Supporting Information for

# Lysosome-targeted Cyclometalated Ir(III) Complexes as Photosensitizer/Photoredox Catalysis for Cancer Therapy

Yu Chen,<sup>a</sup> Chao Liang,<sup>a,</sup> Manchang Kou,<sup>b</sup> Xiaoliang Tang,<sup>\*b</sup> Jiaxi Ru.<sup>\*a</sup>

<sup>a</sup> Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 325035, P. R. China

<sup>b</sup>MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China

\*Corresponding author: E-mail address: <u>rujiaxi@wmu.edu.cn</u>. (Jiaxi Ru) and <u>tangxiaol@lzu.edu.cn</u>. (Xiaoliang Tang)

# Contents

| Experimental section                          |
|-----------------------------------------------|
| Materials and Instrumentation                 |
| Phosphorescence quantum yield and lifetimes   |
| Lipophilicity Measurement 4                   |
| Cell lines and culture conditions             |
| Cellular uptake                               |
| Intracellular localization                    |
| ICP-MS assays 6                               |
| pH-dependent emission in 4T1 cells            |
| Calcein AM /propidium iodide double staining7 |
| Annexin V-FITC/PI assay7                      |
| Cellular ROS detection7                       |
| Acridine Orange (AO) staining                 |
| Detection of cathepsin B release              |
| JC-1 staining                                 |
| Cytotoxicity assay9                           |
| Supporting figures                            |
| Supporting tables                             |

## **Experimental section**

## **Materials and Instrumentation**

Materials. All reagents and solvents were obtained commercially and used without further purification unless otherwise noted. DMSO, PBS, Acridine Orange (AO) were purchased from Solarbio (China). 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), Lyso-Tracker Green (LTG), Calcein AM (Ca-AM), JC-1 were acquired from Beyotime (China). MitoTracker<sup>™</sup> Red FM (MTR) were obtained from Thermo Fisher. Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), Nigericin sodium salt and 5-(2,2-dimethyl-1,3-propoxycyclo-phosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO) were sourced from MCE (USA). β-NADH, propidium iodide (PI) were bought from aladdin(China). Cytochrome c from bovine, NaN3 and 5,5-dimethyl-1pyrroline-N-oxide (DMPO) were sourced from Macklin (China). 2,2,6,6tetramethylpiperidine (TEMP) were sourced from Bidepharm. Annexin V-FITC/PI kit were bought from Uelandy. Caspase-3/7 activity kit was purchased from Promega (USA). 9,10-Anthracenediyl-bis(methylene)dimalonic acid (ABDA) was purchased from Sigma-Aldrich (USA). Ru[(bpy)<sub>3</sub>]Cl<sub>2</sub> was obtained from 9dingchem (China). CellTiter 96 AQueous One Solution Cell Proliferation Assay was purchased from Promega (USA). Magic Red MR-(RR)<sub>2</sub> was purchased from Immunochemistry Tech (USA). All the compounds tested were dissolved in bio-grade DMSO prior to the experiments.

*Caution!* Sodium azide (NaN<sub>3</sub>) is a highly toxic and potentially explosive substance. It poses significant risks to aquatic life and can have chronic effects. It should be used in minimal quantities to ensure safety.

<u>Measurements.</u><sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded on a JEOL JNM-ECS-400 (400 MHz) spectrometers and referenced to the solvent signals. Mass spectra (ESI) were performed on Bruker Daltonics Esquire6000 mass spectrometers. UV-vis absorption spectra were conducted on a UV-3210PC spectrophotometer. EPR spectra were recorded on a Bruker EMXnano spectrometer. The cell viability assay was recorded using a SpectraMax 190 microplate reader (Molecular Devices). Confocal images were collected by Leica *Stellaris 5* confocal microscope and analyzed using the Leica Confocal Software. *In vivo* imaging were acquired with an IVIS spectrum (Perkin Elmer).

#### Phosphorescence quantum yield and lifetimes

The phosphorescence lifetime was determined on an Edinburgh FLS920 timecorrelated pulsed singlephoton-counting instrument. Phosphorescence quantum yields at room temperature were measured by the optically dilute method with an aqueous solution of  $[Ru(bpy)_3]Cl_2$  ( $\Phi_{em} = 0.028$ ) as the standard solution and by using the equation

$$\Phi_{\rm u} = \Phi_{\rm s} \frac{D_u A_s n_u^2}{D_s A_u n_s^2}$$

where  $\Phi$  is the quantum yield, D is the integrated area of the emission spectrum, A is the absorbance at the excitation wavelength, n is the refractive index of the solution, and the subscripts u and s refer to the unknown and the standard, respectively.

#### Lipophilicity Measurement

Take the same volume of n-octanol and water (20 mL), in a constant temperature oscillator and shake for 24 h, so that the two phases can be saturated with each other. The mixture was allowed to stand until it naturally separated into two distinct layers. Then, the two-phase distribution is carried out. The **IrL** were added to a mixture of 2 mL water-saturated n-octanol and 2 mL n-octanol saturated water to reach final concentration of 10  $\mu$ M. The solution was mixed and vibrated in a constant temperature oscillator overnight. After stationary, the two-phase solutions were dispersed, and **IrL** was quantified by the absorbance of the absorption wavelength at 278 nm. The calculation formula is that the concentration of log *P*<sub>o/w</sub> = complex in n-octanol phase / the concentration of complex in water phase = c (n-octanol phase) / c (water phase). All the lipophilicity measurements were performed as duplicates of triplicates and the standard deviations (SD) were calculated.

#### **Electron paramagnetic resonance (EPR)**

The EPR measurements were carried out with a Bruker EMXnano spectrometer at 298K. The capillary tubes were put into the EPR cavity, and the spectra were recorded

after irradiation at selected times. The spin trapping agent 2,2,6,6-tetramethylpiperidine (TEMP, 1.5 M) was used to detect the  ${}^{1}O_{2}$  produced by IrL (100  $\mu$ M, DMSO) in methanol under 390 nm irradiation. 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was used to verify the formation of OH• in H<sub>2</sub>O solutions containing IrL (100  $\mu$ M, DMSO) and DMPO (100 mM) under 390 nm irradiation. The instrument is set as follows: field modulation is 2.0 G, microwave power is 0.32 mW, x-band frequency is about 9.63 GHz, 25 dB microwave attenuation, time constant is 1.28 ms, scanning time is 10 seconds, conversion time is 5 ms.

NAD• radicals were captured by 5-(2,2-dimethyl-1,3-propoxycyclo-phosphoryl)-5methyl-1-pyrroline N-oxide (CYPMPO, 8 mM) in H<sub>2</sub>O/CH<sub>3</sub>OH (50/50/, v/v) solution containing IrL (500  $\mu$ M, DMSO) and NADH (10 mM, H<sub>2</sub>O) under 390 nm irradiation (10 min). The instrument is set as follows: field modulation is 2.0 G, microwave power is 5 mW, x-band frequency is about 9.63 GHz, 13 dB microwave attenuation, time constant is 1.28 ms, scanning time is 1 second, conversion time is 0.5 ms.

#### Cell lines and culture conditions

Cells were originally sourced from American Type Culture Collection (ATCC). 4T1 and EMT6 cells were grown in RPMI 1640 medium supplemented with 10% heat-inactivated fetal calf serum (FBS) and 1% penicillin/streptomycin. Cells were incubated in a humidified incubator at a constant temperature of 37°C, provided with 5% CO<sub>2</sub>.

#### Cellular uptake

4T1 cells were seeded in glass-bottomed 35 mm confocal culture dishes and incubated overnight. To determine the optimal incubation concentration, cells were treated with varying concentration (10, 20, 30, or 40  $\mu$ M) of **IrL** for 4 h. Subsequently, the cells were washed three times with PBS and immediately imaged using a Leica *Stellaris 5* confocal microscope. For the optimal incubation time, cells were treated with 30  $\mu$ M of **IrL** for different time (0.5 h, 1 h, 2 h, or 4 h). Then, the cells were washed three times with PBS and imaged by Leica *Stellaris 5* confocal microscope.

#### Intracellular localization

4T1 cells were plated in confocal culture dishes and left to incubate overnight or cell attachment. Cells were incubated with IrL (30  $\mu$ M) for 4 h, and then incubated with Lyso-Tracker Green (50 nM, 60 min) or Mito-Tracker Red (50 nM, 20 min), respectively. Afterwards, the cells were washed three times with PBS and observed by laser confocal microscopy.  $\lambda_{ex}/\lambda_{em}$ : IrL is 405 / 580 ± 20 nm, Lyso-tracker is 488 / 520 ± 20 nm, Mito-tracker is 561 / 640 ± 20 nm. EMT6 cells follow the same steps and procedures. For co-localization of IrL and LTG and MTR, cells were incubated with IrL (30  $\mu$ M) for 4 h and further stained with 50 nM MTR and LTG.

#### **ICP-MS** assays

EMT6 cells were cultured in 100 mm Petri dishes (Costar) overnight to facilitate cell attachment. Following this, the cells were exposed to IrL (30  $\mu$ M) for 4 h at 37°C in a 5% CO<sub>2</sub> atmosphere. Subsequently, the cells were washed with PBS, detached using trypsin, and counted before being divided into two equal portions. One portion was subjected to lysosome extraction as per the manufacturer's instructions provided with a lysosome extraction kit from Solaibao (Beijing, China). while the other portion underwent mitochondrial extraction using a mitochondrial extraction kit from the same manufacturer. Each cellular fraction was then treated with 60% nitric acid. Each cellular fraction underwent treatment with 60% nitric acid (HNO<sub>3</sub>) and was allowed to digest at ambient temperature for a duration of 24 h. Following this, the samples were diluted using ultrapure water to achieve a final HNO<sub>3</sub> concentration of 2%. The quantification of iridium was carried out using inductively coupled plasma mass spectrometry (ICP-MS). Duplicate measurements were taken for each cellular component, and these measurements were repeated in triplicate across two independent experiments to ensure precision. The variability in measurements was evaluated by determining the standard deviation for each set of data.

#### pH-dependent emission in 4T1 cells

4T1 cells were cultured in confocal culture dishes overnight to allow for cell attachment. Cells were incubated in IrL (30  $\mu$ M) for 4 h. After a single wash with PBS, the cells were exposed to different PBS buffer solutions at pH 5.0, 6.5, and 7.4.

Subsequently, the cells were co-incubated with Nigerian bacteriocin (20  $\mu$ M) for 10 min and immediately visualized by confocal microscopy.

#### Calcein AM /propidium iodide double staining

4T1 cells were seeded into confocal culture dishes and cultured overnight. After incubation with IrL (30  $\mu$ M) for 4 h, the cells were then co-incubated with both Ca-AM (10  $\mu$ M) and PI (5  $\mu$ M). The cells were subjected to light irradiation (390 nm, 45 mW cm<sup>-2</sup>, 20 min) or no light treatment, followed by incubation at 37°C for 15 min and direct observation by confocal microscopy (Leica *Stellaris 5*). For the NaN<sub>3</sub> group, cells were incubated with NaN<sub>3</sub> (10 mM) for 1 h prior to the addition of Ca-AM (10  $\mu$ M) and PI (5  $\mu$ M), and the subsequent treatments were the as for other groups. For Ca-AM, the excitation wavelength was set at 488 nm and the emission were collected from 500-540 nm. For PI, the excitation wavelength was set at 561 nm and the emission were collected from 600-640 nm.

#### Annexin V-FITC/PI assay

4T1 cells were seeded in confocal culture dishes and allowed to adhere overnight. 4T1 cells were treated with IrL (30  $\mu$ M) for 4 h in the dark. For light treatment, the 4T1 cells were then irradiated with an LED light source (390 nm, 45 mW  $\cdot$  cm<sup>-2</sup>) for 20 min. For the NaN<sub>3</sub> group, the cells were incubated with NaN<sub>3</sub> (10 mM) for 1 h before light treatment. The cells were washed three times with PBS. Addition of 500  $\mu$ L of annexinbinding buffer, followed by incubation with 5  $\mu$ L Annexin V-FITC and 10  $\mu$ L PI stock solution for 20 minutes at room temperature, protected from light. Images were obtained on a Leica *Stellaris* 5 confocal microscope.

### **Cellular ROS detection**

The production of intracellular ROS was detected by DCFH-DA. 4T1 cells were inoculated in confocal culture dishes overnight. After IrL (30  $\mu$ M) treatment of the cells for 4 h, the cells were washed once with PBS and the cells were further incubated with 10  $\mu$ M DCFH-DA for 20 min at 37°C in the dark. Then the cells were irradiated with a 405 nm laser (0.11%) and images were captured using a Leica *Stellaris* 5 confocal

microscope immediately after every 3 min of irradiation. The excitation/emission wavelengths used for imaging were 488/520 nm.

#### Acridine Orange (AO) staining

4T1 cells were plated into confocal dishes overnight for cell adherence. Following incubation in various concentration (15  $\mu$ M, 30  $\mu$ M, 60  $\mu$ M) of **IrL** for a duration of 4 h, the cells were subjected to irradiation using light of 390 nm (45 mW cm<sup>-2</sup>) for 15 min, or they were kept in dark conditions. Subsequently, the cells were washed thrice with PBS and incubated in 5  $\mu$ M Acridine Orange (AO) at 37°C for 15 min. Then the cells were visualized using Leica *Stellaris 5* confocal microscopy. Under the excitation of 488 nm, the fluorescence was collected at 510 ± 20 nm (green) and 625 ± 20 nm (red).

