C...O (4.0%), and (D) for C...C (3.6%). In brackets, there is a given surface area included as a percentage of the total surface area.



Figure S 11 Interactions energy: (A) – electrostatic, (B) – van der Waals, and (C) – total in the crystal network of  $[Pd(eaoac)_2]$  (3) for Pd1 molecule.



Figure S 12 Interactions energy: (A) – electrostatic, (B) – van der Waals, and (C) – total in the crystal network of  $[Pd(eaoac)_2]$  (3) for Pd2 molecule.



Figure S 13 Interactions energy: (A) – electrostatic, (B) – van der Waals, and (C) – total in the crystal network of  $[Pd(eaoac)_2]$  (3) for Pd1 and Pd2 molecules.



Figure S 14 ATR-IR spectrum for the compound [Pd(tbaoac)<sub>2</sub>] (1).



Figure S 15 ATR-IR spectrum for the compound [Pd(ipaoac)<sub>2</sub>] (2).



Figure S 16 ATR-IR spectrum for the compound [Pd(eaoac)<sub>2</sub>] (3).



**Figure S 17** ATR-IR spectra for the protonated ligands:  $MeCOCH_2CO_2{}^tBu$  – tbaoacH (black),  $MeCOCH_2CO_2{}^iPr$  – ipaoacH (blue), and  $MeCOCH_2CO_2Et$  – eaoacH (grey).



Figure S 18 Theoretical infrared spectra calculated by DFT B3LYP-D3/def2-TZVPP for the compound  $[Pd(ipaoac)_2]$  (2) (blue line) and ligand ipaoacH (black line).



Figure S 19 Theoretical infrared spectra calculated by DFT B3LYP-D3/def2-TZVPP for the compound  $[Pd(eaoac)_2]$  (3) (blue line) and ligand eaoacH (black line).



**Figure S 20** <sup>1</sup>H NMR spectrum of the compound [Pd(tbaoac)<sub>2</sub>] (1).



Figure S 21 <sup>1</sup>H NMR spectrum of the tbaoacH –  $MeCOCH_2CO_2^{t}Bu$ .



Figure S 22 <sup>13</sup>C NMR spectrum of the compound [Pd(tbaoac)<sub>2</sub>] (1).



**Figure S 23** <sup>13</sup>C NMR spectrum of the tbaoacH – MeCOCH<sub>2</sub>CO<sub>2</sub><sup>t</sup>Bu.





Figure S 25 <sup>1</sup>H NMR spectrum of the ipaoacH – MeCOCH<sub>2</sub>CO<sub>2</sub><sup>i</sup>Pr.



Figure S 26 <sup>13</sup>C NMR spectrum of the compound [Pd(ipaoac)<sub>2</sub>] (2).



Figure S 27 <sup>13</sup>C NMR spectrum of the ipaoacH – MeCOCH<sub>2</sub>CO<sub>2</sub><sup>i</sup>Pr.



Figure S 28 <sup>1</sup>H NMR spectrum of the compound [Pd(eaoac)<sub>2</sub>] (3).



Figure S 29 <sup>1</sup>H NMR spectrum of the compound eaoacH – MeCOCH<sub>2</sub>CO<sub>2</sub>Et.



Figure S 30  $^{13}$ C NMR spectrum of the compound [Pd(eaoac)<sub>2</sub>] (3).



Figure S 31 <sup>13</sup>C NMR spectrum of the eaoacH – MeCOCH<sub>2</sub>CO<sub>2</sub>Et.



Figure S 32 Thermogram of [Pd(ipaoac)<sub>2</sub>] (2) (TG, DTG, DTA curves).



Figure S 33 Thermogram of [Pd(eaoac)<sub>2</sub>] (3) (TG, DTG, DTA curves).



Figure S 34 XRD analysis of the residue after thermal analysis of  $[Pd(ipaoac)_2]$  (2) and  $[Pd(eaoac)_2]$  (3).



Figure S 35 VT IR spectra in the solid state for the compound  $[Pd(tbaoac)_2]$  (1) in the temperature range 303–513 K.



**Figure S 36** EI MS spectra, where the molecular ions appeared:  $(A) - [Pd(tbaoac)_2](1)$  at the temperature 336 K,  $(B) - [Pd(ipaoac)_2](2)$  at 323 K and  $(C) - [Pd(eaoac)_2](3)$  at 336 K, and  $(D) - isotopic pattern simulation for the molecular ion <math>[Pd(tbaoac)_2]^+$ .



