Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting information

Computational details

In this study, the Vienna ab initio Simulation Package (VASP) within the frame of density functional theory (DFT) was utilized for all calculations. The exchange-correlation interactions of electrons were described using the generalized gradient approximation (GGA) with PBE functional. The interactions of electron and ion were characterized using the projector augmented wave (PAW) method. The Monkhorst-Pack scheme with a 3 x 3 x 1 k-point mesh was employed for the integration in the irreducible Brillouin zone. A plane wave expansion with a cut-off energy of 500 eV was selected for the calculations. The lattice parameters and ionic position were fully relaxed, and the total energy was converged to within 10^{-4} eV per formula unit. The final forces on all ions were maintained below 0.01/Å.

Fig. S1 The adsorption experiments of the AC-0.025 sample toward TCH for 120 min in dark.

Fig. S2 SEM images of (a) AC-0.01, (b) AC-0.05.

Fig. S3 TOC removal ratio of TCH by AC-0.025.

Table S1. Performance comparison of $AgVO_3/CaIn_2S_4$ with previously reported photodegradation of TCH by systems based on $AgVO_3$ and $CaIn_2S_4$.

Photocatalysts	Light source	Concentration	Catalyst	Degradation (%),	Ref.
		(mg L-1)	amount/volume	illumination time	
		of TCH	of TCH	(min)	
$CaIn_2S_4$ - $Ti_3C_2T_x$	halogen lamp	20	50 mg/50 mL	92, 150	S 1
	$(400 \text{ W}, \lambda > 420 \text{ nm})$				
KBi ₆ O ₉ I/Ag-AgVO ₃	halogen bulb	25/50	200 mg/200 mL	88.3/83.5, 120	S2
	(400 W)				
AgVO ₃ /Ag ₄ V ₂ O ₇ /BiOI	halogen lamp	10	0.1 g/100 mL	100, 80	S3
	(1000 W)				
AgVO ₃ /UiO-66	Xe lamp	10	20 mg/100 mL	78.5, 60	S4
	(300 W)				
AgVO ₃ /Ag ₂ S	Xe lamp	20	10 mg/100 mL	70.45, 120	S5
	$(300 \text{ W}, \lambda > 400 \text{ nm})$				
AgVO ₃ /BiVO ₄ /graphene	Xe lamp	50	/50 mL	92, 80	S6
	(500 W, 420 nm				
	filter)				
$AgVO_3/Bi_4Ti_3O_{12}$	Xe lamp	5	30 mg/100 mL	57, 60	S 7
	$(300 \text{ W}, \lambda > 420 \text{ nm})$				
Ag-AgVO ₃ /g-C ₃ N ₄	Xe lamp	15/200	0.04 g/200 mL	83.6, 120	S 8
	(300 W, 410 nm				
	filter)				
AgVO ₃ /RGO/C ₃ N ₄ -	Xe lamp	10	$5.4 \times 5.9 \text{ cm}^2/50 \text{ mL}$	88.53, 120	S9
PVDF	$(300 \text{ W}, \lambda > 400 \text{ nm})$				
AgVO ₃ /CaIn ₂ S ₄	Xe lamp	20	1 g/L ⁻¹	94.1, 80	This
	$(500 \text{ W}, \lambda > 420 \text{ nm})$				study

References

S1 Z. H. Zhu, X. J. Liu, T. Q. Chen, Y. Y. Gong, C. Li, L. Y. Niu, S.Q. Xu, X. T. Xu, Z. A. Alothman, C. Q. Sun, J. G. Shapter, Y. Tamauchi, *Chem. Eng. J.*, 2021, **421**, 127838.

- S2 A. Ebrahimi, M. Haghighi, M. Shabani, Env. Pollution., 2024, 346, 123584.
- S3 J. H. Yu, J. X. Dong, X. L. Su, J. Yang, D. Zhang, J. C. Liu, P. Q. Cai, Z. P. Li, D. F. Zhang, X. P. Pu, J. Alloy. Compd., 2024, 987, 174187.
- S4 M. Zhu, X. C. Huang, Y. Zhu, H. J. Zhang, S. X. Lu, Chem. Phys. Impact., 2023, 7, 100333.
- S5 Y. B. Liu, N. Liu, M. H. Lin, C. F. Huang, Z. J. Lei, H. S. Cao, F. G. Qi, X. P. Ouyang, Y. Zhou, *Env. Pollution.*, 2023, **325**, 121436.
- S6 Y. Wang, M. L. Chen, Q. Xie, B. L. Wang, L. Lin, Y. Y. Jiang, L. Zhang, Y. Zhao, Y. S. Zhang, M. J. Zhao, Aust. J. Chem., 2022, 75(6), 387.
- S7 Y. B. Chen, Y. Zhou, J. Zhang, J. X. Li, T. T. Tao, A. N. Chen, Z. Y. Chen, J. Phys. Chem. Solids., 2022, 161, 110428.
- S8 D. Y. Chen, B. L. Li, Q. M. Pu, X. Chen, G. Wen, Z. S. Li, J. Hazard. Mater., 2019, 373, 302.
- S9 Y. H. Cui, Z. K. Wang, J. Zheng, B. R. Li, Y. S. Yan, M. J. Meng, J. Colloid. Interf. Sci., 2022, 614, 677-689.