To visualize the lysosomal integrity of PDT-treated 4T1 cells more visually, the cells were treated with IrL (30  $\mu$ M) for 4 h, washed three times with PBS, and incubated with AO (5  $\mu$ M) for 15 min at 37 °C. Then, the cells were irradiated with a 405 nm laser (at 2% intensity), and the images were captured using a confocal microscope (Leica *Stellaris 5*) every 40 s of irradiation.

#### Co-culture of EMT6 cells and BHK-21 cells

EMT6 cells were seeded into confocal culture dishes with similar amount of BHK-21 cells, and incubated for 24 h. The cell mixtures were exposed to IrL (30  $\mu$ M) for 4 h and then co-stained with both Ca-AM (10  $\mu$ M) and PI (5  $\mu$ M). Then the cells were irradiated with a 405 nm laser (5%) for 5 min, and images were captured using a Leica *Stellaris* 5 confocal.  $\lambda_{ex}/\lambda_{em}$ : IrL is 405 / 580 ± 20 nm, Ca-AM is 488 / 520 ± 20 nm, PI is 561 / 620 ± 20 nm.

#### **Detection of cathepsin B release**

4T1 cells were inoculated into confocal dishes overnight for cell adhesion. Cathepsin B activity according to Magic Red<sup>®</sup> Cathepsin-B Assay Kit (Immunochemistry Tech). Cells were incubated in IrL (30  $\mu$ M) for 4 h, then irradiated at 390 nm (45 mW cm<sup>-2</sup>) for 20 min or darkened, washed three times with PBS, incubated with cathepsin B substrate for 50 min, washed twice with PBS, as observed by confocal microscopy

(Leica *Stellaris 5*).  $\lambda_{ex}/\lambda_{em}$ : IrL (red) is 405/580 nm, Cathepsin B (green) is 561/630 nm.

#### **JC-1** staining

4T1 cells were inoculated into confocal dishes overnight for cell attachment. The mitochondrial membrane potential was determined by JC-1 dye. After incubation in IrL (30  $\mu$ M) for 4 h, the cells were irradiated with 390 nm light (45 mW cm<sup>-2</sup>) for 20 minutes or dark treatment, rinsed three times with PBS, and then incubated in JC-1 (10  $\mu$ g/ml) for 20 minutes, rinsed three times with PBS, and visualized under a confocal microscope (Leica *Stellaris 5*). In the positive control group, 4T1 cells were exposed to FCCP (10  $\mu$ M) for 1 h and then incubated with JC-1 (10  $\mu$ g/ml) for 20 min.  $\lambda _{ex}/\lambda_{em}$ : J-aggregates (red fluorescence) is 561/585 nm, J-Monomer (green fluorescence) is 488/529 nm.

#### Caspase-3/7 activity assay

Caspase-3/7 activity was measured using the Caspase-Glo® Assay kit (Promega, USA) according to the manufacturer's instructions. 4T1 cells were cultured in 96-well plates and treated with IrL (10  $\mu$ M) for 4 h at 37°C in the dark. For light treatment, the 4T1 cells were then irradiated with an LED light source (390 nm, 45 mW·cm<sup>-2</sup>) for 20 min followed by recovery for 0.5 h. 100  $\mu$ L Caspase-Glo® 3/7 reagent was added to each well containing 100  $\mu$ L culture media. The mixture was incubated at room temperature for 1 h and then the luminescence was measured using a microplate reader (Varioskan LUX, Thermo Fisher Scientific, USA).

### Cytotoxicity assay

The cytotoxicity of **IrL** were assessed in 4T1 cells and EMT6 cells using MTS assays. For dark cell viability of **IrL**, cells were seeded in 96-well plates at a density of  $1 \times 10^4$  cells/well and allowed to grow for 24 h. **IrL** were subsequently added to the wells at different concentrations (0, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 20, 30, 40, 50, 75, 125, 200  $\mu$ M), respectively. After 48 h incubation, 10  $\mu$ L MTS stock solution (CellTiter 96 AQueous One Solution Cell Proliferation Assay) was added to each well for another 3 h under the same conditions. Then the absorbance at 500 nm was measured by a SpectraMax 190 Microplate Multimode Reader.

For phototoxicity, cells were incubated with different concentrations of IrL for 4 h. Cells were then irradiated with 390 nm light (45 mW cm<sup>-2</sup>) for 30 min and incubated for another 41 h. After adding 10  $\mu$ L of MTS solution, the cells were incubated for another 3 h. The absorbance at 500 nm was measured using SpectraMax 190 microplate reader.

#### Hypoxic cytotoxicity assay

For dark toxicity and phototoxicity tests under hypoxic conditions of IrL, cells were inoculated at  $1 \times 10^4$  cells per well into 96-well plates for 24 h at a constant temperature of 37°C providing 5% CO<sub>2</sub>, 21% O<sub>2</sub> and 95% air, IrL were subsequently added to the wells at different concentrations (0, 0.125, 0.25, 0.5, 1, 2.5, 5, 20, 30, 75  $\mu$ M), respectively. For phototoxicity under hypoxic conditions of IrL, after 4 h, the cells were illuminated (390 nm, 45 mW cm<sup>-2</sup>) for 30 minutes, immediately placed in an MGC microaerophilic air-producing bag (AneroPack, provides about 5 % O<sub>2</sub> and about 5 % CO<sub>2</sub>), placed in a cell incubator, and cultured for another 40 h. After adding 10  $\mu$ L of MTS solution, the cells were incubated for another 3 h at a constant temperature of 37°C providing 5% CO<sub>2</sub>, 21% O<sub>2</sub> and 95% air. The absorbance at 500 nm was measured using SpectraMax 190 microplate reader.

For dark toxicity under hypoxic conditions of IrL, 4 h after the addition of IrL (0, 0.125, 0.25, 0.5, 1, 2.5, 5, 20, 30, 75  $\mu$ M), the cells were immediately placed in an MGC microaerophilic air-producing bag (AneroPack, provides about 5 % O<sub>2</sub> and about 5 % CO<sub>2</sub>) and cultured for another 40 h. After adding 10  $\mu$ L of MTS solution, the cells were incubated for another 3 h at a constant temperature of 37°C providing 5% CO<sub>2</sub>, 21% O<sub>2</sub> and 95% air. The absorbance at 500 nm was measured using SpectraMax 190 microplate reader.









IrLH Scheme S1. Synthetic route of IrL.

# **Supporting figures**



Fig. S1 <sup>1</sup>H NMR Spectrum of L in DMSO-*d*<sub>6</sub>.



Fig. S2 <sup>13</sup>C NMR Spectrum of L in DMSO-*d*<sub>6</sub>.



Fig. S3 ESI mass spectrum of L.



Fig. S4 <sup>1</sup>H NMR Spectrum of IrL in DMSO- $d_6$ .



Fig. S5 <sup>13</sup>C NMR Spectrum of IrL in DMSO-d<sub>6</sub>.



Fig. S6 ESI mass spectrum of IrL.



**Fig. S7** ESI mass spectrum of **IrL** (The original magnification was in a range from 800 to 825).



**Fig. S8** UV-vis absorption (left) and emission (right) spectra of **IrL** and [Ru(bpy)<sub>3</sub>]Cl<sub>2</sub> in DI water. Each experiment was repeated three times.



Fig. S9 Phosphorescence lifetime of IrL.



**Fig. S10** Lipophilicity measurement. (A) Partition between the octanol and water phases of **IrL**. Each experiment was repeated three times. (B) Standard curves of **IrL** and fitted (C) using linear fit in Origin 8.



Fig. S11 Optimized structure of IrL and IrLH in the ground state with DFT method at the B3LYP level.



**Fig. S12** Theoretical UV–vis absorption spectra of **IrL** (A) and **IrLH** (B). Blue vertical lines correspond to calculated electronic transitions whereby the height refers to the oscillator strength of the respective transition. (C) The comparison of calculated UV–vis absorption spectra between **IrL** and **IrLH**.



**Fig. S13** (A) EPR signals of  ${}^{1}O_{2}$  generated by **IrL** and trapped by TEMP at different times. (B) EPR signals of OH• generated by **IrL** in H<sub>2</sub>O system and trapped by DMPO at different times. light irradiation: 390 nm, 45 mW cm<sup>-2</sup>.



**Fig. S14** Rate of decay of ABDA at 378 nm under different conditions. (A) **IrL** and ABDA in H<sub>2</sub>O, light irradiation. (B) **IrL** and ABDA in H<sub>2</sub>O degassed with Ar, light irradiation. (C) **IrL** and ABDA in NaN<sub>3</sub> aqueous solution, light irradiation. (D)  $[Ru(bpy)_3]Cl_2$  and ABDA in H<sub>2</sub>O, light irradiation. Conditions:  $[IrL] = [Ru(bpy)_3]Cl_2 = 10 \ \mu$ M,  $[ABDA] = 100 \ \mu$ M. Light irradiation = LED light (390 nm, 45 mW cm<sup>-2</sup>).



Fig. S15 Optimal incubation concentration. 4T1 cells incubated with different concentration (10, 20, 30, or 40  $\mu$ M) IrL for 4 h at 37°C.



Fig. S16 Optimal incubation time. 4T1 cells incubated with IrL (30  $\mu$ M) for different time (0.5, 1, 2, or 4 h) at 37°C.



**Fig. S17** The optimal incubation concentration (A) and time (B) were analyzed using Image J software.



Fig. S18 Z-scan images of 4T1 cells after incubation with IrL (30  $\mu$ M) for 4 h. Scale bar: 50  $\mu$ m.



Fig. S19 Confocal microscopy YZ-axis cross-section of 3D reconstruction images of 4T1 cells were treated with the IrL (30  $\mu$ M) for 4 h. Scale bar: 50  $\mu$ m.



Fig. S20 Confocal microscopy XZ-axis cross-section of 3D reconstruction images of 4T1 cells were treated with the IrL (30  $\mu$ M) for 4 h. Scale bar: 50  $\mu$ m.



Fig. S21 Confocal microscopy XY-axis cross-section of 3D reconstruction images of 4T1 cells were treated with the IrL (30  $\mu$ M) for 4 h. Scale bar: 50  $\mu$ m.



Fig. S22 Line profile intensity analysis. (A) Confocal images of 4T1 cells after incubation with IrL (30  $\mu$ M) for 4 h. (B) ROI 1.(C)ROI 2.



Fig. S23 Co-localization experiments of 4T1 cells. 4T1 cells were treated with IrL (30  $\mu$ M) for 4 h, then co-stained with LTG (A, 50 nM, 20 min) or MTR (B, 50 nM, 60 min), respectively.



Fig. S24 Co-localization experiments of EMT6 cells. EMT6 cells were treated with IrL (30  $\mu$ M) for 4 h, then co-stained with LTG (50 nM, 20 min) or MTR(50 nM, 20 min), respectively.



Fig. S25 ICP-MS assays for the distribution of IrL (30  $\mu$ M) within different cellular compartments of EMT6 cells.



**Fig. S26** EPR signals of NAD• radicals generated by **IrL** and trapped by CYPMPO at different times after light irradiation (390 nm, 45 mW cm<sup>-2</sup>).



**Fig. S27** Photocatalytic oxidation of NADH. (A) Only NADH. (B) **IrL** and NADH in H<sub>2</sub>O. (C) **IrL** and NADH in H<sub>2</sub>O degassed with Ar, light irradiation. (D)  $[Ru(bpy)_3]Cl_2$  and NADH in H<sub>2</sub>O, light irradiation. (E)  $[Ru(bpy)_3]Cl_2$  and NADH in H<sub>2</sub>O, no light irradiation. (F) The absorbance change of NADH at 339 nm at various time points. (G) Rate of decay of NADH at 339 nm under different conditions. Conditions: [**IrL**] =  $[Ru(bpy)_3]Cl_2 = 10 \ \mu\text{M}$ , [NADH] = 100 \ \mu\text{M}. Light irradiation = LED light (390 nm, 45 mW cm<sup>-2</sup>).



**Fig. S28** Rate of decay of NADH at 339 nm under different conditions. (A) **IrL** and NADH in H<sub>2</sub>O, light irradiation. (B) **IrL** and NADH in H<sub>2</sub>O degassed with Ar, light irradiation. (C) [Ru(bpy)<sub>3</sub>]Cl<sub>2</sub> and NADH in H<sub>2</sub>O, light irradiation. (D)Only NADH. Conditions: [**IrL**] = [Ru(bpy)<sub>3</sub>]Cl<sub>2</sub> = 10  $\mu$ M, [NADH] = 100  $\mu$ M. Light irradiation = LED light (390 nm, 45 mW cm<sup>-2</sup>).



Fig. S29 Rate of decay of ABDA at 378 nm under different pH conditions.



**Fig. S30** Photocatalytic oxidation of NADH under acid conditions without light irradiation.



**Fig. S31** Rate of decay of NADH at 339 nm under different pH conditions. (A) The absorbance change of NADH at 339 nm at different pH conditions. (B) pH = 7.4. (C) pH = 6.5. (D) pH = 4.5. Conditions: [**IrL**] = 10  $\mu$ M, [NADH] = 100  $\mu$ M. Light irradiation = LED light (390 nm, 45 mW cm<sup>-2</sup>).



**Fig. S32 Cell viability assessment.** Dark- and photo-toxicity of 4T1 cells (A) and EMT6 cells (B) exposed to the **IrL** under hypoxia (5% oxygen) for 48 h using MTS assays.



**Fig. S33** Selectivity in killing cancer over normal cells. (A) **IrL**-mediated PDT in a EMT6/BHK-21 co-culture cell model as determined by Ca-AM/PI assay. Yellow arrows represent EMT6 cells, whereas white arrows represent BHK-21 cells. (B) Confocal images of the internalization of **IrL** by BHK-21 and EMT6 cells. The yellow outline represents EMT6 cells, whereas white outline represents BHK-21 cells. (C) Comparison of the phosphorescence intensity of **IrL** between the BHK-21 and EMT6 cells. (D) Comparison of the phosphorescence intensity of **IrL** in a EMT6/BHK-21 co-culture cell model.



