## Supporting Information

## Aluminum intercalation behaviours of {[Fe(Tp)(CN)<sub>3</sub>]<sub>2</sub>[M(H<sub>2</sub>O)<sub>2</sub>} cyanido-bridged chain compounds in ionic liquid electrolyte

Na Li,<sup>a,b</sup> Yanling Li,<sup>a</sup> Hans Jurgen von Bardeleben,<sup>d</sup> Damien Dambournet<sup>\*ac</sup> and Rodrigue Lescouëzec<sup>\*b</sup>

a. Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nano-Systèmes Interfaciaux, PHENIX, F-75005 Paris, France.

b. Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, ERMMES, F-75005 Paris, France.

c. Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens, France.

d. Sorbonne Université, CNRS, Institut des Nanosciences de Paris, UMR 7588, F-75005 Paris, France.

|                                                                                |        | Element percentage (%) |      |       |
|--------------------------------------------------------------------------------|--------|------------------------|------|-------|
|                                                                                |        | С                      | Η    | N     |
| ${Fe(Tp)(CN)_3}_2{Ni(H_2O)_2} \cdot 3.3H_2O \cdot 0.4CH_3OH$                   | Calcd. | 34.04                  | 3.77 | 29.29 |
|                                                                                | Expt.  | 34.08                  | 3.39 | 29.16 |
| ${Fe(Tp)(CN)_{3}}_{2}{Co(H_{2}O)_{2}} \cdot 3H_{2}O \cdot 0.4CH_{3}OH$         | Calcd. | 34.24                  | 3.72 | 29.46 |
|                                                                                | Expt.  | 34.24                  | 3.32 | 29.32 |
| {Fe(Tp)(CN)₃}₂{Cu(DMF) }· 0.9DMF· 1.2H₂O                                       | Calcd. | 38.86                  | 3.92 | 30.37 |
|                                                                                | Expt.  | 38.86                  | 3.50 | 30.21 |
| {Fe(Tp)(CN)₃}₄ {Mn(H₂O)₂ Mn}· 1.2DMF· 1.8H₂O                                   | Calcd. | 37.38                  | 3.86 | 30.32 |
|                                                                                | Expt.  | 37.46                  | 3.46 | 30.17 |
| {Fe(Tp)(CN) <sub>3</sub> } <sub>4</sub> {Zn(H <sub>2</sub> O) <sub>2</sub> Zn} | Calcd. | 37.09                  | 2.85 | 32.44 |
|                                                                                | Expt.  | 37.18                  | 2.51 | 31.89 |

## Table S1 Elemental analysis



Fig. S1. EDS results for Fe-Ni product.



Fig. S2. EDS results for Fe-Co product.



Fig. S3. EDS results for Fe-Mn product.



Fig. S4. EDS results for Fe-Cu product.



Fig. S5. EDS results for Fe-Zn product.



**Fig. S6.** Enlarged fragments of XRD patterns (a) Fe-Ni and Fe-Co, (b) Fe-Mn and Fe-Zn, (c) Fe-Cu.



Fig. S7. IR spectra of compounds before and after vacuum heating (noted as VH) at 100 °C.



Fig. S8. TGA of Fe-Co and vacuum heated Fe-Co samples at  $2^{\circ}$ C/min under N<sub>2</sub> in the temperature range 2-600°C.



**Fig. S9.** Fe-Ni product: (a) Open Circuit Voltage (OCV); (b) Aggregate and independent curves of CVs with different delay times.



**Fig.S10.** Fe-Mn product: (a) Open Circuit Voltage (OCV); (b) Aggregate and independent curves of CVs with different delay times.



**Fig.S11.** Fe-Cu product: (a) Open Circuit Voltage (OCV); (b) Aggregate and independent curves of CVs with different delay times.