**Figure S 37** EI MS spectra, where the molecular ions achieved the highest relative intensity:  $(A) - [Pd(tbaoac)_2]$  (1) at the temperature 337 K,  $(B) - [Pd(ipaoac)_2]$  (2) at 330 K and  $(C) - [Pd(eaoac)_2]$  (3) at 388 K, and (D) -at 416 K.

| Fragmonts                                                                                                                   | m/z    | Re    | Relative Intensity (RI) [%] |       |       |  |
|-----------------------------------------------------------------------------------------------------------------------------|--------|-------|-----------------------------|-------|-------|--|
|                                                                                                                             | 111/ Z | 336 K | 342 K                       | 349 K | 365 K |  |
| $[CHCO]^+$                                                                                                                  | 41     | —     | 2                           | 1     | 1     |  |
| [CH <sub>2</sub> =CO] <sup>+.</sup>                                                                                         | 42     | 27    | 48                          | 4     | 4     |  |
| [CH <sub>3</sub> CO] <sup>+</sup>                                                                                           | 43     | _     | 6                           | 14    | 11    |  |
| [CH <sub>3</sub> CHO] <sup>+,</sup> /[CO <sub>2</sub> ] <sup>+,</sup>                                                       | 44     | 37    | 51                          | 100   | 100   |  |
| $[CO_2H]^+$                                                                                                                 | 45     | _     | 2                           | 11    | 7     |  |
| [HCOOH]+·                                                                                                                   | 46     | —     | 3                           | 64    | 37    |  |
| [CH <sub>3</sub> COCH] <sup>+</sup> /[(CH <sub>3</sub> ) <sub>2</sub> C=CH <sub>2</sub> ] <sup>+-</sup>                     | 56     | _     | 4                           | 1     | <1    |  |
| [CH <sub>3</sub> COCH <sub>2</sub> ] <sup>+</sup> /[ <sup>t</sup> Bu] <sup>+</sup>                                          | 57     | 8     | 8                           | 1     | 1     |  |
| [(CH <sub>3</sub> ) <sub>2</sub> CO] <sup>+.</sup> /[C <sub>4</sub> H <sub>10</sub> ] <sup>+.</sup>                         | 58     | 79    | 100                         | 1     | 1     |  |
| $[CH_3CO_2H]^{+-}$                                                                                                          | 60     | 7     | 9                           | 38    | 20    |  |
| [CH <sub>3</sub> COCH <sub>2</sub> C] <sup>+</sup> /[ <sup>1</sup> BuC] <sup>+</sup>                                        | 69     | —     | 2                           | —     | —     |  |
| [CH <sub>3</sub> COCH <sub>2</sub> CO] <sup>+</sup> /[ <sup>1</sup> BuCO] <sup>+</sup>                                      | 85     | 33    | 23                          | _     | _     |  |
| [CH <sub>3</sub> COCH <sub>2</sub> CO <sub>2</sub> H] <sup>+,</sup> /[ <sup>t</sup> BuOCHO] <sup>+</sup>                    | 102    | _     | 2                           | _     | _     |  |
| [CH <sub>3</sub> COCH <sub>2</sub> C(OH) <sub>2</sub> ] <sup>+.</sup> /[ <sup>t</sup> BuOCHOH] <sup>+.</sup>                | 103    | 21    | 33                          | _     | _     |  |
| $[Pd(CH_3COCH_2)]^+$                                                                                                        | 163    | 20    | 6                           | _     | _     |  |
| [Pd(CH <sub>3</sub> COCHCO)] <sup>+</sup>                                                                                   | 190    | 32    | 5                           | _     | _     |  |
| [Pd(CH <sub>3</sub> COCH <sub>2</sub> CO <sub>2</sub> H)] <sup>+</sup>                                                      | 208    | 64    | 7                           | _     | _     |  |
| [Pd(CH <sub>3</sub> COCH <sub>2</sub> CO <sub>2</sub> <sup>t</sup> Bu)] <sup>+</sup>                                        | 264    | 9     | 1                           | _     | _     |  |
| [Pd(CH <sub>3</sub> COCH <sub>2</sub> CO <sub>2</sub> ) <sub>2</sub> ] <sup>+</sup>                                         | 308    | 100   | 5                           | _     | _     |  |
| [Pd(CH <sub>3</sub> COCHCO <sub>2</sub> <sup>t</sup> Bu)(CH <sub>3</sub> COCH <sub>2</sub> CO <sub>2</sub> )] <sup>+.</sup> | 364    | 11    | 1                           | _     | _     |  |
| [Pd(CH <sub>3</sub> COCHCO <sub>2</sub> <sup>t</sup> Bu) <sub>2</sub> ] <sup>+-</sup>                                       | 420    | 30    | 2                           | _     | _     |  |