Bright-field JC-1 Aggregate JC-1 Monomer Overlay

**Fig. S34** Mitochondrial membrane potential of 4T1 cells was assessed using JC-1 staining. The cells were subjected to different incubation conditions: (A) Control (untreated), (B) **IrL** (30  $\mu$ M, 4 h) incubation in the dark, (C) **IrL** (30  $\mu$ M, 4 h) incubation with light treatment, (D) FCCP (10  $\mu$ M) pretreatment for 60 minutes followed by **IrL** (30  $\mu$ M) incubation with light treatment. Then the cells were incubated with JC-1 (5  $\mu$ g/mL) at 37 °C for 20 min. Light irradiation = LED light (390 nm, 45 mW cm<sup>-2</sup>, 20 min). Scale bar: 25  $\mu$ m.



Fig. S35 Detection of apoptosis in 4T1 cells stained with Annexin V/ PI by confocal microscopy after PDT treatment with IrL (30  $\mu$ M, 4 h) under 390 nm light and dark conditions.



**Fig. S36** Detection of caspase-3/7 activity in 4T1 cells after treated with **IrL** (10  $\mu$ M, 4 h) in the absence or presence of light at the indicated concentrations. Light conditions: 390 nm (45 mW cm<sup>-2</sup>) for 20 min.



Fig. S37 Cellular ROS detection. 4T1 cells were treated with IrL (30  $\mu$ M) for 4 h at 37°C, followed by further incubated with DCFH-DA (10  $\mu$ M) for 20 min in the dark. Subsequently, the cells were irradiated with a 405 nm laser (0.11%) and images were acquired using a Leica *Stellaris* 5 confocal microscope.



**Fig. S38** AO staining under various conditions. (A) Control, (B) light treatment, (C) **IrL** (30  $\mu$ M) dark treatment, (D) **IrL** (15  $\mu$ M) with light treatment, (E) **IrL** (30  $\mu$ M) with light treatment, and (F) **IrL** (60  $\mu$ M) with light treatment. Scale bar: 25  $\mu$ m.



**Fig. S39** Real-time monitoring of lysosomal disruption using AO staining. 4T1 cells were incubated with **IrL** (30  $\mu$ M) for 4 h, followed by incubation with AO (5  $\mu$ M) for 15 min. Subsequently, the cells were irradiated with a 405 nm laser (2%) and images were acquired using a Leica *Stellaris* 5 confocal microscope.



**Fig. S40** Measurement of Cathepsin B activity under various conditions. Magic Red MR-(RR)<sub>2</sub> staining for assessing the release of cathepsin B from lysosomes in 4T1 cells caused by **IrL**-mediated PDT. 4T1 cells were treated with (A) dark treatment alone, (B) light treatment alone, (C) **IrL** (30  $\mu$ M) dark treatment, (D) **IrL** (15  $\mu$ M) with light treatment, (E) **IrL** (30  $\mu$ M) with light treatment, (F) **IrL** (60  $\mu$ M) with light treatment. Scale bar: 25  $\mu$ m.



Fig. S41 Average tumor weights of mice at 14 day post various treatments.

# **Supporting tables**

Table S1. The original data and calculated values for phosphorescence quantum yields.

| -          |                     |                         |              |              |               |          | -          |                     |
|------------|---------------------|-------------------------|--------------|--------------|---------------|----------|------------|---------------------|
| No.        | nu                  | ns                      | Au           | As           | $D_u$         | $D_s$    | $\Phi_{s}$ | $\Phi_{\mathrm{u}}$ |
| 1          | 1.344               | 1.344                   | 0.07644      | 0.03719      | 3.47E+08      | 5.10E+08 | 0.028      | 0.009               |
| 2          | 1.344               | 1.344                   | 0.08635      | 0.03629      | 3.54E+08      | 5.20E+08 | 0.028      | 0.008               |
| 3          | 1.344               | 1.344                   | 0.05486      | 0.03773      | 3.55E+08      | 5.09E+08 | 0.028      | 0.013               |
| $\Phi_u =$ | $(\Phi_{u1} + \Phi$ | $\Phi_{u2} + \Phi_{u3}$ | /3= (0.009 + | 0.008 + 0.01 | (3)/3 = 0.010 |          |            |                     |
| SD =       | 0.003               |                         |              |              |               |          |            |                     |

SD = Standard Deviation.

**Table S2**. The original data and calculated values for lipid–water distribution coefficient (log  $P_{o/w}$ ).

|     | 0 /              |         |              |                |
|-----|------------------|---------|--------------|----------------|
| No. | A <sub>278</sub> | $C_{w}$ | $P_{ m o/w}$ | $\log P_{o/w}$ |
| 1   | 0.055            | 1.141   | 16.534       | 1.218          |
| 2   | 0.065            | 1.459   | 12.710       | 1.104          |
| 3   | 0.078            | 1.872   | 9.681        | 0.986          |
|     |                  |         |              |                |

 $\log P_{o/w} = (\log P_{o/w 1} + \log P_{o/w 2} + \log P_{o/w 3})/3 = (1.218 + 1.104 + 0.986)/3 = 1.10$ SD = 0.12

SD = Standard Deviation.

Table S3. DFT optimized coordinates for IrL in the ground state.

| 1      | • /  |           | Coordinates |           |  |
|--------|------|-----------|-------------|-----------|--|
| Number | Atom | Х         | Y           | Ζ         |  |
| 1      | Ν    | -0.179845 | -0.803647   | 0.948928  |  |
| 2      | Ν    | -0.187426 | 0.927488    | -1.080418 |  |
| 3      | С    | 2.231480  | 1.023462    | -1.187111 |  |
| 4      | С    | -2.804855 | -2.702600   | -0.729824 |  |
| 5      | С    | -2.880079 | 2.613678    | 0.791397  |  |

| 6  | С | 3.431419  | 0.525774  | -0.606552 |
|----|---|-----------|-----------|-----------|
| 7  | С | 2.240379  | -0.877649 | 1.019088  |
| 8  | С | -0.258092 | 1.795499  | -2.083335 |
| 9  | Н | -1.253539 | 2.078317  | -2.408895 |
| 10 | С | 3.454727  | -0.384682 | 0.446731  |
| 11 | С | 2.177300  | -1.791474 | 2.083208  |
| 12 | Н | 3.096806  | -2.168343 | 2.518987  |
| 13 | С | 0.941185  | -2.186629 | 2.548966  |
| 14 | Н | 0.845622  | -2.889807 | 3.368816  |
| 15 | С | -3.902584 | -0.637711 | 2.178327  |
| 16 | Н | -3.692048 | 0.333293  | 2.619094  |
| 17 | С | -3.529804 | -2.305497 | 0.482360  |
| 18 | С | 1.031441  | -0.401212 | 0.469615  |
| 19 | С | -0.218427 | -1.672261 | 1.958207  |
| 20 | Н | -1.205333 | -1.956609 | 2.303526  |
| 21 | С | 1.027241  | 0.537796  | -0.621458 |
| 22 | С | 2.133020  | 1.935942  | -2.254121 |
| 23 | Н | 3.026090  | 2.333043  | -2.726053 |
| 24 | С | -1.119560 | 1.969017  | 2.299068  |
| 25 | Н | -0.357448 | 1.269735  | 2.636157  |
| 26 | С | 0.885321  | 2.320644  | -2.697683 |
| 27 | Н | 0.774610  | 3.023267  | -3.515961 |
| 28 | C | -3.670713 | 2.247356  | -0.380336 |
| 29 | Ċ | -4.846936 | -1.465828 | 2.784294  |
| 30 | H | -5.358891 | -1.131500 | 3.683864  |
| 31 | C | -5.139295 | -2.718311 | 2.243359  |
| 32 | Н | -5.875323 | -3.364419 | 2.713326  |
| 33 | C | -2.203412 | -4.184701 | -2.534867 |
| 34 | Н | -2.311750 | -5.133586 | -3.051474 |
| 35 | С | -1.220936 | -2.024985 | -2.308428 |
| 36 | Н | -0.551534 | -1.234659 | -2.632610 |
| 37 | С | -1.299747 | 3.156778  | 3.007252  |
| 38 | Н | -0.678245 | 3.365608  | 3.875155  |
| 39 | С | -1.319935 | -3.216688 | -3.008103 |
| 40 | Н | -0.719481 | -3.376040 | -3.896755 |
| 41 | С | -2.270913 | 4.079417  | 2.612365  |
| 42 | Н | -2.409287 | 5.003556  | 3.166195  |
| 43 | С | -3.995774 | 0.597043  | -2.012007 |
| 44 | Н | -3.679725 | -0.366902 | -2.392653 |
| 45 | С | -5.370667 | 2.546930  | -2.066035 |
| 46 | Н | -6.166607 | 3.138831  | -2.507306 |
| 47 | С | -5.015714 | 1.314816  | -2.611998 |
| 48 | Н | -5.516123 | 0.909945  | -3.484362 |
| 49 | Ν | 4.748329  | 0.767583  | -0.883643 |
| 50 | С | 5.500110  | 0.019574  | -0.016232 |
| 51 | С | 6.957421  | 0.011659  | -0.002113 |
| 52 | С | 7.619491  | -0.732822 | 0.984177  |
| 53 | С | 7.729461  | 0.716327  | -0.937589 |
| 54 | С | 9.003318  | -0.774083 | 1.039903  |
| 55 | Н | 7.029944  | -1.281084 | 1.711918  |
| 56 | С | 9.113581  | 0.681542  | -0.889191 |
|    |   |           | -         |           |

