ARTICLE - Supplementary Material

Supplementary Material

PbV₂O₆ under compression: Near zero-linear compressibility and pressure-induced change in vanadium coordination

Josu Sánchez Martín, ** Julio Pellicer-Porres, * Robin Turnbull, * Daniel Díaz-Anichtchenko, * Simone Anzellini, * Akun Liang, *, b Catalin Popescu, ^c Marco Bettinelli, * Plácida Rodríguez-Hernández, * Alfonso Muñoz * and Daniel Errandonea *

- a. Departamento de Física Aplicada-ICMUV, Universidad de Valencia, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain. *E-mail: Josu.Sanchez@uv.es
- b. Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, EH9 3FD Edinburgh, United Kingdom
- c. CELLS-ALBA Synchrotron Light Facility, Cerdanyola del Vallès, 08290 Barcelona, Spain
- d. Laboratorio Materiali Luminescenti, Dipartimento di Biotecnologie, Università di Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona, Italy
- e. Departamento de Física, MALTA-Consolider Team, Instituto de Materiales y Nanotecnología, Universidad de La Laguna, San Cristóbal de La Laguna, E-38200 Tenerife, Spain

Table S1. Raman modes, wavenumbers and pressure coefficients corresponding to the active Raman modes at ambient conditions for PbV₂O₆. ω_0 is expressed in cm⁻¹, and P in GPa. Pressure coefficients in italics mark the assignation of this value from another close mode. The DFT-calculated ω_0 has a related uncertainty of ±5%.

	Experimental		DFT	
Mode	ω_0	δω/ δΡ	ω_0	θω/θ Ρ
B_{3g}^1	33(2)	3.0(3)	36	3.3(1)
B_{1g}^1	38(2)	1.8(3)	37	3.6(1)
A_g^1	44(2)	1.3(1)	42	1.4(1)
A_g^2	49(3)	2.7(1)	45	4.1(1)
B_{2g}^1	47(3)	1.8(1)	58	1.9(1)
B_{2g}^2	59(4)	3.1(4)	65	6.7(2)
A_g^3	78(2)	15.2(3)	75	10.6(1)
B^2_{1g}	94(4)	-	94	6.4(1)
A_g^4	103(2)	10.5(5)	98	8.6(2)
B_{3g}^2	113(3)	5.0(1)	100	5.5(1)
B_{2g}^3	108(4)	3.3(1)	108	2.7(1)
B_{2g}^4	129(3)	4.1(2)	119	5.6(1)
A ⁵ _g	142(4)	7.6(2)	131	6.0(1)
B_{2g}^5	146(3)	3.3(1)	132	4.0(1)
B_{3g}^3	173(3)	2.7(1)	163	2.3(1)
B_{1g}^3	177(2)	2.8(1)	166	2.7(1)
B_{2g}^6	183(4)	3.1(2)	176	5.3(1)
A _g ⁶	186(3)	3.5(1)	183	5.0(1)
A_g^7	222(2)	3.5(1)	212	3.9(1)
B_{2g}^7	232(4)	-	229	3.5(1)
B^4_{1g}	248(2)	1.2(6)	232	3.7(2)
B_{3g}^4	260(3)	0.8(4)	242	0.6(2)
B_{3g}^5	253(4)	2.7(2)	249	2.4(1)
A_g^8	270(2)	2.5(1)	258	6.7(1)
B_{1g}^5	253(4)	2.7(2)	258	2.3(1)
B_{2g}^{8}	238(3)	-	261	5.0(1)
B_{1g}^6	280(3)	3.5(4)	270	3.2(1)
B ⁶ _{3g}	287(3)	3.6(1)	273	3.5(1)
$B_{3\mathrm{g}}^7$	298(3)	6.1(1)	277	4.7(1)
B_{1g}^7	300(4)	6.7(2)	279	4.7(1)
A ⁹ _g	323(2)	2.8(2)	300	4.9(1)
B_{2g}^9	334(4)	2.3(7)	307	7.8(3)
Ag10	340(2)	1.6(2)	320	1.5(2)