Table S 5 EI MS results for the complex  $[Pd(tbaoac)_2](1)$ .

| Fragmonts                                                                                       | m/z           | Re              | elative Intensity (RI) [%] |       |       |  |
|-------------------------------------------------------------------------------------------------|---------------|-----------------|----------------------------|-------|-------|--|
| Fragments                                                                                       | 111/ <i>Z</i> | 323 K 328 K 332 |                            | 332 K | 349 K |  |
| [CHCO] <sup>+</sup>                                                                             | 41            | _               | _                          | _     | —     |  |
| [CH <sub>2</sub> =CO] <sup>+.</sup>                                                             | 42            | 23              | 18                         | 22    | 30    |  |
| $[CH_3CO]^+$                                                                                    | 43            | 12              | 9                          | 17    | 9     |  |
| [CH <sub>3</sub> CHO] <sup>+-</sup> /[CO <sub>2</sub> ] <sup>+-</sup>                           | 44            | 100             | 100                        | 100   | 100   |  |
| [CO <sub>2</sub> H] <sup>+</sup>                                                                | 45            | 2               | 2                          | _     | 12    |  |
| [HCOOH]+·                                                                                       | 46            | 3               | 3                          | _     | 32    |  |
| [CH <sub>3</sub> COCH] <sup>+</sup>                                                             | 56            | 3               | 2                          | _     | _     |  |
| [CH <sub>3</sub> COCH <sub>2</sub> ] <sup>+</sup>                                               | 57            | 2               | 2                          | _     | _     |  |
| [(CH <sub>3</sub> ) <sub>2</sub> CO] <sup>+.</sup>                                              | 58            | 7               | 5                          | _     | 9     |  |
| [CH <sub>3</sub> CO <sub>2</sub> H] <sup>+.</sup>                                               | 60            | 4               | 22                         | _     | 9     |  |
| [CH <sub>3</sub> COCH <sub>2</sub> C] <sup>+</sup>                                              | 69            | 15              | 12                         | _     | 45    |  |
| [CH <sub>3</sub> COCH <sub>2</sub> CO] <sup>+</sup>                                             | 85            | 33              | 82                         | 24    | 19    |  |
| [ <sup>i</sup> PrCO <sub>2</sub> ] <sup>+</sup>                                                 | 87            | 9               | 23                         | _     | _     |  |
| [CH <sub>3</sub> COCH <sub>2</sub> CO <sub>2</sub> H] <sup>+-</sup>                             | 102           | 23              | 75                         | _     | 15    |  |
| [CH <sub>3</sub> COCH <sub>2</sub> C(OH) <sub>2</sub> ] <sup>+-</sup>                           | 103           | 9               | 37                         | _     | _     |  |
| [CH <sub>3</sub> COCH <sub>2</sub> CO <sub>2</sub> <sup>i</sup> Pr] <sup>+.</sup>               | 144           | 4               | 22                         | _     | _     |  |
| [Pd(CH <sub>3</sub> COCH <sub>2</sub> )] <sup>+</sup>                                           | 163           | 4               | 29                         | _     | _     |  |
| [Pd(CH <sub>3</sub> COCHCO)] <sup>+</sup>                                                       | 190           | 2               | 43                         | _     | _     |  |
| [Pd(CH <sub>3</sub> COCH <sub>2</sub> CO <sub>2</sub> <sup>i</sup> Pr)] <sup>+</sup>            | 250           | 4               | 35                         | _     | _     |  |
| [Pd(CH <sub>3</sub> COCHCO <sub>2</sub> <sup>i</sup> Pr)(CH <sub>3</sub> COCHCO)] <sup>+-</sup> | 333           | —               | 5                          | _     | _     |  |
| [Pd(CH <sub>3</sub> COCHCO <sub>2</sub> <sup>i</sup> Pr) <sub>2</sub> ] <sup>+.</sup>           | 392           | 7               | 49                         | 98    | _     |  |

Table S 6 EI MS results for the complex  $[Pd(ipaoac)_2]$  (2).