| 57H $7.261432$ $1.300465$ $-1.724973$ $58$ C $9.760671$ $-0.064546$ $0.101292$ $59$ H $9.500192$ $-1.356154$ $1.812553$ $60$ H $9.709692$ $1.226197$ $-1.614534$ $61$ N $-1.939734$ $-1.771978$ $-1.206118$ $62$ O $11.111048$ $-0.061555$ $0.099420$ $63$ H $11.438576$ $-0.610618$ $0.827596$ $64$ H $5.103696$ $1.402016$ $-1.583529$ $65$ N $4.734165$ $-0.689180$ $0.800654$ $66$ C $-4.695184$ $3.010158$ $-0.948356$ $67$ H $-4.958386$ $3.965503$ $-0.508928$ $68$ C $-3.060636$ $3.807294$ $1.503095$ $69$ H $-3.814822$ $4.528125$ $1.197775$ $70$ C $-4.480611$ $-3.134842$ $1.094307$ $71$ H $-4.714670$ $-4.110458$ $0.676804$ $72$ C $-2.946355$ $-3.926360$ $-1.393051$ $73$ H $-3.634465$ $-4.673425$ $-1.014703$ $74$ Ir $-1.816299$ $0.024386$ $0.003757$ $75$ C $-3.216448$ $-1.028068$ $1.018837$ $76$ C $-1.902783$ $1.661982$ $1.177486$ $77$ N $-3.337058$ $1.046874$ $-0.931310$ |    |    |           |           |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|-----------|-----------|-----------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57 | Н  | 7.261432  | 1.300465  | -1.724973 |
| 59H $9.500192$ $-1.356154$ $1.812553$ 60H $9.709692$ $1.226197$ $-1.614534$ 61N $-1.939734$ $-1.771978$ $-1.206118$ 62O $11.111048$ $-0.061555$ $0.099420$ 63H $11.438576$ $-0.610618$ $0.827596$ 64H $5.103696$ $1.402016$ $-1.583529$ 65N $4.734165$ $-0.689180$ $0.800654$ 66C $-4.695184$ $3.010158$ $-0.948356$ 67H $-4.958386$ $3.965503$ $-0.508928$ 68C $-3.060636$ $3.807294$ $1.503095$ 69H $-3.814822$ $4.528125$ $1.197775$ 70C $-4.480611$ $-3.134842$ $1.094307$ 71H $-4.714670$ $-4.110458$ $0.676804$ 72C $-2.946355$ $-3.926360$ $-1.393051$ 73H $-3.634465$ $-4.673425$ $-1.014703$ 74Ir $-1.816299$ $0.024386$ $0.003757$ 75C $-3.216448$ $-1.028068$ $1.018837$ 76C $-1.902783$ $1.661982$ $1.177486$ 77N $-3.337058$ $1.046874$ $-0.931310$                                                                                                                                         | 58 | С  | 9.760671  | -0.064546 | 0.101292  |
| 60H9.7096921.226197-1.61453461N-1.939734-1.771978-1.20611862O11.111048-0.0615550.09942063H11.438576-0.6106180.82759664H5.1036961.402016-1.58352965N4.734165-0.6891800.80065466C-4.6951843.010158-0.94835667H-4.9583863.965503-0.50892868C-3.0606363.8072941.50309569H-3.8148224.5281251.19777570C-4.480611-3.1348421.09430771H-4.714670-4.1104580.67680472C-2.946355-3.926360-1.39305173H-3.634465-4.673425-1.01470374Ir-1.8162990.0243860.00375775C-3.216448-1.0280681.01883776C-1.9027831.6619821.17748677N-3.3370581.046874-0.931310                                                                                                                                                                                                                                                                                                                                                                  | 59 | Н  | 9.500192  | -1.356154 | 1.812553  |
| 61N-1.939734-1.771978-1.20611862O11.111048-0.0615550.09942063H11.438576-0.6106180.82759664H5.1036961.402016-1.58352965N4.734165-0.6891800.80065466C-4.6951843.010158-0.94835667H-4.9583863.965503-0.50892868C-3.0606363.8072941.50309569H-3.8148224.5281251.19777570C-4.480611-3.1348421.09430771H-4.714670-4.1104580.67680472C-2.946355-3.926360-1.39305173H-3.634465-4.673425-1.01470374Ir-1.8162990.0243860.00375775C-3.216448-1.0280681.01883776C-1.9027831.6619821.17748677N-3.3370581.046874-0.931310                                                                                                                                                                                                                                                                                                                                                                                              | 60 | Н  | 9.709692  | 1.226197  | -1.614534 |
| 62O11.111048-0.0615550.09942063H11.438576-0.6106180.82759664H5.1036961.402016-1.58352965N4.734165-0.6891800.80065466C-4.6951843.010158-0.94835667H-4.9583863.965503-0.50892868C-3.0606363.8072941.50309569H-3.8148224.5281251.19777570C-4.480611-3.1348421.09430771H-4.714670-4.1104580.67680472C-2.946355-3.926360-1.39305173H-3.634465-4.673425-1.01470374Ir-1.8162990.0243860.00375775C-3.216448-1.0280681.01883776C-1.9027831.6619821.17748677N-3.3370581.046874-0.931310                                                                                                                                                                                                                                                                                                                                                                                                                            | 61 | Ν  | -1.939734 | -1.771978 | -1.206118 |
| 63H11.438576-0.6106180.82759664H5.1036961.402016-1.58352965N4.734165-0.6891800.80065466C-4.6951843.010158-0.94835667H-4.9583863.965503-0.50892868C-3.0606363.8072941.50309569H-3.8148224.5281251.19777570C-4.480611-3.1348421.09430771H-4.714670-4.1104580.67680472C-2.946355-3.926360-1.39305173H-3.634465-4.673425-1.01470374Ir-1.8162990.0243860.00375775C-3.216448-1.0280681.01883776C-1.9027831.6619821.17748677N-3.3370581.046874-0.931310                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62 | О  | 11.111048 | -0.061555 | 0.099420  |
| 64H5.1036961.402016-1.58352965N4.734165-0.6891800.80065466C-4.6951843.010158-0.94835667H-4.9583863.965503-0.50892868C-3.0606363.8072941.50309569H-3.8148224.5281251.19777570C-4.480611-3.1348421.09430771H-4.714670-4.1104580.67680472C-2.946355-3.926360-1.39305173H-3.634465-4.673425-1.01470374Ir-1.8162990.0243860.00375775C-3.216448-1.0280681.01883776C-1.9027831.6619821.17748677N-3.3370581.046874-0.931310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63 | Н  | 11.438576 | -0.610618 | 0.827596  |
| 65N4.734165-0.6891800.80065466C-4.6951843.010158-0.94835667H-4.9583863.965503-0.50892868C-3.0606363.8072941.50309569H-3.8148224.5281251.19777570C-4.480611-3.1348421.09430771H-4.714670-4.1104580.67680472C-2.946355-3.926360-1.39305173H-3.634465-4.673425-1.01470374Ir-1.8162990.0243860.00375775C-3.216448-1.0280681.01883776C-1.9027831.6619821.17748677N-3.3370581.046874-0.931310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64 | Н  | 5.103696  | 1.402016  | -1.583529 |
| 66C-4.6951843.010158-0.94835667H-4.9583863.965503-0.50892868C-3.0606363.8072941.50309569H-3.8148224.5281251.19777570C-4.480611-3.1348421.09430771H-4.714670-4.1104580.67680472C-2.946355-3.926360-1.39305173H-3.634465-4.673425-1.01470374Ir-1.8162990.0243860.00375775C-3.216448-1.0280681.01883776C-1.9027831.6619821.17748677N-3.3370581.046874-0.931310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65 | Ν  | 4.734165  | -0.689180 | 0.800654  |
| 67H-4.9583863.965503-0.50892868C-3.0606363.8072941.50309569H-3.8148224.5281251.19777570C-4.480611-3.1348421.09430771H-4.714670-4.1104580.67680472C-2.946355-3.926360-1.39305173H-3.634465-4.673425-1.01470374Ir-1.8162990.0243860.00375775C-3.216448-1.0280681.01883776C-1.9027831.6619821.17748677N-3.3370581.046874-0.931310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66 | С  | -4.695184 | 3.010158  | -0.948356 |
| 68C-3.0606363.8072941.50309569H-3.8148224.5281251.19777570C-4.480611-3.1348421.09430771H-4.714670-4.1104580.67680472C-2.946355-3.926360-1.39305173H-3.634465-4.673425-1.01470374Ir-1.8162990.0243860.00375775C-3.216448-1.0280681.01883776C-1.9027831.6619821.17748677N-3.3370581.046874-0.931310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67 | Н  | -4.958386 | 3.965503  | -0.508928 |
| 69H-3.8148224.5281251.19777570C-4.480611-3.1348421.09430771H-4.714670-4.1104580.67680472C-2.946355-3.926360-1.39305173H-3.634465-4.673425-1.01470374Ir-1.8162990.0243860.00375775C-3.216448-1.0280681.01883776C-1.9027831.6619821.17748677N-3.3370581.046874-0.931310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68 | С  | -3.060636 | 3.807294  | 1.503095  |
| 70C-4.480611-3.1348421.09430771H-4.714670-4.1104580.67680472C-2.946355-3.926360-1.39305173H-3.634465-4.673425-1.01470374Ir-1.8162990.0243860.00375775C-3.216448-1.0280681.01883776C-1.9027831.6619821.17748677N-3.3370581.046874-0.931310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69 | Н  | -3.814822 | 4.528125  | 1.197775  |
| 71H-4.714670-4.1104580.67680472C-2.946355-3.926360-1.39305173H-3.634465-4.673425-1.01470374Ir-1.8162990.0243860.00375775C-3.216448-1.0280681.01883776C-1.9027831.6619821.17748677N-3.3370581.046874-0.931310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70 | С  | -4.480611 | -3.134842 | 1.094307  |
| 72C-2.946355-3.926360-1.39305173H-3.634465-4.673425-1.01470374Ir-1.8162990.0243860.00375775C-3.216448-1.0280681.01883776C-1.9027831.6619821.17748677N-3.3370581.046874-0.931310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71 | Н  | -4.714670 | -4.110458 | 0.676804  |
| 73H-3.634465-4.673425-1.01470374Ir-1.8162990.0243860.00375775C-3.216448-1.0280681.01883776C-1.9027831.6619821.17748677N-3.3370581.046874-0.931310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72 | С  | -2.946355 | -3.926360 | -1.393051 |
| 74Ir-1.8162990.0243860.00375775C-3.216448-1.0280681.01883776C-1.9027831.6619821.17748677N-3.3370581.046874-0.931310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73 | Н  | -3.634465 | -4.673425 | -1.014703 |
| 75C-3.216448-1.0280681.01883776C-1.9027831.6619821.17748677N-3.3370581.046874-0.931310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 74 | Ir | -1.816299 | 0.024386  | 0.003757  |
| 76C-1.9027831.6619821.17748677N-3.3370581.046874-0.931310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75 | С  | -3.216448 | -1.028068 | 1.018837  |
| 77 N -3.337058 1.046874 -0.931310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76 | С  | -1.902783 | 1.661982  | 1.177486  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77 | Ν  | -3.337058 | 1.046874  | -0.931310 |

# Table S4. DFT optimized coordinates for IrLH in the ground state.

| N1     | Coordinates |           | Coordinates |           |
|--------|-------------|-----------|-------------|-----------|
| Number | Atom        | Х         | Y           | Z         |
| 1      | Ν           | -0.212615 | -0.800098   | 0.974058  |
| 2      | Ν           | -0.176865 | 0.882747    | -1.087580 |
| 3      | С           | 2.236950  | 0.958926    | -1.167429 |
| 4      | С           | -2.867845 | -2.698582   | -0.674498 |
| 5      | С           | -2.864280 | 2.649415    | 0.711953  |
| 6      | С           | 3.426499  | 0.459076    | -0.560959 |
| 7      | С           | 2.202216  | -0.906210   | 1.086858  |
| 8      | С           | -0.223609 | 1.731268    | -2.108588 |
| 9      | Н           | -1.211694 | 2.016416    | -2.453731 |
| 10     | С           | 3.409069  | -0.421571   | 0.500538  |
| 11     | С           | 2.112886  | -1.794313   | 2.171226  |
| 12     | Н           | 3.002955  | -2.183948   | 2.653538  |
| 13     | С           | 0.863357  | -2.162258   | 2.621634  |
| 14     | Н           | 0.747827  | -2.844722   | 3.455630  |
| 15     | С           | -3.931807 | -0.543498   | 2.180787  |
| 16     | Н           | -3.704767 | 0.434113    | 2.597718  |
| 17     | С           | -3.587053 | -2.259434   | 0.526409  |
| 18     | С           | 1.009430  | -0.424034   | 0.505616  |
| 19     | С           | -0.278020 | -1.647255   | 2.000539  |
| 20     | Н           | -1.273841 | -1.911502   | 2.335841  |
| 21     | С           | 1.028092  | 0.493687    | -0.605601 |
| 22     | С           | 2.169795  | 1.848267    | -2.253205 |
| 23     | Н           | 3.070731  | 2.226675    | -2.724400 |
| 24     | С           | -1.124793 | 2.019845    | 2.250125  |
| 25     | Н           | -0.376191 | 1.319448    | 2.614020  |
| 26     | С           | 0.930816  | 2.234201    | -2.719520 |