Dalton Trans., 2024, 00, 1-3

This journal is © The Royal Society of Chemistry 2024

10	1	1	1	1
B_{2g}^{10}	351(3)	1.9(5)	322	1.6(1)
B_{2g}^{11}	370(3)	7.6(2)	372	3.8(1)
A_g^{11}	397(2)	3.0(3)	382	3.0(1)
A _g ¹²	435(4)	5.5(3)	430	3.4(1)
B ¹² _{2g}	440(3)	4.2(5)	431	3.5(1)
$B^8_{1\mathrm{g}}$	485(2)	10.0(1)	456	10.7(1)
B^8_{3g}	485(2)	10.0(1)	457	10.6(1)
A_g^{13}	447(2)	2.1(1)	476	1.3(1)
B_{2g}^{13}	452(3)	1.9(3)	477	1.2(1)
A_g^{14}	483(5)	1.3(5)	511	1.3(1)
B_{2g}^{14}	523(3)	1.5(6)	526	1.3(1)
B^9_{3g}	678(2)	8.0(1)	668	5.7(1)
B^9_{1g}	678(2)	8.0(1)	668	5.7(1)
A_g^{15}	758(3)	8.3(1)	777	5.6(1)
B_{2g}^{15}	797(2)	3.2(3)	780	5.9(1)
A_g^{16}	817(3)	3.2(5)	816	2.9(1)
B_{2g}^{16}	855(2)	5.2(1)	873	2.4(1)
A _g ¹⁷	877(3)	3.0(3)	906	1.0(1)
B ¹⁷ _{2g}	890(2)	1.5(1)	917	0.9(2)
A _g ¹⁸	956(2)	0.6(4)	984	0.6(4)
B ¹⁸ _{2g}	992(2)	1.5(2)	1030	-0.2(1)

Table S2. Infrared modes, wavenumbers and pressure coefficients corresponding to the DFT calculated active IR modes at ambient conditions for PbV₂O₆. ω_0 is expressed in cm⁻¹ (uncertainty of ±5%) and *P* in GPa.

Mode	$\boldsymbol{\omega}_0$	δω/ δΡ	Mode	ω_0	∂ω/ ∂Ρ
B ² _{1u}	49	2.6(1)	B_{3u}^9	292	2.2(4)
B_{3u}^2	50	6.9(1)	B_{3u}^{10}	339	2.1(1)
B _{2u} ²	51	5.0(1)	B ¹⁰ _{1u}	350	4.0(1)
B_{1u}^3	63	10.4(1)	B_{1u}^{11}	367	2.9(1)
B_{3u}^3	73	1.7(1)	B_{3u}^{11}	376	4.4(1)
B _{1u} ⁴	79	3.6(1)	B ¹² _{1u}	414	2.2(1)
B_{3u}^4	93	2.3(1)	B_{3u}^{12}	421	1.9(1)
B_{3u}^5	118	10.3(1)	B_{2u}^8	450	7.1(1)
B ⁵ _{1u}	140	4.6(1)	B_{3u}^{13}	485	1.9(1)
B _{1u} ⁶	152	6.7(1)	B_{1u}^{13}	486	1.8(1)
B ³ _{2u}	167	2.4(1)	B_{3u}^{14}	515	1.0(2)
B_{3u}^6	210	4.6(1)	B ¹⁴ _{1u}	525	0.8(3)
B _{2u} ⁴	219	1.8(1)	B _{2u} ⁹	661	3.9(1)
B_{3u}^7	220	1.9(1)	B_{1u}^{15}	754	4.7(1)
B ⁷ _{1u}	228	1.5(1)	B_{3u}^{15}	766	2.7(1)
B ⁵ _{2u}	238	0.9(2)	B_{3u}^{16}	833	2.8(1)
B ⁸ _{1u}	260	2.4(1)	B ¹⁶ _{1u}	869	1.7(1)
B ⁸ _{3u}	262	2.2(3)	B ¹⁷ _{3u}	886	1.0(1)
B _{2u} ⁶	263	2.5(1)	B ¹⁷ _{1u}	902	0.9(1)
B ⁷ _{2u}	278	3.2(1)	B ¹⁸ _{1u}	984	1.2(1)
B ⁹ _{1u}	290	1.4(1)	B ¹⁸ _{3u}	1000	0.7(1)

Figure S1. Normalized pressure (F) vs the Euler strain (f) for all data (dots) used to fit the EOS in Table 1. The Birch-Murnaghan fits are represented with solid lines for 3^{rd} order and dashed lines for 2^{nd} order.

Figure S2. Contour plot of the calculated electron-localization function of PbV_2O_6 at 0 and 15 GPa. The region highlighted with a yellow framework shows the formation of an additional V-O bond.