| Exagmonts                                                                                                  | m/a    | Relative Intensity (RI) [%] |       |       |       |       |
|------------------------------------------------------------------------------------------------------------|--------|-----------------------------|-------|-------|-------|-------|
| Fragments                                                                                                  | 111/ Z | 336 K                       | 339 K | 375 K | 419 K | 422 K |
| $[CHCO]^+$                                                                                                 | 41     | _                           | 4     | —     | —     | —     |
| [CH <sub>2</sub> CO] <sup>+-</sup>                                                                         | 42     | 13                          | 24    | _     | 3     | _     |
| $[CH_3CO]^+$                                                                                               | 43     | 12                          | 13    | 12    | 16    | 14    |
| [CH <sub>3</sub> CHO] <sup>+.</sup> /[CO <sub>2</sub> ] <sup>+.</sup>                                      | 44     | 100                         | 100   | 100   | 100   | 100   |
| $[CO_2H]^+$                                                                                                | 45     | 19                          | 64    | —     | 4     | 6     |
| [HCOOH]+·                                                                                                  | 46     | 12                          | 16    | 6     | 6     | 5     |
| [CH <sub>3</sub> COCH] <sup>+</sup>                                                                        | 56     | 4                           | 8     | 5     | 4     | _     |
| $[CH_3COCH_2]^+$                                                                                           | 57     | _                           | _     | _     | 4     | _     |
| [(CH <sub>3</sub> ) <sub>2</sub> CO] <sup>+.</sup>                                                         | 58     | 7                           | 9     | _     | _     | _     |
| [CH <sub>3</sub> CO <sub>2</sub> H] <sup>+-</sup>                                                          | 60     | _                           | 8     | _     | 7     | 8     |
| [CH <sub>3</sub> COCH <sub>2</sub> C] <sup>+</sup>                                                         | 69     | 27                          | 25    | 27    | 22    | 18    |
| [CH <sub>3</sub> COCH <sub>2</sub> CO] <sup>+</sup>                                                        | 85     | 37                          | 34    | 36    | 32    | 24    |
| [CH <sub>3</sub> COCH <sub>2</sub> CO <sub>2</sub> H] <sup>+,</sup> /[OCHCO <sub>2</sub> Et] <sup>+,</sup> | 102    | 6                           | 6     | 5     | 6     | _     |
| [CH <sub>3</sub> COCH <sub>2</sub> CO <sub>2</sub> Et] <sup>+-</sup>                                       | 130    | 13                          | 14    | 12    | 13    | 9     |
| [Pd(CH <sub>3</sub> COCH <sub>2</sub> )] <sup>+</sup>                                                      | 163    | 21                          | 19    | 29    | 20    | _     |
| [Pd(CH <sub>3</sub> COCHCO)] <sup>+</sup>                                                                  | 190    | 22                          | 22    | 32    | 23    | _     |
| [Pd(CH <sub>3</sub> COCHCOOEt)] <sup>+</sup>                                                               | 235    | 27                          | 29    | 40    | 30    | _     |
| [Pd(CH <sub>3</sub> COCHCO <sub>2</sub> Et)(CH <sub>3</sub> COCHCO)] <sup>+-</sup>                         | 319    | 4                           | 5     | 7     | 7     | _     |
| [Pd(CH <sub>3</sub> COCHCO <sub>2</sub> Et) <sub>2</sub> ] <sup>+.</sup>                                   | 364    | 43                          | 58    | 66    | 57    | _     |

Table S 7 EI MS results for the complex  $[Pd(eaoac)_2]$  (3).



**Figure S 38** Infrared spectrum for the compound  $[Pd(ipaoac)_2]$  (2) after sublimation (blue) at 353 K (p =  $10^{-2}$  mbar).



**Figure S 39** Infrared spectra for the compound  $[Pd(eaoac)_2]$  (3) before (black) and after sublimation (blue) at 353 K (p =  $10^{-2}$  mbar).



**Figure S 40** Examined scan areas' EDX spectra (20 keV) for the  $[Pd(tbaoac)_2]$  (1) layer deposited on a Si(111) substrate (Mag = 200x).



**Figure S 41** Examined scan areas' EDX spectra (8 keV) for the  $[Pd(ipaoac)_2]$  (2) layer deposited on a Si(111) substrate (Mag = 200x).



**Figure S 42** Examined scan areas' EDX spectra (20 keV) for the  $[Pd(ipaoac)_2]$  (2) layer deposited on a Si(111) substrate (Mag = 200x).



Figure S 43 Examined scan areas' EDX spectra (8 keV) for the  $[Pd(eaoac)_2]$  (3) layer deposited on a Si(111) substrate (Mag = 200x).



**Figure S 44** Examined scan areas' EDX spectra (20 keV) for the  $[Pd(eaoac)_2]$  (3) layer deposited on a Si(111) substrate (Mag = 200x).