| 27         H         0.836545         2.920073         -3.55348           28         C         -3.651990         2.262754         -0.455134           29         C         -4.890831         -1.1340182         2.805771           30         H         -5.397390         -0.974915         3.696194           31         C         -5.204321         -2.600145         2.295412           32         H         -5.951596         -3.221609         -2.780482           33         C         -2.235592         -4.232604         -2.444984           34         H         -2.4267944         -2.089657         -2.265101           36         H         -0.5181774         -1.321784         -2.607490           37         C         -1.293907         3.22133         -2.926015           38         H         -0.676870         3.450286         3.793654           39         C         -1.391907         -3.224242         -2.938038           40         H         -0.793544         -3.045624         -3.382151           41         C         -2.3988176         0.573962         -2.045419           43         C         -3.988276         0.5739563                                                                                       |          |         |           |           |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|-----------|-----------|-----------|
| 28         C         -3.651990         2.262754         -0.455149           29         C         -4.890831         -1.340182         2.805771           30         H         -5.397390         -0.974915         3.696194           31         C         -5.205592         -4.232609         2.780482           33         C         -2.295592         -4.232604         -2.444984           34         H         -2.425592         -4.232604         -2.444984           35         C         -1.267944         -2.089657         -2.265101           36         H         -0.581774         -1.321784         -2.607490           37         C         -1.391264         -3.294242         -2.938038           40         H         -0.739554         -3.485624         -3.822151           41         C         -2.248567         4.153217         2.4949096           42         H         -3.688276         0.573962         -2.045419           44         H         -3.689363         -2.159315         45           45         C         -3.38264         -0.00551         -2.621248           46         H         -5.49136         0.008387         -                                                                                      | 27       | Н       | 0.836545  | 2.920073  | -3.553468 |
| 29         C         -4.890831         -1.340182         2.80571           30         H         -5.307390         -0.974915         3.696194           31         C         -5.204321         -2.600145         2.295112           32         H         -5.951596         -3.221609         2.780482           33         C         -2.425500         -5.190015         -2.940828           34         H         -2.425600         -5.190015         -2.940828           35         C         -1.293907         3.22813         -2.926015           38         H         -0.676870         3.450286         3.793654           39         C         -1.391264         -3.2485624         -3.822151           41         C         -2.248567         4.153217         2.499096           42         H         -2.378444         5.093219         3.027579           43         C         -3.988276         0.5735962         -2.045419           44         H         -3.682926         -0.403462         -2.398951           45         C         -5.3948176         0.573502         -2.159315           46         H         -5.192413         3.129765         <                                                                                  | 28       | С       | -3.651990 | 2.262754  | -0.455134 |
| 30         H         -5.397390         -0.974915         3.696194           31         C         -5.204321         -2.600145         2.295412           32         H         -5.951596         -3.221609         2.780482           33         C         -2.295592         -4.325604         -2.44984           34         H         -2.423600         -5.190015         -2.940828           35         C         -1.267944         -2.089657         -2.265101           36         H         -0.676870         3.450266         .793654           39         C         -1.391264         -3.294242         -2.938038           40         H         -0.793554         -3.485624         -3.32171         2.490096           42         H         -2.348567         -4.153217         2.499096           42         H         -3.368296         -0.003462         -2.398951           43         C         -3.988276         0.573962         -2.61248           47         C         -4.994695         1.289153         -2.670461           48         H         -5.494185         0.867960         -3.35142           49         N         4.751080                                                                                               | 29       | С       | -4.890831 | -1.340182 | 2.805771  |
| 31         C         -5.951396         -3.221609         2.2780482           33         C         -2.295592         -4.232004         -2.444984           34         H         -2.429502         -4.232004         -2.444984           34         H         -2.429502         -4.232004         -2.444984           34         H         -2.429794         -2.089657         -2.265101           36         H         -0.581774         -1.321784         -2.607490           37         C         -1.293907         3.228133         2.926015           38         H         -0.676870         3.450286         3.7995654           39         C         -1.391264         -3.294242         -2.938038           40         H         -0.793554         -3.485624         -3.822151           41         C         -2.248567         4.153217         2.499906           42         H         -2.378444         5.093219         3.027579           43         C         -3.988276         0.573962         -2.045419           44         H         -3.682936         -0.403462         -2.398951           45         C         -5.336869         1.289153                                                                                        | 30       | Н       | -5.397390 | -0.974915 | 3.696194  |
| 32         H         -5.951596         -3.221609         2.780482           33         C         -2.245592         -4.232604         -2.444984           34         H         -2.423600         -5.190015         -2.940828           35         C         -1.267944         -2.089657         -2.265101           36         H         -0.581774         -1.321784         -2.607490           37         C         -1.291907         3.228133         2.926015           38         H         -0.676870         3.450286         3.793654           39         C         -1.391264         -3.294242         -2.938038           40         H         -0.793554         -3.485624         -3.822151           41         C         -2.248567         4.153217         2.499096           42         H         -2.378444         5.093219         3.027579           43         C         -5.36869         2.539563         -2.159315           46         H         -6.122213         3.129765         -2.621481           47         C         -4.994695         1.289153         -2.670461           48         H         -5.494136         0.867960 <t< td=""><td>31</td><td>С</td><td>-5.204321</td><td>-2.600145</td><td>2.295412</td></t<>   | 31       | С       | -5.204321 | -2.600145 | 2.295412  |
| 33         C         -2.295592         -4.232604         -2.444984           34         H         -2.423600         -5.190015         -2.940828           35         C         -1.267944         -2.089657         -2.265101           36         H         -0.581774         -1.321784         -2.607490           37         C         -1.293907         3.228133         2.926015           38         H         -0.676870         3.450286         3.793654           39         C         -1.391264         -3.294242         -2.938038           40         H         -0.793554         -3.485624         -3.822151           41         C         -2.248567         4.153217         2.499066           42         H         -2.378444         5.093219         3.027579           43         C         -3.988276         0.573962         -2.045419           44         H         -3.682936         -0.403462         -2.38951           45         C         -5.336869         2.359563         -2.159315           46         H         -5.12213         3.129765         -2.621248           47         C         4.9494695         1.289153 <t< td=""><td>32</td><td>Н</td><td>-5.951596</td><td>-3.221609</td><td>2.780482</td></t<>   | 32       | Н       | -5.951596 | -3.221609 | 2.780482  |
| 34         H         -2.423600         -5.190015         -2.940828           35         C         -1.267944         -2.089657         -2.265101           36         H         -0.581774         -1.321784         -2.607490           37         C         -1.293907         3.228133         2.926015           38         H         -0.676870         3.450286         3.793854           39         C         -1.391264         -3.294242         -2.938038           40         H         -0.793554         -3.485624         -3.822151           41         C         -2.248567         4.153217         2.499096           42         H         -2.378444         5.093219         3.027579           43         C         -3.988276         0.573962         -2.045419           44         H         -3.682936         -0.403462         -2.398951           45         C         -5.336869         2.539563         -2.159315           46         H         -5.494845         0.867960         -3.535142           49         N         4.751080         0.699073         -0.84835           50         C         5.540136         0.003857                                                                                               | 33       | С       | -2.295592 | -4.232604 | -2.444984 |
| 35         C         -1.267944         -2.089657         -2.265101           36         H         -0.581774         -1.321784         -2.607490           37         C         -1.293907         3.228133         2.926015           38         H         -0.676870         3.450286         3.793654           39         C         -1.391264         -3.294242         -2.938038           40         H         -0.733554         -3.485624         -3.829151           41         C         -2.248567         4.153217         2.499096           42         H         -2.378444         5.093219         3.027579           43         C         -3.988276         0.573962         -2.045419           44         H         -3.682936         -0.403462         -2.398951           45         C         -5.336869         2.539563         -2.159315           46         H         -6.122213         3.129765         -2.621248           47         C         -4.994845         0.867960         -3.535142           49         N         4.751080         0.699073         -0.845835           50         C         5.640136         0.0008345 <td< td=""><td>34</td><td>Н</td><td>-2.423600</td><td>-5.190015</td><td>-2.940828</td></td<> | 34       | Н       | -2.423600 | -5.190015 | -2.940828 |
| 36         H         -0.581774         -1.321784         -2.607490           37         C         -1.293907         3.228133         -2.92015           38         H         -0.676870         3.450286         3.793654           39         C         -1.391264         -3.294242         -2.938038           40         H         -0.793554         -3.485624         -3.822151           41         C         -2.248567         4.153217         2.499096           42         H         -3.378444         5.093219         3.027579           43         C         -3.988276         0.573962         -2.045419           44         H         -3.682936         -0.403462         -2.398951           45         C         -5.336869         2.539563         -2.67148           47         C         -4.994695         1.289153         -2.670461           48         H         -5.491485         0.867960         -3.535142           49         N         4.751080         0.699073         -0.845835           50         C         5.540136         0.003857         -0.008345           51         C         9.6981482         -0.006561         0                                                                                      | 35       | С       | -1.267944 | -2.089657 | -2.265101 |
| 37         C         -1.293907         3.228133         2.926015           38         H         -0.676870         3.450286         3.793654           39         C         -1.391264         -3.294242         -2.938038           40         H         -0.793554         -3.488624         -3.822151           41         C         -2.248567         4.153217         2.499096           42         H         -2.378444         5.093219         3.027579           43         C         -3.988276         0.573962         -2.04519           44         H         -3.682936         -0.403462         -2.398951           45         C         -5.336869         2.539563         -2.159315           46         H         -6.122213         3.129765         -2.670461           48         H         -5.494695         1.289153         -2.670461           48         H         -5.494695         1.289153         -2.670461           48         H         -5.49485         0.867960         -3.535142           49         N         4.751080         0.699073         -0.848835           50         C         5.640136         0.003857         -0.0                                                                                      | 36       | Н       | -0.581774 | -1.321784 | -2.607490 |
| 38         H         -0.676870         3.450286         3.793654           39         C         -1.391264         -3.294242         -2.938038           40         H         -0.793554         -3.485624         -3.292151           41         C         -2.248567         4.153217         2.499096           42         H         -2.378444         5.093219         3.027579           43         C         -3.988276         0.573962         -2.045419           44         H         -3.6869         2.539563         -2.159315           46         H         -6.122213         3.129765         -2.621248           47         C         -4.994695         1.289153         -2.670461           48         H         -5.491485         0.867960         -3.535142           49         N         4.751080         0.699073         -0.845835           50         C         5.540136         0.003857         -0.008345           51         C         6.981482         -0.006561         0.006282           52         C         7.6797931         -0.350280         1.176399           53         C         9.76907         -0.030476         0.0348                                                                                      | 37       | С       | -1.293907 | 3.228133  | 2.926015  |
| 39         C         -1.391264         -3.294242         -2.938038           40         H         -0.793554         -3.485624         -3.822151           41         C         -2.248567         4.153217         2.499096           42         H         -2.378444         5.093219         3.027579           43         C         -3.988276         0.573962         -2.045419           44         H         -3.682936         -0.403462         -2.398951           45         C         -5.336869         2.539563         -2.159315           46         H         -6.122213         3.129765         -2.670461           48         H         -5.494845         0.867960         -3.535142           49         N         4.751080         0.699073         -0.845835           50         C         5.540136         0.003857         -0.008345           51         C         6.981482         -0.006561         0.006282           52         C         7.708978         0.326760         -1.150608           54         C         9.060138         -0.363156         1.192789           55         H         7.145883         -0.575620         -2.                                                                                      | 38       | Н       | -0.676870 | 3.450286  | 3.793654  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39       | С       | -1.391264 | -3.294242 | -2.938038 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40       | H       | -0.793554 | -3.485624 | -3.822151 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41       | C       | -2.248567 | 4 153217  | 2 499096  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42       | Н       | -2.378444 | 5 093219  | 3 027579  |
| 15C $3.682936$ $0.003462$ $-2.398951$ 45C $-5.336869$ $2.539563$ $-2.159315$ 46H $-6.122213$ $3.129765$ $-2.621248$ 47C $-4.994695$ $1.289153$ $-2.670461$ 48H $-5.494845$ $0.867960$ $-3.535142$ 49N $4.751080$ $0.699073$ $-0.845835$ 50C $5.540136$ $0.003857$ $-0.008345$ 51C $6.981482$ $-0.006561$ $0.006282$ 52C $7.677931$ $-0.350280$ $1.176399$ 53C $7.708978$ $0.326760$ $-1.150608$ 54C $9.060138$ $-0.363156$ $1.192789$ 55H $7.145883$ $-0.579564$ $2.094978$ 56C $9.089024$ $0.315523$ $-1.137573$ 57H $7.198540$ $0.565620$ $-2.079043$ 58C $9.776097$ $-0.030476$ $0.034874$ 59H $9.588461$ $-0.620582$ $2.106364$ 60H $9.656493$ $0.560578$ $-2.029016$ 61N $-1.982479$ $-1.797113$ $-1.169507$ 62O11.118577 $-0.024075$ $-0.016657$ 63H11.487028 $-0.22633$ $0.841400$ 64H $5.102722$ $1.357344$ $-1.528542$ 65N $4.724130$ $-0.680221$ $0.812378$ 66H $5.052656$ $-1.343697$ $1.501552$ 6                                                                                                                                                                                                                                                                                                                                        | 43       | C       | -3 988276 | 0 573962  | -2 045419 |
| 111113.030300.10510212.0503145C-5.3368692.539563-2.15931546H-6.122213 $3.129765$ -2.62124847C-4.994695 $1.289153$ -2.67046148H-5.4948450.867960-3.53514249N4.7510800.699073-0.84583550C5.5401360.003857-0.00834551C6.981482-0.0065610.00628252C7.677931-0.3502801.17639953C7.7089780.326760-1.15060854C9.060138-0.3631561.19278955H7.145883-0.5795642.09497856C9.0890240.315523-1.13757357H7.1985400.565620-2.07904358C9.776097-0.0304760.03487459H9.588461-0.6205822.10636460H9.6564930.560578-2.02901661N-1.982479-1.797113-1.16950762O11.115857-0.024075-0.01665763H11.487028-0.2826330.84140064H5.1027221.357344-1.52854265N4.724130-0.6802210.81237866H5.052656-1.3436971.50155267C-3.0336763.8632701.39099170H-3.7755844.585946<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44       | н       | -3 682936 | -0 403462 | -2 398951 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45       | C II    | -5 336869 | 2 539563  | -2.550551 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45       | н       | -6 122213 | 3 129765  | -2.621248 |
| 47C47.9403 $1.23733$ $2.2010401$ 48H-5.494845 $0.867960$ -3.53514249N $4.751080$ $0.699073$ $-0.845835$ 50C $5.540136$ $0.003857$ $-0.008345$ 51C $6.981482$ $-0.006561$ $0.006282$ 52C $7.677931$ $-0.350280$ $1.176399$ 53C $7.708978$ $0.326760$ $-1.150608$ 54C $9.060138$ $-0.363156$ $1.192789$ 55H $7.145883$ $-0.579564$ $2.094978$ 56C $9.089024$ $0.315523$ $-1.137573$ 57H $7.198540$ $0.565620$ $-2.079043$ 58C $9.776097$ $-0.030476$ $0.034874$ 59H $9.588461$ $-0.620582$ $2.106364$ 60H $9.656493$ $0.560578$ $-2.029016$ 61N $-1.982479$ $-1.797113$ $-1.169507$ 62O $11.11857$ $-0.024075$ $-0.016657$ 63H $11.487028$ $-0.282633$ $0.841400$ 64H $5.102722$ $1.357344$ $-1.528542$ 65N $4.724130$ $-0.680221$ $0.812378$ 66H $5.052556$ $-1.343697$ $1.501552$ 67C $-3.033676$ $3.863270$ $1.390991$ 70H $-3.775584$ $4.585946$ $1.061312$ 71C $-4.552370$ $-3.056677$ $1.157802$ 72                                                                                                                                                                                                                                                                                                                                              | 40       | II<br>C | -4 994695 | 1 289153  | -2.621248 |
| 43         11         -5.79464.5         0.807903         -0.353142           49         N         4.751080         0.699073         -0.845835           50         C         5.540136         0.003857         -0.008345           51         C         6.981482         -0.006561         0.006282           52         C         7.677931         -0.350280         1.176399           53         C         7.708978         0.326760         -1.150608           54         C         9.060138         -0.363156         1.192789           55         H         7.145883         -0.579564         2.094978           56         C         9.089024         0.315523         -1.137573           57         H         7.198540         0.565620         -2.079043           58         C         9.776097         -0.030476         0.034874           59         H         9.588461         -0.620582         2.106364           60         H         9.656493         0.560578         -2.029016           61         N         -1.982479         -1.797113         -1.169507           62         O         11.118857         -0.024075         -0.0166                                                                                      | 47       | U<br>U  | 5 404845  | 0.867060  | 2 525142  |
| 49         N         4,71000         0.09935         -0.843833           50         C         5.540136         0.003857         -0.008345           51         C         6.981482         -0.006561         0.006282           52         C         7.677931         -0.350280         1.176399           53         C         7.708978         0.326760         -1.150608           54         C         9.060138         -0.363156         1.192789           55         H         7.145883         -0.579564         2.094978           56         C         9.089024         0.315523         -1.137573           57         H         7.198540         0.565620         -2.079043           58         C         9.76097         -0.030476         0.034874           59         H         9.588461         -0.620582         2.106364           60         H         9.656493         0.560578         -2.029016           61         N         -1.982479         -1.797113         -1.169507           62         O         11.115857         -0.024075         -0.016657           63         H         1.487028         -0.282633         0.841400 <td>40</td> <td>II<br/>N</td> <td>-5.494045</td> <td>0.600073</td> <td>-3.333142</td>    | 40       | II<br>N | -5.494045 | 0.600073  | -3.333142 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49       | N<br>C  | 4.731060  | 0.099073  | -0.043033 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50       | C<br>C  | 5.540150  | 0.003837  | -0.008343 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51       | C<br>C  | 0.981482  | -0.000301 | 0.006282  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52       | C       | 7.07/931  | -0.350280 | 1.1/0399  |
| 34C $9.060138$ $-0.363136$ $1.192789$ $55$ H $7.145883$ $-0.579564$ $2.094978$ $56$ C $9.089024$ $0.315523$ $-1.137573$ $57$ H $7.198540$ $0.565620$ $-2.079043$ $58$ C $9.776097$ $-0.030476$ $0.034874$ $59$ H $9.588461$ $-0.620582$ $2.106364$ $60$ H $9.656493$ $0.560578$ $-2.029016$ $61$ N $-1.982479$ $-1.797113$ $-1.169507$ $62$ O $11.15857$ $-0.024075$ $-0.016657$ $63$ H $11.487028$ $-0.282633$ $0.841400$ $64$ H $5.102722$ $1.357344$ $-1.528542$ $65$ N $4.724130$ $-0.680221$ $0.812378$ $66$ H $5.052656$ $-1.343697$ $1.501552$ $67$ C $-4.662510$ $3.023465$ $-1.049737$ $68$ H $-4.915991$ $3.993287$ $-0.637218$ $69$ C $-3.033676$ $3.863270$ $1.390991$ $70$ H $-3.775584$ $4.585946$ $1.061312$ $71$ C $-4.552370$ $-3.056677$ $1.157802$ $72$ H $-4.802716$ $-4.038256$ $0.764643$ $73$ C $-3.034396$ $-3.933311$ $-1.310557$ $74$ H $-3.739315$ $-4.656592$ $-0.917360$ $75$ Ir $-1.830837$ $0.026008$ $-0.002519$ $76$ C $-3.253036$ <                                                                                                                                                                                                                                                                                | 55       | C       | /./089/8  | 0.326760  | -1.150608 |
| 55         H         7.143883         -0.5/9564         2.094978           56         C         9.089024         0.315523         -1.137573           57         H         7.198540         0.565620         -2.079043           58         C         9.776097         -0.030476         0.034874           59         H         9.588461         -0.620582         2.106364           60         H         9.656493         0.560578         -2.029016           61         N         -1.982479         -1.797113         -1.169507           62         O         11.15857         -0.024075         -0.016657           63         H         11.487028         -0.282633         0.841400           64         H         5.102722         1.357344         -1.528542           65         N         4.724130         -0.680221         0.812378           66         H         5.052656         -1.343697         1.501552           67         C         -4.662510         3.023465         -1.049737           68         H         -4.915991         3.993287         -0.637218           69         C         -3.033676         3.863270         1.39099                                                                                      | 54       | U       | 9.060138  | -0.363156 | 1.192/89  |
| 56C $9.089024$ $0.315223$ $-1.137573$ $57$ H $7.198540$ $0.565620$ $-2.079043$ $58$ C $9.776097$ $-0.030476$ $0.034874$ $59$ H $9.588461$ $-0.620582$ $2.106364$ $60$ H $9.656493$ $0.560578$ $-2.029016$ $61$ N $-1.982479$ $-1.797113$ $-1.169507$ $62$ O $11.115857$ $-0.024075$ $-0.016657$ $63$ H $11.487028$ $-0.282633$ $0.841400$ $64$ H $5.102722$ $1.357344$ $-1.528542$ $65$ N $4.724130$ $-0.680221$ $0.812378$ $66$ H $5.052656$ $-1.343697$ $1.501552$ $67$ C $-4.662510$ $3.023465$ $-1.049737$ $68$ H $-4.915991$ $3.993287$ $-0.637218$ $69$ C $-3.033676$ $3.863270$ $1.390991$ $70$ H $-3.775584$ $4.585946$ $1.061312$ $71$ C $-4.552370$ $-3.056677$ $1.157802$ $72$ H $-4.802716$ $-4.038256$ $0.764643$ $73$ C $-3.034396$ $-3.933331$ $-1.310557$ $74$ H $-3.739315$ $-4.656592$ $-0.917360$ $75$ Ir $-1.830837$ $0.026608$ $-0.002519$ $76$ C $-3.253036$ $-0.975299$ $1.032313$                                                                                                                                                                                                                                                                                                                                            | 55<br>57 | H       | /.145883  | -0.5/9564 | 2.094978  |
| 57H $7.198540$ $0.365620$ $-2.079043$ $58$ C $9.776097$ $-0.030476$ $0.034874$ $59$ H $9.588461$ $-0.620582$ $2.106364$ $60$ H $9.656493$ $0.560578$ $-2.029016$ $61$ N $-1.982479$ $-1.797113$ $-1.169507$ $62$ O $11.115857$ $-0.024075$ $-0.016657$ $63$ H $11.487028$ $-0.282633$ $0.841400$ $64$ H $5.102722$ $1.357344$ $-1.528542$ $65$ N $4.724130$ $-0.680221$ $0.812378$ $66$ H $5.052656$ $-1.343697$ $1.501552$ $67$ C $-4.662510$ $3.023465$ $-1.049737$ $68$ H $-4.915991$ $3.993287$ $-0.637218$ $69$ C $-3.033676$ $3.863270$ $1.390991$ $70$ H $-3.775584$ $4.585946$ $1.061312$ $71$ C $-4.552370$ $-3.056677$ $1.157802$ $72$ H $-4.802716$ $-4.038256$ $0.764643$ $73$ C $-3.034396$ $-3.933331$ $-1.310557$ $74$ H $-3.739315$ $-4.656592$ $-0.917360$ $75$ Ir $-1.830837$ $0.026608$ $-0.002519$ $76$ C $-3.253036$ $-0.975299$ $1.032313$ $77$ N $-3.330782$ $1.044000$ $-0.972383$                                                                                                                                                                                                                                                                                                                                           | 56       | C       | 9.089024  | 0.315523  | -1.13/5/3 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57       | Н       | 7.198540  | 0.565620  | -2.079043 |
| 59         H         9.588461         -0.620582         2.106364           60         H         9.656493         0.560578         -2.029016           61         N         -1.982479         -1.797113         -1.169507           62         O         11.115857         -0.024075         -0.016657           63         H         11.487028         -0.282633         0.841400           64         H         5.102722         1.357344         -1.528542           65         N         4.724130         -0.680221         0.812378           66         H         5.052656         -1.343697         1.501552           67         C         -4.662510         3.023465         -1.049737           68         H         -4.915991         3.993287         -0.637218           69         C         -3.033676         3.863270         1.390991           70         H         -3.775584         4.585946         1.061312           71         C         -4.552370         -3.056677         1.157802           72         H         -4.802716         -4.038256         0.764643           73         C         -3.034396         -3.933331         -1.                                                                                      | 58       | C       | 9.776097  | -0.030476 | 0.034874  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59       | Н       | 9.588461  | -0.620582 | 2.106364  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60       | Н       | 9.656493  | 0.560578  | -2.029016 |
| 62O $11.115857$ $-0.024075$ $-0.016657$ $63$ H $11.487028$ $-0.282633$ $0.841400$ $64$ H $5.102722$ $1.357344$ $-1.528542$ $65$ N $4.724130$ $-0.680221$ $0.812378$ $66$ H $5.052656$ $-1.343697$ $1.501552$ $67$ C $-4.662510$ $3.023465$ $-1.049737$ $68$ H $-4.915991$ $3.993287$ $-0.637218$ $69$ C $-3.033676$ $3.863270$ $1.390991$ $70$ H $-3.775584$ $4.585946$ $1.061312$ $71$ C $-4.552370$ $-3.056677$ $1.157802$ $72$ H $-4.802716$ $-4.038256$ $0.764643$ $73$ C $-3.034396$ $-3.93331$ $-1.310557$ $74$ H $-3.739315$ $-4.656592$ $-0.917360$ $75$ Ir $-1.830837$ $0.026608$ $-0.002519$ $76$ C $-3.253036$ $-0.975299$ $1.032313$ $77$ N $-3.330782$ $1.044000$ $-0.972383$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61       | Ν       | -1.982479 | -1.797113 | -1.169507 |
| 63H $11.487028$ $-0.282633$ $0.841400$ $64$ H $5.102722$ $1.357344$ $-1.528542$ $65$ N $4.724130$ $-0.680221$ $0.812378$ $66$ H $5.052656$ $-1.343697$ $1.501552$ $67$ C $-4.662510$ $3.023465$ $-1.049737$ $68$ H $-4.915991$ $3.993287$ $-0.637218$ $69$ C $-3.033676$ $3.863270$ $1.390991$ $70$ H $-3.775584$ $4.585946$ $1.061312$ $71$ C $-4.552370$ $-3.056677$ $1.157802$ $72$ H $-4.802716$ $-4.038256$ $0.764643$ $73$ C $-3.034396$ $-3.933331$ $-1.310557$ $74$ H $-3.739315$ $-4.656592$ $-0.917360$ $75$ Ir $-1.830837$ $0.026608$ $-0.002519$ $76$ C $-3.253036$ $-0.975299$ $1.032313$ $77$ N $-3.330782$ $1.044000$ $-0.972383$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 62       | 0       | 11.115857 | -0.024075 | -0.016657 |
| 64H $5.102722$ $1.357344$ $-1.528542$ $65$ N $4.724130$ $-0.680221$ $0.812378$ $66$ H $5.052656$ $-1.343697$ $1.501552$ $67$ C $-4.662510$ $3.023465$ $-1.049737$ $68$ H $-4.915991$ $3.993287$ $-0.637218$ $69$ C $-3.033676$ $3.863270$ $1.390991$ $70$ H $-3.775584$ $4.585946$ $1.061312$ $71$ C $-4.552370$ $-3.056677$ $1.157802$ $72$ H $-4.802716$ $-4.038256$ $0.764643$ $73$ C $-3.034396$ $-3.933331$ $-1.310557$ $74$ H $-3.739315$ $-4.656592$ $-0.917360$ $75$ Ir $-1.830837$ $0.026608$ $-0.002519$ $76$ C $-3.253036$ $-0.975299$ $1.032313$ $77$ N $-3.330782$ $1.044000$ $-0.972383$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63       | Н       | 11.487028 | -0.282633 | 0.841400  |
| 65N $4.724130$ $-0.680221$ $0.812378$ 66H $5.052656$ $-1.343697$ $1.501552$ 67C $-4.662510$ $3.023465$ $-1.049737$ 68H $-4.915991$ $3.993287$ $-0.637218$ 69C $-3.033676$ $3.863270$ $1.390991$ 70H $-3.775584$ $4.585946$ $1.061312$ 71C $-4.552370$ $-3.056677$ $1.157802$ 72H $-4.802716$ $-4.038256$ $0.764643$ 73C $-3.034396$ $-3.933331$ $-1.310557$ 74H $-3.739315$ $-4.656592$ $-0.917360$ 75Ir $-1.830837$ $0.026608$ $-0.002519$ 76C $-3.253036$ $-0.975299$ $1.032313$ 77N $-3.330782$ $1.044000$ $-0.972383$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64       | Н       | 5.102722  | 1.357344  | -1.528542 |
| 66         H         5.052656         -1.343697         1.501552           67         C         -4.662510         3.023465         -1.049737           68         H         -4.915991         3.993287         -0.637218           69         C         -3.033676         3.863270         1.390991           70         H         -3.775584         4.585946         1.061312           71         C         -4.552370         -3.056677         1.157802           72         H         -4.802716         -4.038256         0.764643           73         C         -3.034396         -3.933331         -1.310557           74         H         -3.739315         -4.656592         -0.917360           75         Ir         -1.830837         0.026608         -0.002519           76         C         -3.253036         -0.975299         1.032313           77         N         -3.330782         1.044000         -0.972383                                                                                                                                                                                                                                                                                                                | 65       | Ν       | 4.724130  | -0.680221 | 0.812378  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66       | Н       | 5.052656  | -1.343697 | 1.501552  |
| 68       H       -4.915991       3.993287       -0.637218         69       C       -3.033676       3.863270       1.390991         70       H       -3.775584       4.585946       1.061312         71       C       -4.552370       -3.056677       1.157802         72       H       -4.802716       -4.038256       0.764643         73       C       -3.034396       -3.933331       -1.310557         74       H       -3.739315       -4.656592       -0.917360         75       Ir       -1.830837       0.026608       -0.002519         76       C       -3.253036       -0.975299       1.032313         77       N       -3.330782       1.044000       -0.972383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67       | С       | -4.662510 | 3.023465  | -1.049737 |
| 69         C         -3.033676         3.863270         1.390991           70         H         -3.775584         4.585946         1.061312           71         C         -4.552370         -3.056677         1.157802           72         H         -4.802716         -4.038256         0.764643           73         C         -3.034396         -3.933331         -1.310557           74         H         -3.739315         -4.656592         -0.917360           75         Ir         -1.830837         0.026608         -0.002519           76         C         -3.253036         -0.975299         1.032313           77         N         -3.330782         1.044000         -0.972383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68       | Н       | -4.915991 | 3.993287  | -0.637218 |
| 70         H         -3.775584         4.585946         1.061312           71         C         -4.552370         -3.056677         1.157802           72         H         -4.802716         -4.038256         0.764643           73         C         -3.034396         -3.933331         -1.310557           74         H         -3.739315         -4.656592         -0.917360           75         Ir         -1.830837         0.026608         -0.002519           76         C         -3.253036         -0.975299         1.032313           77         N         -3.330782         1.044000         -0.972383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 69       | С       | -3.033676 | 3.863270  | 1.390991  |
| 71         C         -4.552370         -3.056677         1.157802           72         H         -4.802716         -4.038256         0.764643           73         C         -3.034396         -3.933331         -1.310557           74         H         -3.739315         -4.656592         -0.917360           75         Ir         -1.830837         0.026608         -0.002519           76         C         -3.253036         -0.975299         1.032313           77         N         -3.330782         1.044000         -0.972383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70       | Н       | -3.775584 | 4.585946  | 1.061312  |
| 72         H         -4.802716         -4.038256         0.764643           73         C         -3.034396         -3.933331         -1.310557           74         H         -3.739315         -4.656592         -0.917360           75         Ir         -1.830837         0.026608         -0.002519           76         C         -3.253036         -0.975299         1.032313           77         N         -3.330782         1.044000         -0.972383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 71       | С       | -4.552370 | -3.056677 | 1.157802  |
| 73         C         -3.034396         -3.933331         -1.310557           74         H         -3.739315         -4.656592         -0.917360           75         Ir         -1.830837         0.026608         -0.002519           76         C         -3.253036         -0.975299         1.032313           77         N         -3.330782         1.044000         -0.972383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72       | Н       | -4.802716 | -4.038256 | 0.764643  |
| 74H-3.739315-4.656592-0.91736075Ir-1.8308370.026608-0.00251976C-3.253036-0.9752991.03231377N-3.3307821.044000-0.972383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 73       | С       | -3.034396 | -3.933331 | -1.310557 |
| 75Ir-1.8308370.026608-0.00251976C-3.253036-0.9752991.03231377N-3.3307821.044000-0.972383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74       | Н       | -3.739315 | -4.656592 | -0.917360 |
| 76         C         -3.253036         -0.975299         1.032313           77         N         -3.330782         1.044000         -0.972383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75       | Ir      | -1.830837 | 0.026608  | -0.002519 |
| 77 N -3.330782 1.044000 -0.972383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76       | С       | -3.253036 | -0.975299 | 1.032313  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77       | Ν       | -3.330782 | 1.044000  | -0.972383 |

-1.902942

С

78

1.695971

1.130478

| 01:01   |              | 1     | MO contribution (%) |       |  |
|---------|--------------|-------|---------------------|-------|--|
| Orbital | Energy(ev) – | Ir    | рру                 | L     |  |
| LUMO+10 | -0.0485      | 5.66  | 78.41               | 15.90 |  |
| LUMO+9  | -0.1493      | 1.42  | 10.97               | 87.61 |  |
| LUMO+8  | -0.5107      | 1.15  | 4.30                | 94.54 |  |
| LUMO+7  | -0.5526      | 0.05  | 0.04                | 99.90 |  |
| LUMO+6  | -1.0869      | 1.47  | 96.90               | 1.63  |  |
| LUMO+5  | -1.2922      | 1.53  | 83.31               | 15.15 |  |
| LUMO+4  | -1.5541      | 0.85  | 16.14               | 83.01 |  |
| LUMO+3  | -1.7197      | 4.01  | 93.92               | 2.08  |  |
| LUMO+2  | -1.8138      | 3.33  | 93.96               | 2.71  |  |
| LUMO+1  | -2.0868      | 1.17  | 1.58                | 97.26 |  |
| LUMO    | -2.4942      | 3.73  | 2.20                | 94.07 |  |
| НОМО    | -6.1969      | 11.02 | 17.29               | 71.69 |  |
| HOMO-1  | -6.2604      | 24.67 | 46.02               | 29.31 |  |
| HOMO-2  | -6.4123      | 27.60 | 67.35               | 5.05  |  |
| HOMO-3  | -6.9043      | 22.82 | 71.71               | 5.47  |  |
| HOMO-4  | -6.9990      | 21.84 | 66.59               | 11.56 |  |
| HOMO-5  | -7.0699      | 23.66 | 68.07               | 8.28  |  |
| HOMO-6  | -7.5028      | 2.96  | 9.98                | 87.07 |  |
| HOMO-7  | -7.6568      | 3.86  | 3.32                | 92.82 |  |
| HOMO-8  | -7.7796      | 0.60  | 1.20                | 98.19 |  |
| HOMO-9  | -7.8108      | 22.77 | 69.03               | 8.19  |  |
| HOMO-10 | -7.9130      | 24.93 | 52.42               | 22.65 |  |

**Table S5.** Molecular Orbital Compositions of **IrL** under TD-DFT Singlet Excitation Calculation (Excitation Transition Study).

Table S6. TD-DFT Calculated Singlet Absorption Data for IrL.

|            |               | U             | 1          |        |                                                         |
|------------|---------------|---------------|------------|--------|---------------------------------------------------------|
| State      | Transition    | Contribution% | E, nm (eV) | 0.S.   | Assignment                                              |
| S1         | HOMO−1→LUMO   | 53.6          | 433 (2.86) | 0.0366 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> ILCT |
| S2         | HOMO→LUMO     | 48.8          | 412 (3.01) | 0.1075 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> ILCT |
| S3         | HOMO–2→LUMO   | 86.4          | 403 (3.08) | 0.0032 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT                    |
| S4         | HOMO−1→LUMO+1 | 67.7          | 365 (3.39) | 0.0168 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> ILCT |
| S5         | HOMO−1→LUMO+2 | 56.7          | 359 (3.46) | 0.0323 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT                    |
| S6         | HOMO→LUMO+1   | 67.2          | 355 (3.49) | 0.1557 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> ILCT |
| S7         | HOMO–3→LUMO   | 45.2          | 349 (3.55) | 0.0557 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT                    |
| <b>S</b> 8 | HOMO–2→LUMO+1 | 82.6          | 345 (3.59) | 0.0541 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT                    |
| S9         | HOMO−1→LUMO+3 | 47.5          | 343 (3.62) | 0.0359 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT                    |
| S10        | HOMO–2→LUMO+2 | 71.0          | 332 (3.73) | 0.0705 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT                    |
| S11        | HOMO–4→LUMO   | 52.9          | 328 (3.78) | 0.0417 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> ILCT |
| S12        | HOMO–2→LUMO+3 | 64.5          | 324 (3.83) | 0.0298 | <sup>1</sup> MLCT/ <sup>1</sup> ILCT                    |
| S13        | HOMO–5→LUMO   | 69.3          | 320 (3.87) | 0.0005 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT                    |
| S14        | HOMO→LUMO+2   | 50.9          | 316 (3.93) | 0.0763 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT                    |
| S15        | HOMO→LUMO+4   | 50.7          | 312 (3.97) | 0.1407 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> ILCT |

**Table S7.** Calculated molecular orbitals of **IrL** under excited states TD-DFT (Excitation Transition).

| LUMO+10 | LUMO+9 | LUMO+8 |
|---------|--------|--------|
|         |        |        |
| LUMO+7  | LUMO+6 | LUMO+5 |
|         |        |        |
| LUMO+4  | LUMO+3 | LUMO+2 |
|         |        |        |
| LUMO+1  | LUMO   | НОМО   |
|         |        |        |
| HOMO-1  | HOMO–2 | HOMO–3 |
|         | HOMO 5 |        |
| HOMO-4  | HOMO-5 | HOMO-6 |

| HOMO–7  | HOMO–8 | HOMO–9 |
|---------|--------|--------|
|         |        |        |
| HOMO–10 |        |        |

**Table S8.** Molecular Orbital Compositions of IrLH under TD-DFT Singlet ExcitationCalculation (Excitation Transition Study).

|         |              | Ν     | MO contribution (% | )     |
|---------|--------------|-------|--------------------|-------|
| Orbital | Energy(ev) - | Ir    | bpy                | L     |
| LUMO+10 | -0.1361      | 7.51  | 85.24              | 7.23  |
| LUMO+9  | -0.5553      | 1.37  | 1.56               | 97.07 |
| LUMO+8  | -0.9849      | 0.02  | 0.04               | 99.94 |
| LUMO+7  | -1.0887      | 1.84  | 29.90              | 68.26 |
| LUMO+6  | -1.1492      | 1.37  | 84.93              | 13.71 |
| LUMO+5  | -1.4161      | 1.27  | 81.94              | 16.79 |
| LUMO+4  | -1.7803      | 3.90  | 94.92              | 1.18  |
| LUMO+3  | -1.8723      | 3.30  | 94.84              | 1.86  |
| LUMO+2  | -2.3813      | 0.86  | 1.04               | 98.11 |
| LUMO+1  | -2.5697      | 1.07  | 1.07               | 97.85 |
| LUMO    | -2.8344      | 3.71  | 2.00               | 94.29 |
| HOMO    | -6 3446      | 32 14 | 63 93              | 3 93  |
| HOMO-1  | -6 5004      | 26.41 | 69.72              | 3.87  |
| HOMO-2  | -6 9491      | 14.89 | 13.12              | 71 99 |
| HOMO-3  | -6.9835      | 7 21  | 86.17              | 6.62  |
| HOMO-4  | -7.1052      | 5.13  | 84.43              | 10.44 |
| HOMO-5  | -7.2203      | 45.01 | 26.86              | 28.12 |
| HOMO-6  | -7.8840      | 19.66 | 55.96              | 24.38 |
| HOMO-7  | -7.9151      | 24.50 | 60.79              | 14.71 |
| HOMO-8  | -8.1509      | 14.50 | 47.37              | 38.14 |
| HOMO-9  | -8.2033      | 10.62 | 25.01              | 64.37 |
| HOMO-10 | -8.2258      | 0.91  | 2.27               | 96.82 |

| Table S9. TD-DFT Ca | lculated Singl | et Absorpti | on Data f | for IrLH. |
|---------------------|----------------|-------------|-----------|-----------|
|                     |                |             |           |           |

| labic      | Table 57. 1D Di i Calculated Singlet Resolption Data for ment. |               |            |        |                                      |  |
|------------|----------------------------------------------------------------|---------------|------------|--------|--------------------------------------|--|
| State      | Transition                                                     | Contribution% | E, nm (eV) | 0.S.   | Assignment                           |  |
| S1         | HOMO→LUMO                                                      | 95.4          | 470 (2.64) | 0.0165 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT |  |
| S2         | HOMO−1→LUMO                                                    | 95.0          | 438 (2.83) | 0.0123 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT |  |
| <b>S</b> 3 | HOMO→LUMO+1                                                    | 96.4          | 410 (3.02) | 0.0060 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT |  |
| S4         | HOMO−1→LUMO+1                                                  | 96.8          | 388 (3.20) | 0.0025 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT |  |

| S5         | HOMO–2→LUMO   | 61.9 | 377 (3.29) | 0.2211 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> ILCT |
|------------|---------------|------|------------|--------|---------------------------------------------------------|
| S6         | HOMO→LUMO+2   | 85.8 | 361 (3.44) | 0.0064 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT                    |
| S7         | HOMO−3→LUMO   | 79.8 | 358 (3.46) | 0.0531 | <sup>1</sup> LLCT                                       |
| <b>S</b> 8 | HOMO→LUMO+3   | 82.6 | 353 (3.51) | 0.0302 | <sup>1</sup> MLCT                                       |
| S9         | HOMO–4→LUMO   | 74.4 | 345 (3.59) | 0.0013 | <sup>1</sup> LLCT                                       |
| S10        | HOMO−1→LUMO+2 | 84.1 | 343 (3.62) | 0.0062 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT                    |
| S11        | HOMO–5→LUMO   | 61.7 | 342 (3.62) | 0.0066 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> ILCT |
| S12        | HOMO→LUMO+4   | 73.1 | 338 (3.66) | 0.0286 | <sup>1</sup> MLCT                                       |
| S13        | HOMO–2→LUMO+1 | 58.0 | 336 (3.69) | 0.0904 | <sup>1</sup> MLCT/ <sup>1</sup> LLCT/ <sup>1</sup> ILCT |
| S14        | HOMO–1→LUMO+3 | 73.3 | 329 (3.77) | 0.0573 | <sup>1</sup> MLCT                                       |
| S15        | HOMO–3→LUMO+1 | 73.5 | 327 (3.79) | 0.0219 | <sup>1</sup> LLCT                                       |

**Table S10.** Calculated molecular orbitals of **IrLH** under excited states TD-DFT (Excitation Transition).

| LUMO+10      | LUMO+9 | LUMO+8 |
|--------------|--------|--------|
| <b>***</b> * |        |        |
| LUMO+7       | LUMO+6 | LUMO+5 |
|              |        |        |
| LUMO+4       | LUMO+3 | LUMO+2 |
|              |        |        |
| LUMO+1       | LUMO   | НОМО   |

| HOMO–1  | HOMO–2 | HOMO–3 |
|---------|--------|--------|
|         |        |        |
| HOMO–4  | HOMO–5 | HOMO–6 |
|         |        |        |
| HOMO–7  | HOMO–8 | HOMO–9 |
|         |        |        |
| HOMO-10 |        |        |

**Table S11.** Molecular Orbital Compositions of IrL under TD-DFT Triplet Excitation

 Calculation (Emission Transition Study).

| Orbital |              | MO contribution (%) |       |       |
|---------|--------------|---------------------|-------|-------|
| Orbital | Energy(ev) – | Ir                  | bpy   | L     |
| LUMO+10 | -0.0353      | 5.36                | 77.09 | 17.51 |
| LUMO+9  | -0.1580      | 1.38                | 12.21 | 86.41 |
| LUMO+8  | -0.4542      | 1.35                | 5.25  | 93.39 |
| LUMO+7  | -0.5056      | 0.05                | 0.03  | 99.91 |
| LUMO+6  | -1.0882      | 1.45                | 97.06 | 1.48  |
| LUMO+5  | -1.2974      | 1.51                | 88.24 | 10.25 |
| LUMO+4  | -1.5782      | 0.73                | 11.37 | 87.90 |
| LUMO+3  | -1.7173      | 3.94                | 93.85 | 2.21  |
| LUMO+2  | -1.8077      | 3.35                | 93.88 | 2.77  |
| LUMO+1  | -2.0737      | 1.16                | 1.41  | 97.43 |
| LUMO    | -2.7464      | 4.23                | 2.26  | 93.51 |

| HOMO    | -5.9910 | 1.80  | 1.57  | 96.62 |
|---------|---------|-------|-------|-------|
| HOMO-1  | -6.2335 | 32.77 | 61.22 | 6.00  |
| HOMO-2  | -6.4100 | 27.60 | 68.34 | 4.06  |
| HOMO-3  | -6.8983 | 24.10 | 68.78 | 7.13  |
| HOMO-4  | -6.9928 | 21.52 | 66.00 | 12.47 |
| HOMO-5  | -7.0593 | 20.38 | 70.64 | 8.98  |
| HOMO-6  | -7.4952 | 2.70  | 10.52 | 86.78 |
| HOMO-7  | -7.6341 | 5.40  | 3.48  | 91.12 |
| HOMO-8  | -7.8262 | 23.40 | 67.55 | 9.06  |
| HOMO-9  | -7.8389 | 1.49  | 3.86  | 94.64 |
| HOMO-10 | -7.9478 | 23.68 | 51.66 | 24.66 |

Table S12. TD-DFT Excitation Calculation for Emission for IrL.

| State | Transition    | Contribution% | E,nm (eV)  | 0.S.   | Assignment                           |
|-------|---------------|---------------|------------|--------|--------------------------------------|
| T1    | HOMO→LUMO     | 82.5          | 586 (2.12) | 0.0000 | <sup>3</sup> ILCT                    |
| T2    | HOMO→LUMO+1   | 41.9          | 533 (2.32) | 0.0000 | <sup>3</sup> ILCT                    |
| T3    | HOMO–1→LUMO   | 59.7          | 487 (2.55) | 0.0000 | <sup>3</sup> MLCT/ <sup>3</sup> LLCT |
| T4    | HOMO→LUMO+4   | 34.8          | 457 (2.71) | 0.0000 | <sup>3</sup> ILCT                    |
| T5    | HOMO–2→LUMO   | 90.4          | 450 (2.76) | 0.0000 | <sup>3</sup> MLCT/ <sup>3</sup> LLCT |
| T6    | HOMO–1→LUMO+2 | 47.1          | 446 (2.78) | 0.0000 | <sup>3</sup> MLCT                    |
| T7    | HOMO–2→LUMO+3 | 29.6          | 436 (2.85) | 0.0000 | <sup>3</sup> MLCT                    |
| T8    | HOMO→LUMO+4   | 26.5          | 415 (2.99) | 0.0000 | <sup>3</sup> ILCT                    |

**Table S13.** Calculated molecular orbitals of **IrL** under excited states TD-DFT (Emission Transition).

| LUMO+10 | LUMO+9 | LUMO+8 |
|---------|--------|--------|
|         |        |        |
| LUMO+7  | LUMO+6 | LUMO+5 |
|         |        |        |
| LUMO+4  | LUMO+3 | LUMO+2 |

| LUMO+1  | LUMO   | НОМО   |
|---------|--------|--------|
|         |        |        |
| HOMO-1  | НОМО-2 | НОМО–3 |
|         |        |        |
| HOMO-4  | HOMO–5 | HOMO-6 |
|         |        |        |
| HOMO–7  | HOMO–8 | HOMO–9 |
| Номо-10 |        |        |

**Table S14.** Molecular Orbital Compositions of **IrLH** under TD-DFT Triplet Excitation Calculation (Emission Transition Study).

| Orbital  | Enormy (aV) | ]    | MO contribution (% | ))    |
|----------|-------------|------|--------------------|-------|
| Official | Energy(ev)  | Ir   | рру                | L     |
| LUMO+10  | -0.0892     | 6.51 | 84.81              | 8.65  |
| LUMO+9   | -0.6057     | 1.33 | 2.66               | 95.99 |
| LUMO+8   | -0.9924     | 0.02 | 0.03               | 99.94 |

| LUMO+7  | -1.0941 | 1.82  | 31.35 | 66.82 |
|---------|---------|-------|-------|-------|
| LUMO+6  | -1.1595 | 1.27  | 83.82 | 14.91 |
| LUMO+5  | -1.4053 | 1.22  | 82.45 | 16.33 |
| LUMO+4  | -1.7639 | 3.67  | 95.21 | 1.12  |
| LUMO+3  | -1.8274 | 3.60  | 94.38 | 2.01  |
| LUMO+2  | -2.3767 | 0.67  | 1.00  | 98.31 |
| LUMO+1  | -2.5905 | 1.22  | 1.30  | 97.46 |
| LUMO    | -3.1873 | 4.62  | 2.76  | 92.60 |
|         |         |       |       |       |
| HOMO    | -6.0845 | 30.58 | 62.57 | 6.85  |
| HOMO-1  | -6.5499 | 24.69 | 72.15 | 3.15  |
| HOMO-2  | -6.9904 | 15.41 | 26.96 | 57.63 |
| HOMO-3  | -7.0047 | 3.92  | 75.88 | 20.20 |
| HOMO-4  | -7.1073 | 3.89  | 83.26 | 12.84 |
| HOMO-5  | -7.2626 | 47.67 | 24.04 | 28.29 |
| HOMO-6  | -7.8546 | 23.20 | 66.84 | 9.97  |
| HOMO-7  | -8.0115 | 15.23 | 36.20 | 48.56 |
| HOMO-8  | -8.1563 | 21.52 | 66.60 | 11.90 |
| HOMO-9  | -8.1919 | 6.69  | 16.45 | 76.84 |
| HOMO-10 | -8.2259 | 0.62  | 1.10  | 98.27 |

 Table S15. TD-DFT Excitation Calculation for Emission for IrLH.

| Table | Table 515. TD DT T Excitation Calculation for Emission for mEm. |               |                   |        |                                       |  |  |  |  |
|-------|-----------------------------------------------------------------|---------------|-------------------|--------|---------------------------------------|--|--|--|--|
| State | Transition                                                      | Contribution% | <i>E</i> ,nm (eV) | 0.S.   | Assignment                            |  |  |  |  |
| T1    | HOMO→LUMO                                                       | 92.0          | 670 (1.85)        | 0.0000 | <sup>3</sup> MLCT// <sup>3</sup> LLCT |  |  |  |  |
| T2    | HOMO–1→LUMO                                                     | 31.9          | 508 (2.44)        | 0.0000 | <sup>3</sup> MLCT/ <sup>3</sup> LLCT  |  |  |  |  |
| T3    | HOMO–1→LUMO                                                     | 60.8          | 501 (2.48)        | 0.0000 | <sup>3</sup> MLCT/ <sup>3</sup> LLCT  |  |  |  |  |
| T4    | HOMO→LUMO+1                                                     | 64.8          | 474 (2.61)        | 0.0000 | <sup>3</sup> MLCT/ <sup>3</sup> LLCT  |  |  |  |  |
| T5    | HOMO→LUMO+3                                                     | 54.4          | 457 (2.72)        | 0.0000 | <sup>3</sup> MLCT                     |  |  |  |  |
| T6    | HOMO–2→LUMO                                                     | 21.6          | 441 (2.81)        | 0.0000 | <sup>3</sup> MLCT/ <sup>3</sup> LLCT  |  |  |  |  |
| T7    | HOMO–1→LUMO+4                                                   | 36.1          | 429 (2.89)        | 0.0000 | <sup>3</sup> MLCT                     |  |  |  |  |
| T8    | HOMO–2→LUMO+2                                                   | 30.2          | 421 (2.94)        | 0.0000 | <sup>3</sup> MLCT/ <sup>3</sup> LLCT  |  |  |  |  |
| Т9    | HOMO–3→LUMO                                                     | 32.6          | 404 (3.07)        | 0.0000 | <sup>3</sup> LLCT <sup>3</sup> ILCT   |  |  |  |  |

**Table S16.** Calculated molecular orbitals of **IrLH** under excited states TD-DFT (Emission Transition).

| LUMO+10 | LUMO+9 | LUMO+8 |
|---------|--------|--------|
|         |        |        |
| LUMO+7  | LUMO+6 | LUMO+5 |

| LUMO+4  | LUMO+3 | LUMO+2 |
|---------|--------|--------|
|         |        |        |
| LUMO+1  | LUMO   | НОМО   |
|         |        |        |
| HOMO-1  | НОМО–2 | НОМО–3 |
|         |        |        |
| HOMO–4  | HOMO–5 | НОМО-6 |
|         |        |        |
| HOMO–7  | HOMO–8 | НОМО–9 |
| НОМО-10 |        |        |

**Table S17.** TD-DFT Calculation for the Triplet Transition and MO Contribution of IrL and IrLH in Acetonitrile.

| Complex | State | Transition | Contribution% | E/nm (eV)  | Assignment                           |
|---------|-------|------------|---------------|------------|--------------------------------------|
| IrL     | T1    | HOMO→LUMO  | 82.5          | 586 (2.12) | <sup>3</sup> ILCT                    |
| IrLH    | T1    | HOMO→LUMO  | 92.0          | 670 (1.85) | <sup>3</sup> MLCT/ <sup>3</sup> LLCT |

 Table S18.
 Single oxygen generation was determined using UV-vis spectroscopy under various experimental conditions.

| Entry |                                        | Complex<br>(µM) | ABDA<br>(µM) | Light<br>(nm) | Time<br>(min) | Ar  | NaN <sub>3</sub><br>(mM) | <i>k</i> (min <sup>-1</sup> ) |
|-------|----------------------------------------|-----------------|--------------|---------------|---------------|-----|--------------------------|-------------------------------|
| 1     | IrL                                    | 10              | 100          | 390           | 1/10          | -   | -                        | 0.2653                        |
| 2     | IrL                                    | 10              | 100          | 390           | 1/10          | yes | -                        | 0.0222                        |
| 3     | IrL                                    | 10              | 100          | 390           | 1/10          | -   | 10                       | 0.1478                        |
| 4     | [Ru(bpy) <sub>3</sub> ]Cl <sub>2</sub> | 10              | 100          | 390           | 1/10          | -   | -                        | 0.1909                        |

**Table S19.** Photocatalytic oxidation of NADH by **IrL** in deionized water under various conditions.

| Entry |                                        | Complex<br>(µM) | NADH(µM) | Light<br>(nm) | Time<br>(min) | Ar  | k (min <sup>-1</sup> ) |
|-------|----------------------------------------|-----------------|----------|---------------|---------------|-----|------------------------|
| 1     | IrL                                    | 10              | 100      | 390           | 1/10          | -   | 0.0900                 |
| 2     | IrL                                    | 10              | 100      | 390           | 1/10          | yes | 0.0377                 |
| 3     | [Ru(bpy) <sub>3</sub> ]Cl <sub>2</sub> | 10              | 100      | 390           | 1/10          | -   | 0.0372                 |
| 4     | -                                      | -               | 100      | 390           | 1/10          | -   | 0.0031                 |

Table S20. Single oxygen generation under three different pH conditions.

| Entry | pН  | IrL (µM) | ABDA(µM) | Light (nm) | Time (min) | <i>k</i> (min <sup>-1</sup> ) |
|-------|-----|----------|----------|------------|------------|-------------------------------|
| 1     | 7.4 | 10       | 100      | 390        | 1/10       | 0.1238                        |
| 2     | 6.5 | 10       | 100      | 390        | 1/10       | 0.1414                        |
| 3     | 4.5 | 10       | 100      | 390        | 1/10       | 0.2597                        |

| Table S21. Photocatal | ytic oxidation of NADH b | by <b>IrL</b> in PBS buffer with diffe | rent pH. |
|-----------------------|--------------------------|----------------------------------------|----------|
|                       |                          |                                        |          |

| Entry | pН  | IrL (µM) | NADH(µM) | Light (nm) | Time (min) | <i>k</i> (min <sup>-1</sup> ) |
|-------|-----|----------|----------|------------|------------|-------------------------------|
| 1     | 7.4 | 10       | 100      | 390        | 1/10       | 0.0342                        |
| 2     | 6.5 | 10       | 100      | 390        | 1/10       | 0.0523                        |
| 3     | 4.5 | 10       | 100      | 390        | 1/10       | 0.1075                        |

**Table S22.** IC<sub>50</sub> values of **IrL** against different cell lines under normoxic and hypoxic conditions after incubation for 48 h.

| IC <sub>50</sub> (μM), IrL |                                |                    |                          |                              |                               |                          |  |
|----------------------------|--------------------------------|--------------------|--------------------------|------------------------------|-------------------------------|--------------------------|--|
|                            | Normoxia (21% O <sub>2</sub> ) |                    |                          | Hypoxia (5% O <sub>2</sub> ) |                               |                          |  |
|                            | Dark <sup>a</sup>              | Light <sup>b</sup> | phototoxicity<br>index ° | Dark <sup>a</sup>            | $\mathbf{Light}^{\mathrm{b}}$ | phototoxicity<br>index ° |  |
| 4T1                        | 83.8                           | 2.0                | 41.9                     | 51.6                         | 6.6                           | 7.8                      |  |
| EMT6                       | 76.1                           | 0.6                | 126.8                    | 40.6                         | 1.2                           | 33.8                     |  |

<sup>a</sup> Cells were treated with the **IrL** for 48 h. <sup>b</sup> Cells were treated with the **I IrL** for 4 h before irradiation. <sup>c</sup> phototoxicity index =  $IC_{50}(dark)/IC_{50}(light)$ .